Exprgram: A Language Learning Interface for Mastering Pragmatic Competence

Kyung Je Jo
School of Computing, KAIST
Daejeon, Republic of Korea
kyungjejo@kaist.ac.kr

John Joon Young Chung
School of Computing, KAIST
Daejeon, Republic of Korea
john0@kaist.ac.kr

Juho Kim
School of Computing, KAIST
Daejeon, Republic of Korea
juhokim@kaist.ac.kr

Abstract
Mastering pragmatic competence, the ability to use language in a contextually appropriate way, is one of the most challenging parts of foreign language learning. Despite its importance, existing language learning systems often focus on linguistic components such as grammar, vocabulary, or pronunciation. Consequently, foreign language learners may generate grammatically flawless speech that is contextually inappropriate. With the diverse socio-cultural contexts captured in real-life settings, videos at scale can serve as a great material to acquire pragmatic competence. We introduce Exprgram, a web-based video learning interface that assists learners to master pragmatic competence. In Exprgram, learners can raise their context-awareness, practice generating an alternative expression, and learn diverse alternative expressions for the given context. Our user study with 12 advanced English learners displays the potential in our learnersourcing approach to collect descriptive context annotations and diverse alternative expressions.

Author Keywords
Learnersourcing; language learning; pragmatic competence; video learning

ACM Classification Keywords
H.5.m [Information interfaces and presentation (e.g.,HCI)]: Miscellaneous
Introduction

Pragmatic competence, the ability to use the language in a contextually appropriate way, is essential in foreign language learning [13]. Firth and Wagner assert that acquiring knowledge situated in physical and cultural context is key to foreign language learning [5]. In addition, exposing learners to as many real-life scenarios as possible is also important [7]. However, the limited and ideal scenarios in traditional learning materials provide narrow pragmatic opportunities to learners. Consequently, even the proficient second-language learners may produce grammatically flawless speech that fails to achieve its communicative goal [1].

Videos in a foreign language naturally capture rich context such as settings, gestures, or emotions that can aid learners to learn the diverse usage of expressions [13]. The conversations in videos at scale can easily expose learners to diverse real-life contexts and expressions. For instance, in our analysis of 2,100 subtitles of English movies and dramas, “How are you?” appeared in 238 utterances, yielding diverse responses from commonly-taught (e.g., “good”, “fine”) to contextual (e.g., “depends”, “cold”, “I'm not drunk”) to sarcastic responses (e.g., “That's the 'hey' that means 'I need something'.”). With the vast spectrum of contexts and diverse expressions, videos at scale present a pedagogical opportunity in facilitating pragmatic competence.

While many language learning tools use videos, the conversations in videos remain underutilized. Existing platforms (e.g., Viki, VoiceTube, FluentU) and tools often focus on teaching linguistic components such as vocabulary, grammar, or listening [9, 3]. Seiyuu-Seiyuu directly focuses on pragmatic competence through transcribing learners to improve learners’ pronunciation. While similar expressions that appear in different videos can teach learners diverse usage of expressions, existing systems often do not take advantage of pragmatically rich resources at scale.

To combat the challenge, we introduced an early version of Exprgram, a language learning interface that enables context- and expression-based browsing [6]. Ideally, users can browse videos that share a particular context or use expressions with semantic similarity. To enable such browsing, we collected context and expression annotations by adopting learnersourcing, the form of crowdsourcing that uses learners to generate useful artifacts for future learners while participating in a meaningful learning activity [8]. However, challenges remained as to 1) lack of educational activities, 2) the workflow that is highly dependent on voluntary participation, and 3) lack of assistance for incapable learners.

In this paper, we introduce newly designed Exprgram that provides two-stage learning to help learners acquire prag-
matic competence. We designed activities following the insights from prior studies on pragmatic competence. Learners complete activities that are designed to have pedagogical value, in which the results can assist the future learners. Through a user study with 12 participants, we show potential that our workflow can successfully generate context labels that describes the situation well and alternative expressions that are adequate to the given context.

System Overview

Learning language usage alongside the context is highly emphasized in acquiring pragmatic competence [1, 7, 13]. Whereas context that is explicit such as location or intonation can be easily captured, foreign language learners tend lack ability to understand the underlying message which only can be interpreted with the surrounding context. For example, Bouton’s study showed that even the advanced foreign language learners have difficulty in interpreting sarcasm in the utterance, “Well, the food was nicely presented.” [2]. In this paper, we focus on teaching two types of context that are often implicit, and thus difficult, the intention and emotion of the speaker. In implementing Exprgram, we had three design goals inspired by interviews with two TESOL-certified instructors and prior studies on pragmatic competence [1, 2, 7, 10].

G1: Encourage learners to gain a thorough understanding of the intention and the emotion of the speaker in the video.

G2: Assist learners to master the usage of an expression in a particular context.

G3: Provide learners with diverse alternative expressions in the same context.

Exprgram integrates a web-based video player with subtitles aligned to the speech of the video (Figure 1). To meet these design goals, we use prompts to support two-staged learning: 1) raising context-awareness and 2) mastering the proper usage of diverse expressions. Learners watch the same video once for each stage to complete different activities presented by prompts. Exprgram marks each video with several target expressions, indicated with “>>>” in the subtitle section (Figure 1), that learners are expected to master. A difference between the two stages is that the target expression is masked (Figure 2(b)) and the video is muted at the time of the expression in the second stage. For each stage, prompts appear with an instruction of the following activity a few seconds after the video playback passes that target expression. Learners can replay the video as many times as they wish to complete the activities.

In the selection of target expressions, we focused on identifying expressions that are frequently used in real-life with the goal of exposing learners to expressions that are commonly used. Thus, we used Sent2Vec, a machine-learning algorithm to compute the semantic similarity of sentences, to identify expressions in our dataset, consisting of 1-million expressions from 2,100 subtitles of English movies and dramas, that share the semantic meaning (e.g., “How are you?”, “How do you do?”, “How’s it going?”) [11]. Then, we identified expressions which have at least 5 expressions in a different form with over 95% similarity in our dataset.

Stage 1: raising context-awareness

Prior research showed that guidance and awareness-raising tasks help foreign language learners in capturing the implied context in conversations [10, 2]. Thus, we designed two context-awareness raising activities (Figure 3, 4) in Stage 1 to fulfill the design goal **G1:** to encourage learners to understand the speaker’s intention and emotion.

Stage 1 includes four prompts including an instruction prompt at the beginning of each activity. In the second prompt,
After completing activities to identify speaker’s intention and emotion, learners can reflect and evaluate from the statistics of learnersourced artifacts on speaker’s intention and emotion. Learners identify intention by selecting the type of speech act and describing the speaker’s intention in a word (Figure 3). In this paper, we used Searle’s 5 classifications of speech acts [12] which is widely used in studies on pragmatic competence [7]. The description for each speech act is provided within the interface as a tooltip. In the next task prompt, learners label the emotion of the speaker based on Ekman’s six basic emotion [4] and a one-word description (Figure 4). The intention and emotion description task is designed to give learners an opportunity to process language on their own. After the two task prompts, Exprgram displays statistics of learnersourced artifacts (Figure 5) on which learners can evaluate and reflect on their responses. In addition, the statistic is an attempt to assist incapable learners to become aware of the context. In this prompt, we also collect qualitative feedback on how well the learnersourced artifacts describe the given context.

Stage 2: mastering the proper usage of expressions

The first prompt of Stage 2, presented in Figure 6, is designed to fulfill G2: aiding learners to master the usage of an expression. Learners can practice generating contextually appropriate expression referring to the learnersourced context labels on the top. Through practicing, learners are encouraged to master an expression that is adequate to the given context. The next prompt is designed to fulfill the design goal G3: to teach diverse alternative expressions. As shown in (Figure 7), 5 alternative expressions that are either learnersourced by previous learners or computed by the machine learning algorithm [11] are presented to learners. In this prompt, learners are instructed to choose the expressions that are contextually appropriate. We designed the prompt in this way to control the quality of alternative expressions that may be erroneous and ensure learners to be aware of all alternatives provided.

Figure 5: After completing activities to identify speaker’s intention and emotion, learners can reflect and evaluate from the statistics of learnersourced artifacts on speaker’s intention and emotion.

Figure 6: Activity of generation an alternative expression.

Figure 7: 5 alternative expressions of “What do you think?” that are either learnersourced or computed by a machine learning algorithm. In the video, man is persuading the woman to watch his boxing match.
User Study
We conducted a preliminary user study to verify our learnersourcing approach that leverages videos at scale for language learning.

Design & Methods
We recruited 12 advanced English as Second Language speakers on campus, aged between 20 to 26 with competence in grammar, vocabulary, and listening. The participants used Exprgram to watch a 5-minute clip from an episode of Friends, an American sitcom, with 8 target expressions. Each participant was given a 10-minute tutorial before beginning the task. In case the participants may not be able to find an appropriate word to complete the activity, a list of 100 frequent words used to describe emotions and intentions were provided. Each participant received 10 USD for joining a 30-minute study session. For the expression generation task (Figure 6), participants were advised not to generate the exact expression in the video although they may recall it explicitly in tutorial session and within the instruction in the prompt. Participants answered a short survey after they completed the task which primarily questioned how each component was helpful to understand the context and the usage of expression.

Preliminary Results
Analysis of Learnersourced Artifact Three native speakers independently worked on the same activity and resolved differences through a discussion to generate the ground truth. Comparing the speech act voted by the majority to the ground truth, the accuracy was 62.5%. To evaluate the accuracy of intention and emotion annotations described in a word, three native speakers independently scored each artifact and made consensus through a discussion. For each expression, 9.25 out of 12 intention annotations were correct with a standard deviation of 1.6 and 8.38 out of 12 emotion annotations were correct with a standard deviation of 2.1. Overall, participants performed quite well in describing both the intention (77%) and the emotion (70%). For six scales of emotion, three native speakers generated ground truth whether a type of emotion exists or not. After comparing the results, we found that participants were capable of discerning the existence of each emotion categories, with 86% of accuracy.

In the expression generation activity, 96 alternatives were collected in total from participants. 14 alternatives were excluded as they exactly matched the original expression of the video. All the remaining alternatives submitted by learners did not overlap providing approximately 10 alternatives for each expression.

Qualitative Analysis on Learning Experience From the survey given after the tasks, we analyzed the participants’ experiences in Exprgram. First of all, learners expressed that statistics on learnersourced intention and emotion gave them an opportunity to reflect and evaluate their own responses. Furthermore, the learners explained the artifacts displayed on statistics (Figure 5 helped them to identify that they misunderstood. On the other hand, most learners felt the difference of artifacts from their responses were within their acceptable range. From the 5 alternative expressions Exprgram provides for each target expression (Figure 7), learners reported that they were able to find expressions that they were less familiar with. However, one learner stated that the 5 expressions were not helpful as they were too similar to her response.

Conclusion and Future Work
In this paper, we designed a language learning interface by utilizing conversations in videos to facilitate pragmatic competence. We introduced a guided learnersourcing
workflow that enables learners to raise context-awareness and learn diverse expressions in the same context while annotating the context and alternative expression. In our user study, learners showed potential to generate context annotations, which describes the scene accurately, and expressions that are adequate to the given context. There are multiple directions for future work. We plan to study whether and how using Exprgram might give a learning gain. We also plan to explore how learnersourced artifacts can effectively aid future learners. As Exprgram deals with intent and emotion annotations that are highly subjective, we wish to explore aggregation techniques to provide learners more meaningful information.

Acknowledgements
This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korean government (MSIT) (No.2017-0-01217, Korean Language CALL Platform Using Automatic Speech-writing Evaluation and Chatbot)

REFERENCES