Strategy Dynamics and System-of-Systems Tradespace Exploration

Mr. Jordan Stern

8th Annual SERC Doctoral Students Forum
HOSTED VIRTUALLY ON: November 17, 2020

www.sercuarc.org

The view expressed in this material are those of the authors and do not represent the policy of the U.S. Air Force, the U.S. Department of Defense, or the U.S. Government.
Overview

• Research Objectives
• Background
• Methodology
• Application Case
• Results
• Discussion
• Future Work
Research Objectives

• Develop and demonstrate a conceptual design methodology incorporating collaborative system strategy dynamics in a tradespace exploration.
 — Yield constituent systems that are robust to SoS dissolutions and promote the formation and stability of the SoS.

• Determine how economic variables impact constituent system designs and the assess the suitability of the proposed methodology for such analyses.

• Determine the impacts of operational uncertainty on the expected value of designs generated using the proposed methodology.
Background

• A growing space economy creates opportunities for collaborative systems (SoS) that enhance value for constituent system owners.

• SoS formation requires investments to enable interoperation (Maier, 1998).

• Efficiency maximization goals create a temptation to eliminate redundant functionality.

• Failed SoS may result in non-recoverable interoperability costs and expensive modifications or delays to adapt systems for independent operation.

• Methods which objectively and consistently assess designs for suitability in a SoS context are required.
Background Continued

• Research in this area has focused on:
 — Combined and weighted constituent objectives (DiMario et al., 2009)
 — Global SoS objectives (DiMario et al., 2009, Fang et al., 2018)
 — Determining when a successful SoS is mutually beneficial (Baldwin et al., 2015, DiMario et al., 2009)
 — Discovering consensus/ compromise designs (Fitzgerald and Ross, 2013)

• These works do not consider the strategy dynamics induced by multiple decision makers.
 — Determination that an upside of collaboration exists for particular designs is not sufficient for rational selection of those designs.
Methodology

- Game theory provides tools for strategy selection in multi-decision maker problems (Selten, 1995).

- Games can be used to model multi-actor decisions in engineering design (Grogan & Valencia-Romero, 2019).

- Weighted average log measure of risk dominance, R, indicates the risk dominant strategy. $R < 0$ indicates dominance of collaborative strategy (Selten, 1995).
Methodology

<table>
<thead>
<tr>
<th>Actor 1</th>
<th>Actor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hare (\phi)</td>
</tr>
<tr>
<td>Hare (\phi)</td>
<td>(V^\phi \phi = 2)</td>
</tr>
<tr>
<td>Stag (\psi)</td>
<td>(V^\psi \phi = 4)</td>
</tr>
<tr>
<td>Stag (\psi)</td>
<td>(V^\psi \psi = 5)</td>
</tr>
</tbody>
</table>

\[
 u_i(\phi, \psi) = \frac{V^\phi \phi - V^\psi \phi}{(V^\phi \phi - V^\psi \phi)} - \frac{V^\phi \psi - V^\psi \psi}{(V^\phi \psi - V^\psi \psi)}
\]

\[
 R = \sum_{i=1}^{n} w_i(A) \ln \frac{u_i}{1 - u_i}
\]

Where \(w_i(A) \) are the influence weights based on influence matrix \(A \).

- \(R = 0.69 \) for the example above, indicating that the independent (hare hunting) strategy is risk dominant.
Methodology

- Alternative designs change payoffs and strategy dynamics.

<table>
<thead>
<tr>
<th>Design</th>
<th>Hare, Hare</th>
<th>Hare, Stag</th>
<th>Stag, Hare</th>
<th>Stag, Stag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dogs</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Spear</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Bow</td>
<td>1</td>
<td>1</td>
<td>1.75</td>
<td>4.5</td>
</tr>
</tbody>
</table>

- Adoption of the ‘bow’ design trades some upside potential for a reduction of downside loss.

- R can be used in a SE context to guide trade space exploration towards strategically stable designs.
Methodology

- A two-phase trade space exploration implements the risk dominance criterion in a multi-attribute heuristic search
 - Objectives: Maximize NPV for each system, minimize R
Application Case

• Assesses collaboration between two, hypothetical, commercial space systems.
 — An earth observation system
 — A satellite communication system providing broadband internet services

• Each system can operate entirely independently of the other.

• Collaboration occurs when both systems implement interoperable inter-satellite links.
 — The SATCOM system performs EO command and data transport for a fee
 — EO system data value increases as latency decreases

• Evaluations performed for a five year mission duration for each system
Application Case

- Failure to coordinate on the collaborative system results in:
 - Unrecouped interoperability investments for both systems
 - Expensive ground station lease for EO if no organic ground stations are implemented
Application Case

EO System Evaluation

<table>
<thead>
<tr>
<th>Variable</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of planes</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Satellites per plane</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Aperture diameter (cm)</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>Altitude (km)</td>
<td>800</td>
<td>400</td>
</tr>
<tr>
<td>Number of ground stations</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

- System NPV assessed through simulation and analysis
 - Imagery revenue – a function of resolution and data latency
 - Cost – lifecycle cost based on parametric cost estimate
Application Case
SATCOM System Evaluation

<table>
<thead>
<tr>
<th>Variable</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of planes</td>
<td>60</td>
<td>4</td>
</tr>
<tr>
<td>Satellites per plane</td>
<td>80</td>
<td>8</td>
</tr>
<tr>
<td>User channels</td>
<td>32</td>
<td>1</td>
</tr>
<tr>
<td>Transmit power/channel (W)</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Min. user elevation (deg.)</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>Modulation scheme</td>
<td></td>
<td>22 options</td>
</tr>
</tbody>
</table>

- System NPV assessed through simulation and analysis
 - Communication revenue – a function of system capacity and customer base
 - Cost – lifecycle cost based on parametric cost estimate
Results

Fixed economic variables, deterministic schedule

• Data transport fee from EO to SATCOM fixed at $10M/month
 — Incurred only under collaboration when SATCOM service is available

• Top independent EO design
 — 3 planes, 3 satellites/plane, 1 m aperture, 400 km altitude, 3 ground stations; NPV = $346.75M

• Top independent SATCOM design
 — 41 planes, 80 satellites/plane, 40° min. elevation angle, 1 W/channel, 32 channels, 8PSK 2/3 rate; NPV = $9035.65M
Results Cont.

Fixed economic variables, deterministic schedule

- All Pareto efficient, collaborative, SATCOM system designs were the same as the best independent design.

- EO designs varied over a small range, trading maximum NPV for reductions to R by decreasing investment cost and then adding organic communication paths.

<table>
<thead>
<tr>
<th>Design</th>
<th>Planes</th>
<th>Sats/ plane</th>
<th>Aperture</th>
<th>Alt. (km)</th>
<th>Ground Stations</th>
<th>NPV$_e$ (M)</th>
<th>NPV$_s$ (M)</th>
<th>R</th>
<th>u_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>100</td>
<td>400</td>
<td>0</td>
<td>704.38</td>
<td>9332.78</td>
<td>-1.11</td>
<td>0.743</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>100</td>
<td>400</td>
<td>0</td>
<td>685.78</td>
<td>9332.78</td>
<td>-1.13</td>
<td>0.733</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>100</td>
<td>400</td>
<td>3</td>
<td>486.35</td>
<td>9332.78</td>
<td>-1.17</td>
<td>0.717</td>
</tr>
</tbody>
</table>
Results Cont.

Fixed economic variables, deterministic schedule

- Maximum value EO system design has a large downside risk and correspondingly high u_e.

- SATCOM downside is relatively low resulting in a low u_s.

![Graph showing the relationship between $E[V_{eo}]$ and p_{satcom} and $E[V_{satcom}]$ and p_{eo}]
Results Cont.

Fixed economic variables, deterministic schedule

- The success of a collaborative strategy is largely a function of EO design decisions

- EO Design 3 (solid magenta line) trades the efficiency gained by relying on SATCOM data transport, for robustness in the form of redundant communication paths.
Extended Application Case
Economic variables, schedule uncertainty

• The extended application case implements cost-share and data transport fee as economic design variables.
 — Cost-share - 0 to 100% of EO interoperability unique non-recurring costs
 — Fee - $1M to $20M/ month

• SATCOM’s portion of cost share is unrecoverable if they unilaterally select the independent strategy.

• Inclusion of economic variables results in many pareto efficient designs for a given technical implementation.
 — R provides an objective criterion for discriminating between these solutions.

• Schedule uncertainty is modeled by Monte Carlo simulation with schedule delay applied to each system’s development cycle.
Results

Economic variables, schedule uncertainty

• A selection of designs on or near the Pareto frontier were selected for schedule uncertainty analysis.

 — Designs were selected for coverage of objective and design spaces.
 o min. R – design with the minimum R value
 o max. NPV_e – design with the maximum EO NPV and negative R
 o max. NPV_s – design with the maximum SATCOM NPV and negative R
 o max. up, min. R – design with the maximum combined NPV and minimum R
 o $3 \times 4, 3\gamma$ – design with EO design of 3 planes, 4 satellites/ plane, and 3 ground stations and economic variables producing low R and a moderate upside for each system
 o 2×4, min. R – design with 2 EO planes and 4 EO satellites/plane and minimum R
 o 2×4 min. Δ – design with 2 EO planes and 4 EO satellites/plane and minimum delta upside between systems
 o 2×3, min. R
 o $2 \times 3, 1\gamma$ – low cost solution with negative R and organic EO ground stations
Results
Economic variables, schedule uncertainty

Expected NPV for collaboration under schedule uncertainty.

Table 14 Monte Carlo Schedule Analysis Results

<table>
<thead>
<tr>
<th>Design</th>
<th>$E[NPV_v]$</th>
<th>$E[NPV_s]$</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>min R</td>
<td>368.57</td>
<td>6191.82</td>
<td>undefined</td>
</tr>
<tr>
<td>max NPV_v</td>
<td>549.56</td>
<td>6167.81</td>
<td>undefined</td>
</tr>
<tr>
<td>max NPV_s</td>
<td>18.54</td>
<td>6697.23</td>
<td>undefined</td>
</tr>
<tr>
<td>max up, min R</td>
<td>445.13</td>
<td>6270.91</td>
<td>-1.66</td>
</tr>
<tr>
<td>max up, min Δ</td>
<td>279.15</td>
<td>6436.60</td>
<td>-1.38</td>
</tr>
<tr>
<td>3x4, 3 γ</td>
<td>197.98</td>
<td>6349.57</td>
<td>-1.60</td>
</tr>
<tr>
<td>2x4, min R</td>
<td>361.54</td>
<td>6202.91</td>
<td>-2.63</td>
</tr>
<tr>
<td>2x4, min Δ</td>
<td>198.08</td>
<td>6285.20</td>
<td>-1.66</td>
</tr>
<tr>
<td>2x3, min R</td>
<td>244.78</td>
<td>6355.75</td>
<td>-1.34</td>
</tr>
<tr>
<td>2x3, 1 γ</td>
<td>133.30</td>
<td>6354.33</td>
<td>-0.89</td>
</tr>
</tbody>
</table>
Discussion

• Results demonstrate a consistent trade between collective/ individual efficiency and system robustness

• Monte Carlo analysis reveals a limitation in the complete information game approach implemented in this work.
 — Strategy selection is dependent on payoffs - small payoff changes can have large impacts on equilibria selection
 — Design combinations which are very robust to strategic-level coordination failure may be fragile to operational uncertainty
 o The low downside risk for SATCOM exacerbates this phenomena in this research because only a slight upside is required for collaboration to be strongly favored by SATCOM, therefore a slight perturbation can flip the strategy selection criteria.
 — Future work will address this issue.
Future Work

• Future work will focus on the incorporation concepts from Bayesian games:
 — Model payoff uncertainty more efficiently than Monte Carlo.
 — Model varying degrees of managerial independence, teaming, and trust amongst decision-makers.

