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Let II{t) be the valwe at time t of some asset or portfolio of assets. The financial
rizk inherent to the portfolio is due to the future price fluctiaticons

(1) ATI(E, 88 = It + 46) — IOI(E)

These are of conrse wnlmown, and the best we can do in general is to modelize them
using some probability dstribution finction (PDF). Traditionally in Finance, risk
has been quantified by the variance or volatility of this PDF, but in recent years
ancther measure of risk, the Value at Birk o VaR, has grovm popular. Formally,
it iz defined as follows: given an o € [Q, 1], one defines the Value at Rk VaR, by
the {implicit) equation :

(2) Prob (ATI{t,4t) < —VaR,) —a

fasmming (%} has a wnique solution, which in practice 1sually is the case). The
right probahility to 1use here is the one conditional am mformation available at time
t. VaR has been popularized by J. P. Morgan’s RiskMetrics [7]. It's main appeal
lies in it's transparent financial interpretaticn, which is that with probability 1 — o
me’s financial loss at time # + & will be kess than VaR,,.

Tnlike variance, VaB, does nat treat losses and gams on on equal footing. On
the other hand, for a normal distribution with mean (, knowing Vel for any o
amnts to kmowing the variance. A similar remark applies to any one-parameter
family of distributions whose members are obtamed by scaling, kike Student-t or
symmetric Lévy-stable distributicns, where the variance may be replaced by some
ather measure of the spread of the distribntion {for example, in the case of Lévy-
stable distributions, the tail parameter introduced in [2], & the expectation of a
p-th power of the the relevant random variable for suitable p < 2).

Val, as just defined, would appear to be a relatively imeoontroversial concept.
Some of the controversy murrmmding it seems to be connected with the choice of
PDF to modd {1). A widely used model is the RiskMetrics maodel [7], a particular
case of a QARCH(L, 1}, n which the daily log-returns are namally dstribnted
with time-~lependend variance. At this Clonference evidence has been presented on
the madequacies of such a model for financial asset returms, especially in commection
with the ocourrence of fat taik, a phenomenon which is of obvious importance for
Vo R, ~estimates for small ¢. However, there is also evidence that the normal model
works reasonably well for VaB-estimates np to the {RiskMetrics") 85% confidence
level : see [5], in particular pp 133 - 138, for a diseussion of the available results up
to 19597, The issue we want to address here & not that of fat tails, but rather that
of non-linearity, and we will wark in the traditional log-normal setting. Cloncerning
the type of non-lmearity we consider, we will werk in the quadratic ¢ Delta -
(lamma approadmation to the portfolic. We note here that, recently, Bouchand and
Potter [J] treated the similar problem for portfolio’s for which there & a dominant
risk-factors with non-{anssian statistics.

A certain mumber of propositions fr computing or approedmating quadratic
VaR, in the normal or log-namal setting have been made i the litterature and are
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presently 1zed : we mention the Delta-{Jamma Namal approach, Wilson's Delta-
(Gamma Approach, the Higher Mament Delta-0amma Approaches of Zangan {cf.

[6]} and, more recently, the Faurier based method of Albanese and Sece [1]. Here

we report O a new approdmation, based on the asymptatics of Qansdan integrals
over quadrics, which has the advantage of being comnpletely explicit and easy to

campute as well as being amenable to a precke error analyss,

Let IT be some investment partfolio depending on a vector of ik factors { S (8), - - -
Seft}}. The value of T will be same function {5, - - , S8, t) of these riskiactors
and of time {one may think of a portfolio of derivatives with the nndelying as
risk factrs). We asume the 5; to have a multivariate log-normal dstribution:
Sift + &) = ™84, with + = {ry, - -+ , 7y} jointly normally distribnted with mean
vm. and variance - covariance matric ¥, We fix ¢ and asmme that m and ¥ are both
proportional to 8. I we write the Pde L-function ATl as a function of the retirn
vector 7 : ATl = wfry, -+ ,7e) {we will generally suppres the time-parameters
and & fram our notation=) then the cumulative distribution function of AT i given

by
- dr
@ Iv)=ProblaT<-v) = [ etromVir-mpya___ A
frtm<- ¥} (det 2x7)'/7
and VaR, = I"'{a}). The problem of camputing VaB, thus amounts to the problem
of efficiently computing and inverting the finction I{V).

In practice, mumerical estimation of Val & mostly done nsing Monte-Carks meth-
oz, These are acourate, bt computationally intensive, time-cansuming and not
very flexible. Tt is therefore of =ame interest to canplement these by analytical
method= which are able to provide same reliable * quick and dirty ® estimates for
the VaR. We start off with the Delta-{amma appradmation to our portfolio :

1
(4) Ty =8 -d+ (A0 + 50T,
where
im im
o=, A=54
&
I'ij = S-S;ﬁ + S?%Eij:
everything evalated at time . We have collected in (4) all terms of onder np to
1 in &, since the expectation of + will be of the order of /& for small %, given
pour aznmptions on mm and ¥. Note that if ane 1ses percentage retums mstead of
kog-retumns, as is s@netimes done in the litterature {for example [5]}, the expression
for T';; changes. We now replace «{r) i the integral {3} by it’s quadratic approd-
mation. This leads, after some easy transformations, to the fdlowing integral:
ﬂ-lm d’z

— e |5| [
(5) ) L_ vt s

where the quadratic form ), the vectar v and the constant T are obtained as
follows: writing ¥ = HH® {if H is npper or lower diagmmal thi is known as a
Chdesky decomposition],

1
Qfe) = (e, W THe)
and
u=H'TT'A+H'm, T=0- %{ﬁ.,r‘lﬁ.}

The basic object here is £), which can be interpreted as a sensitivity-adjinsted co-
variance matrix. Note that v = (if both w = ( {stand ard BislkMetrics' asmmption)
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and A = {(a Delta-hedged perticlic). In the paper [4] we derived the following
asyIptotic expansion:
Theorem 0.1. Let
dz
FORR) = f elefrz_92__
&) Qlz—v)e — KB {22

and mumase that T ix not poshive definite (e, there fx sowee (Famma rick present ),
Then
(&) F(R?) €7 e 8 Plamial ™01, g1-v
20
ar B — oo, where a_y, < 0 99 the meallest cigenvalue, or bottom af the mpectrum,
of ) :=HTH :
Omin = ljll-l:fl{@E:I}:

whick we grmme to be simple. The constants v = (v} and O can be comgputed ar
Jollawa: if a iz any eigenvalue of () (repected aoconding to it's mndtinlicity), let u,
denole an assecialed normalized eigenvecior (to be chosen mutualy arthogonal & o
has mulliplicity greater than 1). Then

1 ! a o 2
{7} '"I":_E (ga_ﬂmh{ﬂ:”n} +{u!i‘lﬂ:ﬂin} )
and
) G = 22wyt Lol

I’ — Qi /2

Here 3" and II' mean the sum and product, respectively, over all eigenvaluer dif-
Jerent from o

Thi expansion is relevant fr Vo B, -estimations for =mall @. The asmmption
that an;, is simple & nd essential: one can even give an asymptotic expansion
which & wnifrem in the first few eigenvalue differences: of. [4]. The coeffidents £,
can In prindple all be computed, bt In practice one wonkd rarely go beyond the
main term. It iz also posdble to give predse error-estimates. There is an interesting,
difference between the cases v #£ (| and v = {1 : in the latter case all coefficients
{2 with odd index vanizh, and the asymptotic expansion becanes one in negative
powers of B2, Finally we note that the methods we nsed to prove the theorem
extend to non-quadratic portfolio’s.

The coefficient -y can also be nritten as fdlows @ if Py, dendtes the orthogonal
projecticn onto the minimal eigenvector Vs, and P = Fd — P, then {7) is the

27 =~ (1, (Q - 0o} 7 QF'v) — |Fata (W)

Thi shows that we need not diagmnalize the whole matric () just find amin, Umin
and invert the matrix {{) — o) on the arthogmal complement o ;s @ also note
that the denominator in the formula (8) fr £ is simply the square root of the
determinant of () — a,:.) P*). These remarks simplify the numerics.

Armed with this this expansion, we retnm to VaR. TV + T > 1), then, by (5}
and (§}, limiting ourselves to the main term of the expansion, quadratic Vaf,, will
be approdmated by the (nnique) solution of the equation

{V +T) +|omin| log(V + T} =3y (logla™) ++ +1og Ca)
which can easily be faind numerically.
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