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Abstract

Despite its popularity in applied statistics, standard measures of
shape have long been recognized to be unsatisfactory, due to their
extreme sensitivity to outliers and poor sample efficiency. These diffi-
culties seem to be largely overcome by a new system: the L-moments.
During the last decade several authors have established the superior
performance of L-moments over classical moments based on heuristic
studies, but until present no formal explanation has been provided.
We address these issues from a theoretical viewpoint. Our compara-
tive programme is focussed on two aspects, which highlight the statis-
tical performance of a descriptive measure: qualitative robustness and
global efficiency. L-moments are treated as members of a general class
of descriptive measures that are shown to outperform conventional mo-
ments based on these criteria. Consequently, they may be considered
as appealing substitutes as L-moments to replace the standard mea-
sures. Since the results obtained hold for rather large nonparametric
sets of distribution functions, they unify previous heuristic studies.

1 Introduction

It is a standard practice in statistics to describe the shape of the distribu-
tion of a population by means of a finite set of quantities summarizing the
location, dispersion, skewness, peakedness and tail behavior of the unknown
population. Classical measures of distributional shape has been defined by
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means of algebraic moments of different orders, resulting in the mean to es-
timate location, the variance to measure the spread, and the standardized
measures of skewness and kurtosis.

Despite the popularity of algebraic moments both in data description
and more formal statistical procedures, they are known to suffer from sev-
eral drawbacks. First, sample moments tend to be very sensitive to a few
extreme observations. Second, the asymptotic efficiency of sample moments
is rather poor specially for distributions with fat tails. The last property is
an immediate consequence of the fact that the asymptotic variances of these
estimators are mainly determined by higher order moments, which will tend
to be rather large or even unbounded, for heavy tail distributions.

Moment-based measures are just a particular, but not exhaustive, means
of summarizing qualitative features of the shape of a distribution. The no-
tions of dispersion, skewness and kurtosis are rather abstract and therefore
can be described in countless ways. Among these, the approach based on
partial orderings has proved to be the most effective one. Partial orderings
have been proposed by several authors (see, for example. Van Zwet(1964),
Bickel and Lehmann(1975, 1976) and MacGillivray(1986)) for one probability
distribution to be more dispersed, more skewed, more kurtotic than another.
A real valued functional defined on a given set of distributions, must in prin-
ciple, preserve the ordering in question, to be reasonably called a measure of
”location”, ”dispersion”, ”skewness”, or ”kurtosis”. More formal definitions
are given in Appendix.

The focuss of this paper is centered around an alternative set of descrip-
tive measures, which seem to largely overcome the sampling drawbacks of
classical measures. These are the so called, L-moments. The L-moments
were formally introduced by Hosking(1990), as linear combinations of the
order statistics of a population. Like classical moments, the L-moments pro-
vide intuitive information about the shape of a general distribution, which
can be consistently estimated from their sample values.

Motivated by the more satisfactory sampling behavior of L-moments esti-
mators, several authors (Hosking (1990), Hosking et al (1997) have advocated
the use of L-moments over classical moments. These conclusions have been
drawn on the basis of superior empirical performance over specific sets of
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data, and have later been supported by formal simulation experiments per-
formed over a finite range of selected distributions (Sankarasubramanian and
Srinivasan (1999)). In the present paper we address this issue on a theoretical
basis.

The paper is organized as follows: Section 2 introduces the L-moments
and establish some of their main properties. Section 3 focusses on the con-
cept of comparative robustness, as a useful tool for comparing descriptive
measures in terms of stability against outliers. Based on this concept, a for-
mal comparison of L-moments with the conventional system is established.
Section 4 reviews the basic framework that allows a theoretical treatment of
the efficiency problem. In section 5, positive bounds for the relative efficiency
of L-moments to conventional moments are derived over several familiar sets
of distributions.

2 L-moments

We review some elementary properties and definitions. Let F (x) be the
distribution function of a random variable X. We shall use the symbol Mp

to denote the moment functional of order p given by

Mp(F ) = E(Xp) =

∫ +∞

−∞
xpdF (x)

We shall denote by Q(u) the associated quantile function of the distribution
F , defined by

Q(u) = inf {x : F (x) ≥ u}
In what follows we shall assume that both F and Q are continuously

differentiable. Let q(u) = Q′(u), be the density quantile function of F . The
random variables X1:n ≤ X2:n ≤ · · · ≤ Xn:n shall denote the order statistics
associated to the distribution F . Sometimes we shall use the same notation
for the ordered values of a single sample of size n. The L-moments of a
population, Lr(F ), r = 1, 2, . . ., were originally defined by Hosking(1990), as
linear combinations of the expectations of Xi:n

Lr(F ) =
1

r

r−1∑
j=0

(−1)j

(
r − 1

j

)
E(Xr−j:r) , r = 1, 2, . . .
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Descriptive measures based on L moments were introduced by Hosking (1990)
together with a clarifying discussion of their intuitive meanings. The first
L-moment L1(F ) is the mean of F a measure of location; L2(F ) is a scale
measure, being half the value of Gini’s mean difference. Other shape features
are obtained by normalizing higher order L-moments by L2(F ). The L-
moment ratios

τr(F ) =
Lr(F )

L2(F )

are scale free measures of the shape of a distribution. In particular, τ3(F )
and τ4(F ) are measures of skewness and kurtosis respectively in the formal
sense described in Appendix. Formal proofs of these facts may be found in
Hosking (1996).

From a technical viewpoint, it is often more convenient to adopt an equiv-
alent definition of L-moments as the Fourier coefficients of the quantile func-
tion Q(u) in terms of orthogonal polynomials on the interval [0,1] given by
Hosking (1990),

Lr(F ) =

∫ 1

0

Q(u)Pr−1(u)du, r = 1, 2, . . . (1)

where Pr(u) are the shifted Legendre orthogonal polynomials on the interval
(0, 1). By definition

Pr−1(u) =
r−1∑
j=0

pr,j uj

where

pr,j =
(−1)r−j(r + j)!

(j!)2(r − j)!

From equation 1, it follows that L-moments fall into the general class of
L-functionals of the form

L(F ) =

∫ 1

0

Q(u)J(u)du ,

where J(u) is a bounded and measurable function on [0, 1]. Thus, the
estimation of L-moments from their sample analogs Lr(Fn), fits well in the
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general theory of L-estimates (see, for example, Serfling (1980)). Under
certain assumptions over the distribution F and J(u), it is known that

n1/2(Lr(F )− Lr(Fn) → N(0, σ2(F )) ,

where

σ2(F ) =

∫ 1

0

∫ 1

u

J(u)J(v) u(1− v) q(u)q(v)dvdu (2)

3 Robustness

Experience with real data has shown that L-moments are less sensitive to
outliers than the classical moments. A satisfactory explanation to this fact
can be provided by means of the concept of comparative robustness first
introduced by Bickel and Lehman (1975). In this section we extend their
results to include comparisons between moments and a general class of L-
functionals. .

For any distribution function F and any constant M > 0, define two
distribution functions F+(x,M) and F−(x,M) given by

F+(x,M) =





0 x < 0
F (M) 0 ≤ x ≤ M
F (x) M < x

F−(x,M) =





F (x) x ≤ −M
F (−M) −M ≤ x < 0
1 0 ≤ x

For a functional τ , a topology is defined on its set of definition as follows.

Definition 1. We shall define the τ -topology by the following mode of con-
vergence: Fk

τ→ F if

1. Fk → F in law

2. τ(Fk) → τ(F )

3. limM→+∞ lim supk{|T (F+
k (x,M))| + |T (F−

k (x,M))|} = 0.
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Definition 2. Given two functionals τ1 and τ2, we shall say that τ2 is more
robust than τ1 if

a) τ2 is continuous with respect to the topology induced by τ1.

b) τ1 is not continuous with respect to the topology induced by τ2.

The previous criteria provides a theoretical framework to establish compar-
isons between descriptive measures based on its sensitivity to outliers.

In the next result, for convenience we shall assume that 0 < F (0−) ≤ F (0) <
1. The proofs for the case F (0−) = 0 and F (0) = 1 are similar, and will not
be included here.

Theorem 1. Let τ be any functional of the form

τ(F ) =

∫ 1

0

J(u)Q(u)du,

where J(t) is a bounded measurable function on the interval (0, 1).

Then, for all p > 1, τ is more robust than Mp.

The proof hinges in the following proposition.

Proposition 1. Let Mr and Mp be two moment functionals, with r > p ≥ 1.
Then, Mp is more robust than Mr.

Proof. First note that

Mp(F
+(x,M)) =

∫ 1

F (M)

(Q)p(u)du and Mp(F
−(x,M)) =

∫ F (M)

0

(Q)p(u)du

Let Fk → F in law for which Mr(Fk) → Mr(F ). Let Q(u) and Qk(u) de-
note the quantile functions of F and Fk respectively. To show that Mp(Fk) →
Mp(F ), note that

|Mp(F ) − Mp(Fk) ≤ |
∫ 1−δ

δ

{ (Q)p(u)− (Qk)
p(u)} du | + |

∫ δ

0

(Q)p(u) du |

+ |
∫ δ

0

(Qk)
p(u) du |+ |

∫ 1

1−δ

(Q)p(u) du |+ |
∫ 1

1−δ

(Qk)
p(u) du |
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for any 0 < δ < 1.

Since convergence in law of Fk implies bounded pointwise convergence for Qk

to Q on the intervals (δ, 1 − δ), it follows from the dominated convergence
theorem that the first term on the right hand side converges to 0 for any
fixed δ as n →∞.

Using the fact that
∫ 1

0
|(Q)p(u)|du < ∞ we can find δ0 such that for all

0 < δ ≤ δ0,

| ∫ δ

0
(Q)p(u)du| ≤ ε and | ∫ 1

1−δ
(Q)p(u)du| ≤ ε.

To handle the term | ∫ δ

0
(Qk)

p(u)du| note that

|
∫ δ

0

(Qk)
p(u) du| ≤ δr−p/r · (

∫ δ

0

|Qk(u)|r du )p/r

by Holder’s Inequality. Therefore, we need only to establish that for all δ ≤ δ0

there exists kδ such that:
∫ δ

0
|Qk(u)|rdu ≤ ε, for all k ≥ kδ.

By the pointwise convergence of Qk to F , we have that for δ sufficiently
small and sufficiently large, Fk(u) ≤ 0 for all u ∈ (0, δ). Hence,

∫ δ

0

|Qk(u)|rdu = |
∫ δ

0

(Qk(u) )r du |

Now, using the fact: limδ→0 lim supk |
∫ δ

0
(Qk)

r(u)du | = 0, it can be easily
argued that this implies the existence of δ0 such that for each 0 ≤ δ ≤ δ0 we
have: | ∫ δ

0
(Qk)

r(u)du| ≤ ε, taking k sufficiently large. This proves the desired
assertion.

The term | ∫ 1

1−δ
(Qk)

r(u)du| can be handled similarly, to complete the
proof of the first part.

To show that Mr is not continuous in the Mp-topology, consider the sequence
of distributions Fk given by

Fk(x) = (1− αk)F0(x) + αkΦk(x),
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where αk = 1√
k

and F0(x) and Φk(x) are the distributions supported on

[1, +∞) given by

F0(x) = exp(1− x) dx and Ψk(x) =
1

r + 1/k
· x−(r+1+1/k) dx

respectively. From the fact: r − p > 0 it follows immediately that Fk(x) →
F0(x) in the Mp-topology. On the other hand,

∫ +∞

1

xrdFk(x) =

√
k − 1√

k

∫ +∞

1

dF0(x) +
1√
k
· 1

r + 1/k
· k −→ +∞

as k →∞. This completes the proof.

Proof of Theorem 1. From the previous proposition, it follows that
the mean is more robust than the other moments of higher order. Here, we
shall show that τ is, at least, as robust as the mean, from which the theorem
will follow .

Let Fk → F in law for which M1(Fk) → M1(F ). To show that τ(Fk) → τ(F )
note that

|τ(F )− τ(Fk)| ≤ |
∫ 1−δ

δ

J(u)(Q(u)−Qk(u))du |+ |
∫ δ

0

J(u)Q(u)du |

+ |
∫ δ

0

J(u)Qk(u)du |+ |
∫ 1

1−δ

J(u)Q(u)du |+ |
∫ 1

1−δ

J(u)Qk(u)du |

for any 0 < δ ≤ 1.

Since convergence in law of Fk implies bounded pointwise convergence of Qk

to Q on the intervals (δ, 1 − δ), it follows from the dominated convergence
theorem that the first term on the right hand side converges to 0 for any
fixed δ as n →∞.

Since |J(u)| is bounded and
∫ 1

0
|Q(u)|du < ∞, we can find δ0 such that for

all 0 < δ ≤ δ0 it follows,

|
∫ δ

0

Q(u)J(u)du | ≤ ε and |
∫ 1

1−δ

Q(u)J(u)du | ≤ ε
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To handle the term | ∫ δ

0
J(u)Qk(u)du | note that

|
∫ δ

0

J(u)Qk(u)du | ≤ M

∫ δ

0

|Qk(u)|du

for some constant M > 0. By the pointwise convergence of Qk to F we
have that for δ sufficiently small and n sufficiently large, Fk(u) ≤ 0 for all
u ∈ (0, δ). Hence,

∫ δ

0

|Qk(u)|du = |
∫ δ

0

Qk(u)du |

Now, using the fact: limδ→0 lim supk{|
∫ δ

0
Qk(u)du |} = 0, it can be easily

argued that this implies the existence of δ0 such that for each < 0 ≤ δ ≤ δ0 we
have: | ∫ δ

0
Qk(u)du | ≤ ε, taking n sufficiently large. This proves the desired

assertion.

The term | ∫ 1

1−δ
Qk(u) du | can be handled similarly, to complete the proof.

Corollary 1. If p > 1, then the functionals Lq are more robust than Mp, for
all q.

4 Global Efficiency of Descriptive Measures

Suppose we are given two functionals τ1 and τ2, defined over a large set of
distribution functions Λ, and we are interested in quantifying and comparing
the accuracy of their ”natural” estimators, not only at a particular distribu-
tion F , but rather over large enough subsets of Λ. By ”natural” estimators
we mean the value of the functional τ at the empirical distribution function
Fn.

All the functionals stated below should be assumed to be defined over a
suitably large set of distributions Λ, whose precise definition will depend on
the context.

A natural way of quantifying the accuracy of the estimator τn = τ(Fn)
is given by suitable scaling the asymptotic variance of this estimator, that is
the standardized variance proposed by Bickel and Lehmann (1976).
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Definition 3. Let us assume that n1/2(τ(Fn) − τ(F )) ∼ N(0, σ2(F )). The
standardized asymptotic variance of τ(Fn), is defined to be the quantity

σst(F ) =
σ2(F )

τ 2(F )

Based on the previous concept, the accuracy of τ1(Fn) to τ2(Fn) is judged by
means of the ratio of their standardized asymptotic variances,

ε(τ1(F ), τ2(F )) =
σst

1 (F )

σst
2 (F )

The quantity ε(τ1, τ2, F ) is termed: the relative efficiency of τ1 to τ2 at the
distribution F . The infimun of these ratios over a set Λ can be interpreted
as an index of the global efficiency of τ1 to τ2 over distributions in the set Λ.

Definition 4. Consider two functionals τ1, τ2 defined over a set Λ of distri-
bution functions. The relative global efficiency of τ2 to τ1 over the set Λ, is
defined to be the quantity

ε(τ1, τ2, Λ) = inf
F∈Λ

ε(τ1, τ2, F )

Based on the previous definition we shall say that τ2 is more globally efficient
than τ1 over the set Λ if

ε(τ1, τ2, Λ) > 0

and
ε(τ2, τ1, Λ) = 0.

In this setup, we shall show that L-moments outperform conventional mo-
ments over large enough sets of distributions. Our analysis focusses on the
original measures instead of the standardized versions, i.e., we compare L-
moments with moments. The reasons behind this simplification are mainly
technical due to the less tractable expressions for the asymptotic variances
of the standardized measures. From the results found, one may reasonably
expect these properties to continue to hold in formal comparisons between
descriptive measures.
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5 Moments vs L-moments

Formal efficiency comparisons between descriptive measures were first for-
mally addressed by Bickel and Lehmann (1975) in a series of papers in the
70’s. They found that measures of scale in the class of pth absolute power
deviations given by

ζp =

(∫ 1

0

|Q|p (t) dt

)1/p

for 1 ≤ p < 2, were more globally efficient, in a sense that will be made
precise later, than the standard deviation functional over the set Λ of all sym-
metric distributions. Our approach is analogous, but we consider alternative
classes of descriptive measures, as well as other sets larger than Λ.

To analyze the behavior of the global index ε(Lq,Mp, Λ), over large
enough sets Λ, some restrictions need to be imposed. The main difficulty
arises from the existence of distributions, such as the uniform law, for which
L-moments of order higher than 2 are zero, which invalidates the definition
of the standardized variance for these functionals. This problem is not com-
pletely avoided by restricting our attention to sets where the functionals
considered do not vanish, and an additional assumption will be needed as we
shall see later.

For the reasons mentioned above, we shall find it convenient to distinguish
comparisons involving the second L-moment l2 from comparisons involving
higher order L-moment functionals.

In the discussion that follows we shall assume that the expectation µ of
all distributions considered is known. Since L-moment estimators are not
affected by the randomness of this parameter as the estimators of Mp are,
one may reasonably expect that the results obtained in the next sections
should continue to hold to the more general setting when µ is unknown.

5.1 The second L-moment versus moments

In this section we show that L2 outperforms the moment functionals Mp over
the sets
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Λ1 = {All symmetric absolutely continuous distributions F with finite
pth moment}

Λ2 = {All unimodal absolutely continuous distributions F with finite pth
moment and Mp(F ) 6= 0},
where p > 1, will be made precise from the context. Clearly for distributions
in Λ1 it only makes sense to consider functionals Mp when p is even, and this
shall be implicitly assumed in our discussion.

The above efficiency property of l2, continue to hold for a large class of
scale measures, which is introduced next.

Definition 5. We shall define Ls to be the class of scale functionals given
by

τ(F ) =

∫ 1

0

J(u)Q(u)du

where J(u) is a bounded measurable function satisfying:

a) J(u) ≥ 0 for all u ∈ (1/2, 1]

b) J(u) = −J(1− u), for all u ∈ (1/2, 1]

Formal efficiency comparisons between moments and functionals in the class
Ls can be established without major technical difficulties, by connecting both
classes with a well known measure of scale: the absolute standard deviation,
ζ(F ) = E |X|. The main link comes from the formula,

σ2(ζ, F ) = E (X2) − E2|X| =

∫ 1

0

∫ 1

u

J∗(u)J∗(v) u(1−v) q(u)q(v)dvdu (3)

where J∗(u) is defined by

J∗(u) =

{
−1 u ∈ [0, u0) u0 = F (0)

1 u ∈ [u0, 1]
(4)

Now, for our main result. Although not stated explicitly, we shall assume
that the conditions guaranteeing convergence of the sample estimates for all
the functionals considered are satisfied.
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Theorem 2. Let τ ∈ Ls with score function J(u). Let us assume that

lim
u→1−

J(u) exists and is strictly positive (5)

Then, if p > 1,

(a) ε(Mp, τ, Λi) > 0 for each i = 1, 2.

(b) There exists a sequence of distribution functions Fk ∈ Λi such that

ε(τ(Fk), Mp(Fk)) → 0, as n → ∞.

Consequently, τ is more globally efficient than Mp over the sets Λi.

Before presenting the proof we shall need the following lemmas.

Lemma 1. Let F be an absolutely continuous distribution and

ζ(F ) = E |X| < ∞
.
If τ(F ) =

∫ 1

0
J(u)Q(u)du is a functional in the class Ls, then

τ(F )

ζ(F )
≥ 1

2
inf

t∈(0, 1)

|ψ(t)|
t(1− t)

,

where,

ψ(t) =





∫ t

0
J(u)du 0 ≤ t ≤ u0

∫ 1

t
J(u)du u0 ≤ t ≤ 1

(6)

Proof. Without loss of generality we may assume E (X) = 0. Let q(u) be
the derivative of Q(u). We have

τ(F ) =

∫ 1

0

J(u)Q(u)du =

∫ u0

0

J(u) (−
∫ u0

u

q(t)dt) du +

∫ 1

u0

J(u) (−
∫ u

u0

q(t)dt)du

= −
∫ u0

0

(

∫ t

0

J(u)du)q(t)dt +

∫ 1

u0

(

∫ 1

t

J(u)du)q(t)dt

=

∫ 1

0

ψ(t)q(t)dt (7)

13



where ψ(t) is given in (6).

To obtain a similar expression for ζ(F ), let u0 = F (0). ¿From the formula:

ζ(F ) =
∫ 1

0
Q(u)J∗(u)du, where J∗(u) is given in (4), it follows that

ζ(F ) =

∫ 1

0

ψ∗(t)q(t)dt, (8)

where

ψ∗(t) =

{
t 0 ≤ t ≤ u0

1− t u0 ≤ t ≤ 1

From equation (7), we have

τ(F ) =

∫ u0

0

ψ(t)q(t)dt +

∫ 1

u0

ψ(t)q(t)dt

≥ inf
t∈(0, u0)

|ψ(t)|
t(1− t)

∫ u0

0

t(1− t)q(t)dt + inf
t∈(u0, 1)

|ψ(t)|
t(1− t)

∫ 1

u0

t(1− t)q(t)dt)

≥ inf
t∈(0, 1)

|ψ(t)|
t(1− t)

(1− u0)

∫ u0

0

t q(t)dt + inf
t∈(0, 1)

|ψ(t)|
t(1− t)

u0

∫ 1

u0

(1− t)q(t)dt

It is easy to see that (8) together with the condition: E (X) = 0, imply

∫ u0

0

t q(t)dt =

∫ 1

u0

(1− t)q(t)dt

Consequently,

τ(F ) ≥ inf
t∈(0, 1)

|ψ(t)|
t(1− t)

∫ u0

0

t q(t)dt

= inf
t∈(0, 1)

|ψ(t)|
t(1− t)

ζ(F )

2
,

which proves the assertion.

Lemma 2. (Bickel and Lehman (1976))

Let V be any nonnegative random variable and
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µβ = E(V β) < ∞.

Then, if 1 ≤ α ≤ β,

µ2α

µ2
α

≤ µ2β

µ2
β

,

with equality if and only if V is a positive constant with probability 1.

Proof of Theorem 2. To prove (a) let Λ = Λ1∪Λ2. We divide the proof
into two main tasks. First we show that the absolute standard deviation ζ ,
is more globally efficient over Λ than Mp. The second part involves showing
that

ε(ζ, τ, Λ) > 0. (9)

For the first task, let F ∈ Λ. Applying standard asymptotic theory of sample
moments (see for example Serfling (1980)), we obtain

ε(Mp(F ), ζ(F )) =

(
E X2p

E2 Xp
− 1

)
/

(
E X2

E2 |X| − 1

)

≥
(

E X2p

E2 |X|p − 1

)
/

(
E X2

E2 |X| − 1

)

≥ 1

where the last inequality follows from lemma 2.

Now, for the second task. By definition

ε(ζ(F ), τ(F )) =
τ 2(F )

ζ2(F )
· σ2(ζ, F )

σ2(τ, F )
,

where σ2(ζ, F ) and σ2(τ, F ) stand for the asymptotic variances of ζ(F ), and
τ(F ) respectively. Lemma 1 together with condition 5 on the score function

imply that inf{F∈Λ}
ζ(F )2

τ(F )2
> 0. Thus, it is sufficient to show

inf
F∈Λ

σ2(ζ, F )

σ2(τ, F )
> 0 (10)
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1- F ∈ Λ1. Using the symmetry of F and the ”antisymmetry” property of
the score functions, the integrals given in (2) and (3) can be expressed more
conveniently as follows

σ2(τ, F ) =

∫ 1

0

∫ 1

u

J(u)J(v) u(1− v) q(u)q(v)dvdu

= 2

∫ 1/2

0

∫ 1−u

u

J(u)J(v) u(1− v) q(u)q(v)dvdu

= 2

(∫ 1/2

0

∫ 1/2

u

J(u)J(v) u(1− v) q(u)q(v)dvdu

+

∫ 1/2

0

∫ 1−u

1/2

J(u)J(v) u(1− v) q(u)q(v)dvdu

)

= 2

(∫ 1/2

0

∫ 1/2

u

J(u)J(v) u(1− v) q(u)q(v)dvdu

−
∫ 1/2

0

∫ 1/2

u

J(u)J(v) u v q(u)q(v)dvdu

)

= 2

∫ 1/2

0

∫ 1/2

u

J(u)J(v) u(1− 2v) q(u)q(v)dvdu (11)

Similarly for σ2(ζ, F ) we have

σ2(ζ, F ) = 2

∫ 1/2

0

∫ 1/2

u

u(1− 2v) q(u)q(v)dvdu (12)

Thus,

σ2(ζ, F )

σ2(τ, F )
=

∫ 1/2

0

∫ 1/2

u
u(1− 2v) q(u)q(v)dvdu

∫ 1/2

0

∫ 1/2

u
J(u)J(v) u(1− 2v) q(u)q(v)dvdu

≥ 1

M2
. (13)

2- F ∈ Λ2. Denote by µ the mean of F . We shall find positive lower bounds

for the ratios σ2(µ,F )
σ2(τ,F )

and σ2(ζ,F )
σ2(µ,F )

, from which the conclusion in (10) will follow.
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Since µ(Fn) can be regarded as an L-statistic, Formula (2) applies (see
also appendix 1). Thus,

σ2(µ, F )

σ2(τ, F )
=

∫ 1

0

∫ 1

u
u(1− v) q(u)q(v)dvdu∫ 1

0

∫ 1

u
J(u)J(v) u(1− v) q(u)q(v)dvdu

≥ 1

M2
.

To bound σ2(ζ,F )
σ2(µ,F )

, we show that for unimodal distributions

E2(X)

E (X2)
< c < 1 (14)

where c is a constant independent of F .

To see this, denote by m0 the mode of F and assume, without loss of
generality, that m0 ≤ 0. It follows that the function F ∗(x) given by

F ∗(x) =

∫ x

0

dF (t) x ≥ 0,

is concave in [0, +∞). Thus, by Khinchin’s theorem (see Dharmadhikari et
al, chapter 1), it admits the following representation

F ∗(x) =

∫ +∞

0

Wa(x)dλ(a) , (15)

where Wa(x) are the distribution functions of random variables Wa following
a uniform law on the interval [0, a] and λ is a positive and finite measure.
Applying equation (15) and Holder’s inequality we have

(
∫ +∞
0

xdF ∗(x))2

∫ +∞
0

x2dF ∗(x)
=

(∫ +∞
0

[
∫ +∞
0

xdWa(x)] dλ(a)
)2

∫ +∞
0

[
∫ +∞
0

x2dWa(x)] dλ(a)

=
3

4

(
∫ +∞

0
a dλ(a) )2

∫ +∞
0

a2 dλ(a)

≤ 3

4
λ[0, +∞) (16)

Using the fact: F [0, +∞) = λ[0, +∞), it can be easily argued that (16)
implies
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∫ +∞

0

x dF (x) <
3

4

∫ +∞

0

x2 dF (x).

This together with Holder’s Inequality again gives

E (X2) =

∫ 0

−∞
x2 dF (x) +

∫ +∞

0

x2 dF (x)

≥ 4

3 F (−∞, 0)
(

∫ 0

−∞
|x| dF (x))2 +

1

F (0, +∞)
(

∫ +∞

0

|x| dF (x))2

=
4

3 F (−∞, 0)

(
1

2

∫ +∞

−∞
|x| dF (x)

)2

+
1

F (0, +∞)

(
1

2

∫ +∞

−∞
|x| dF (x)

)2

= (
1

3 F (−∞, 0)
− 1

4 F (0, +∞)
) E2 (|X|)

Finally, it can be easily checked that for all 0 < α < 1

1

3 α
− 1

4 (1− α)
> c > 1.

This proves (14), and thus assertion (a).

For the proof of (b) note that from (a) and the relation:

ε(ζ(Fk),Mp(Fk)) = ε(τ(Fk), Mp(Fk)) · ε(ζ(Fk), τ(Fk)),

statement (b) will follow if

ε(ζ(Fk),Mp(Fk)) =

(
E X2

k

E2 |Xk| − 1

)
/

(
E X2p

k

E2 Xp
k

− 1

)
→ 0 (17)

for a suitable sequence Fk ∈ Λ1 ∩ Λ2. Set pk = p + (k + 1)/k and let ρk(x)
be the sequence of probability density functions given by

ρk(x) =





ck |x|−pk x < −1

ck −1 ≤ x ≤ 1

ck x−pk x > 1 ,

where ck = 2pk

pk−1
is a normalizing constant. It is clear that the resulting

sequence of distribution functions will lie in the set Λ1∩Λ2. Now straightfor-
ward calculations lead to the desired conclusion. This completes the proof.
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Corollary 2. The second L-moment functional is more globally efficient than
any moment functional Mp, over the sets Λi, i = 1, 2, for all p > 1.

Remark 1. Comparisons between the class Ls and the class of pth absolute
deviations, τ 2

p , is straightforward in view of the inequality

ε(τ 2
p (F ), ζ(F )) ≥ 1

p2
,

which follows from lemma 2. Consequently, the results from theorem 2, con-
tinue to hold when τ 2

p plays the role of Mp, for all p > 1.

5.2 Higher order L-moments vs moments

As it was mentioned at the beginning of section 5, the existence of non-
degenerate distributions for which the index ε(Mp(F ), Lq(F )) is undefined,
forces us to make some restrictions on the sets Λ that we may consider. These
restrictions do not seem to exclude from the analysis, distributions of most
interest in risk management and finance, namely, those displaying heavy tails
and asymmetries.

In this slightly modified setup, the results from the previous section con-
tinue to hold, for a large class of location invariant functionals, which we
shall introduce next.

Definition 6. We shall define L∗ to be the class of functionals τ ∗ given by

τ ∗ =

∫ 1

0

J∗(u)Q(u) du,

where J∗(u) is a bounded and measurable function satisfying

∫ 1

0

J∗(u) du = 0

The class L∗ can be regarded as an extension of the class Ls, that allows to
account for higher order features of the shape of F other than dispersion.
Bounds for ε(Mp, τ

∗, Λ) are possible, by imposing more stringent assump-
tions on the set Λ.
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We shall denote by s(F ) a measure of scale in the class Ls, which will be
assumed to satisfy the conditions of theorem 2. Through the entire discussion
s will be kept fixed.

Definition 7. For any ε > 0 and τ ∗ ∈ L∗, the set Λτ∗(ε) is defined by

Λτ∗(ε) = {F ∈ Λ : |τ∗(F )|
s(F )

≥ ε}
The sets Λτ∗(ε) are scale free, a desirable property in most applications. It
does impose some restrictions on the shape of the distributions, but they
seem to include the majority of cases when data deviates form normality.
For example, taking l2 as the measure of scale and τ ∗ the fourth L-moment,
then according to the definition above we are only excluding those F having
small L-kurtosis. The later is a fairly common feature displayed by many
data sets in practice.

Theorem 3. Let Λ be the set of all unimodal distributions having finite pth
moment. Let τ ∗ ∈ L∗.

Then, for any ε > 0 and p > 1,

(a) ε(Mp, τ ∗, Λτ∗(ε)) > 0

(b) There exists a sequence of distribution functions Fk ∈ Λ such that

ε(τ ∗(Fk), Mp(Fk)) → 0.

Consequently, τ ∗ is more globally efficient than Mp over the sets Λτ∗(ε).

Additionally, if the score function J∗ is anti-symmetric, i.e., J∗(u) = −J∗(1−
u), then the above statements continue to hold when Λ is the set of all sym-
metric absolutely continuous distributions having finite pth moment.

Proof. The proof is almost the same as that for theorem 2. The only differ-
ence arises in showing that

inf
F∈Λ

(τ ∗(F ))2

(ζ(F ))2
> 0

As it was argued in theorem 2, the existence of positive lower bounds for

the ratio s2(F )
ζ2(F )

, is a consequence of lemma 1 and condition (5) on the score
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function of the functional s. On the other hand, by definition of the set

Λτ∗(ε), we have: (τ∗(F ))2

(s(F ))2
≥ ε2. This gives the result.

The proof for the set of symmetric distributions goes through the same.

Appendix. Coherent Shape Measures

Location. Let X, Y be random variables with distribution functions FX , FY

and quantile functions QX , QY respectively. We shall say Y is stochastically
larger than X, (X ≺ Y ) if

QX(u) ≤ QY (u)

for all 0 < u < 1.

Definition 8. By a measure of location µ we shall understand a real func-
tional defined on a subset Λ of distribution functions satisfying the following
axioms:

Shape Coherence. If X ≺ Y then, µ(X) ≤ µ(Y )

Translation. For any real number, we have

µ(X + c) = µ(X) + c

Reflection Invariance.

−µ(X) = µ(−X)

Scale. The following ordering was introduced by Bickel and Lehman (1976).
FY will be called more dispersed than FX (FX ≺ FY ) if

QX(1− α)−QX(α) ≤ QY (1− α)−QY (α)

for all 0 < α < 1/2.

Definition 9. By a measure of scale σ, we shall understand a positive func-
tional defined on a subset Λ of cdfs that is consistent with the following ax-
ioms:
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Shape Coherence. If FY is more dispersed than FX , then σ(FX) ≤
σ(FY ).

Location Invariance. For any real number c,

σ(X + c) = σ(X)

Scalability. For any real number a,

σ(a ·X) = |a| · σ(X).

Skewness The reference ordering for the skewness structure of asymmetric
distribution was introduced by Van Zweet (1964). FX will be called less
skewed to the right than FY (FX ≺ FY ) if and only if QY (FX(x)) is convex

Definition 10. By a measure of skewness γ we shall understand a real func-
tional defined on a given set Λ of distribution functions that is consistent
with the following axioms:

Shape Coherence. If FX ≺ FY then, γ(FX) ≤ γ(FY ).

Symmetry. If FX is a symmetric distribution then, γ(FX) = 0

Location-Scale Invariance. For all a, b real numbers,

γ(a ·X + b) = γ(X).

Kurtosis The reference ordering for kurtosis of symmetric distributions was
introduced by Van Zweet (1964). Let FX , FY be symmetric distributions
functions. FX will be called less kurtotic than FY (FX ≺ FY ) if and only if
QY (FX(x)) is convex for x > mFX

and concave for x < mFX

Definition 11. By a measure of kurtosis κ we shall understand a real func-
tional defined on a given subset of symmetric quantile functions satisfying
the following axioms:

Shape Coherence. If FX ≺ FY then, τ(FX) ≤ τ(FY ).

Location-Scale Invariance. For all a, b real numbers,

κ(aX + b) = κ(X).
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