
Pulling the Puppet Strings with Ansible

Brian J. Atkisson, RHCA
Principal Architect
May 7, 2019

A Story

A Brief History of RH IT Config Management

CFEngine

Puppet
(open source)

20092001
2007

Func

Ansible

2014

2015

Config
RPMs

1998

2005 - Initial release of Puppet
2012 - Initial release of Ansible

RH
Acquisition

Ansible Tower

2018

CFEngine Migration to Puppet

● Development teams doing own
thing

● Applications codified into CFEngine
by Operations

● Home-grown templating engine
(cfgen)

● Puppet modules developed along
side applications
○ Stored in Git
○ Concept for environment

● Per file access model

Puppet Management Ideal

● Application teams manage
application modules

● Infrastructure teams manage base
OS, monitoring, IAM, etc modules

● Release engineering manages
modules shared between
application teams (JBoss, Java,
Rails, Apache, PHP, etc)

● … and there was peace in our time

Puppet Realities after a Decade

● Balance between old and new operating systems
● Language is hard to learn

○ Manifests
○ ERB templates
○ Dependency ordering is difficult

■ Especially in large codebases
● Puppet was extremely slow, scaling challenges

○ Reliance on storeconfigs
● Environment predated standard tooling

○ R10k, module packaging, PE

Puppet Realities after a Decade

● Our implementation was even harder to learn
● Updates approaching impossible

○ Large code base
○ Updating modules from puppet 3.x to 5.x

● App developers hate Puppet
○ (and Ruby isn’t cool anymore)

● Managed too many objects, including OS defaults
● Puppet is extremely weak at orchestration

Hybrid Approach

● Ansible for orchestration
○ Puppet runs kicked off by Ansible
○ Native and/or trivial integration with load balancers, virt

platforms and software APIs
● Ordering and dependencies

○ Just write the playbook in order
● Easy to learn and understand execution
● Agentless
● Shared Permission model

Ansible Tower

● Centralized playbook execution
● Credential management
● Remote (API) playbook execution
● Autohealing systems

○ Nagios event handlers
● Metrics

Wait, So Why Use Puppet at All?

● With Tower, we have central execution point
● Native integration with technologies we care about
● Config, deploy and manage with the same tool
● Extremely well suited to hybrid-cloud use-cases
● Local development is easy
● Secret management
● … and teams want easy

Ansible Usage

● AWS and OpenStack infrastructure
○ Infrastructure, OS configuration and orchestration
○ Long-lived and ephemeral VMs

● Traditional Data Center
○ Provisioning
○ Laying down Puppet-generated OS template
○ Orchestration and Releases

● OpenShift workloads
● CI/CD

Ansible Challenges

● Hiera is just better at managing environment data
○ Including secrets

● Puppet ERB templates
○ More robust than Jinja2 (IMHO)

● Centralized management
○ Absent Tower, centralized auditing is difficult

● Playbook execution can be slow
○ Only manage resources you care about

What’s Next

● Internal Galaxy
● Re-architecting data centers

○ Cloud-native architectures on OpenShift and OpenStack
○ Legacy Puppet will likely die with the legacy systems

● Working group to establish grand unified configuration
management
○ Ansible key component

■ General Lifecycle, orchestration and management
■ Ephemeral systems

○ Puppet will likely be used for traditional VMs
■ Not everything fits the container or ephemeral models

Questions?

RED HAT I.T.
Powered by Red Hat Products

Ask us how it’s done
Visit us at the “Ask Me Anything” booth and ask us about how we

implement and deploy Red Hat products!

redhat.com/redhat-on-redhat

Wed, May 8
 1:00 - 3:00pm Red Hat IT features: Sidecar that authentication

Thurs, May 9
11:00 - 11:45am

Red Hat on Red Hat: Transitioning Red Hat IT to hybrid cloud infrastructure using OpenStack and
Ceph Storage

Thurs, May 9
3:15 - 4:00pm Developing and running cloud-native apps on OpenShift in Red Hat's IT organization

Thurs, May 9
3:15 - 4:00pm Developing and deploying applications in a multisite hybrid cloud

