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Abstract— This paper reports on a Gaussian belief-space
planning formulation for mobile robots that includes random
measurement acquisition variables that model whether or
not each measurement is actually acquired. We show that
maintaining the stochasticity of these variables in the plan-
ning formulation leads to a random belief covariance matrix,
allowing us to consider the risk associated with the acquisition
in the objective function. Inspired by modern portfolio theory
and utility optimization, we design objective functions that
are risk-averse, and show that risk-averse planning leads to
decisions made by the robot that are desirable when operating
under uncertainty. We show the benefit of this approach
using simulations of a planar robot traversing an uncertain
environment and of an underwater robot searching for loop-
closure actions while performing visual SLAM.

I. INTRODUCTION

Autonomous mobile robots operating in real-world envi-
ronments often perform simultaneous localization and map-
ping (SLAM) to estimate their state and model their environ-
ment [1]. A robot must plan actions within this framework
in order to perform tasks like exploration, inspection, target-
tracking, reconnaissance, and others. This has led to research
in belief-space planning, where the robot makes decisions
about actions to execute based on the belief of its state and
other variables of interest [2].

Recently, the Gaussian belief-space planning problem was
extended to include stochastic measurements [3], leading to
a robot belief that is a “distribution of distributions.” In this
case, the belief is represented by a mean state vector that
is stochastic and a covariance matrix that is deterministic,
as the covariance update equations depend on the a priori
known measurement noise covariance but not the random
measurement value.

In this paper, we develop a belief-space planning formu-
lation that also includes stochastic measurement acquisition
variables. The acquisition variables are Bernoulli random
variables that model whether or not each measurement is
actually acquired. For example, an acquisition variable might
describe whether a landmark is in the field of view of the
robot, whether two camera images overlap and are registered,
or whether a message is received over a lossy communication
channel. As a motivating example, consider the underwater
environment encountered in ship hull inspection. Visual
features in this environment tend to be sparsely distributed
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Fig. 1: Risk-averse planning for an underwater robot performing visual
SLAM. The robot must decide between path A (a) and path B (c) for
gathering loop-closure camera registrations. Previous methods select path
A, which has a lower expected uncertainty and shorter path length than
B, but the proposed risk-averse planning framework selects path B. Monte
Carlo simulations in (b) and (d) show that path B is indeed preferable. Path
A exceeds the final pose uncertainty threshold in 147 of 1000 trials.

such that much of the imagery collected by the robot is not
useful for registration. The probability of a successful two-
view registration (i.e., probability of acquisition) is directly
related to a measure of visual saliency of the proposed
camera images [4]. At execution time, the SLAM system
does not explicitly model the acquisition variables, but sim-
ply incorporates successful measurements when they occur.
However, for these systems, the nondeterministic nature of
measurement acquisition should be considered at planning
time when the set of received measurements is still unknown.
We show that maintaining the stochasticity of the acquisition
variables throughout the planning formulation leads to a
random covariance matrix over the robot’s state, allowing us
to consider the risk associated with measurement acquisition
in the objective function.

The contributions of this work can be summarized as:

• We include measurement acquisition variables in the
planning prediction and show that maintaining their
stochasticity throughout the formulation leads to a ran-
dom belief covariance matrix.

• We design risk-averse objective functions for selecting
control actions that account for the stochasticity of the
belief with respect to the acquisition variables.

• We show that risk-averse planning under uncertainty
leads to decisions that result in more desirable outcomes
than decisions made with traditional approaches.

Fig. 1 illustrates the benefit of the proposed risk-averse
planning framework with an autonomous underwater robot



performing active visual SLAM. This example is discussed
further in §IV.

A. Related Work

The integration of planning with SLAM has its roots
in active exploration [5–7], where research focused on re-
ducing uncertainty in the map representation. Combining
traditional sampling-based planners with decision-theoretic
formulations on uncertainty reduction led to sampling-based
approaches that plan in the belief-space of the robot [8–
10]. Lately, belief-space planning research has focused on
trajectory smoothing frameworks for planning in the con-
tinuous domain of control actions [2, 3, 11]. These works
find locally-optimal solutions to the planning problem and
provide promising results for robotics applications, especially
point-to-point planning queries. Work in path planning for
information gathering [12] and active SLAM systems [13–
15] focused more on the interaction between planning and
SLAM, and how the performance and efficiency of SLAM
is improved with intelligent decisions regarding which paths
to travel.

Our proposed methodology is specifically interested in
accurately modeling the stochasticity of variables within the
planning formulation. Van den Berg et al. [3] first relaxed
the assumption of maximum-likelihood measurements in
planning [16] to consider the measurements as random
variables in the prediction. In this paper, we include random
acquisition variables as well. Our approach is similar to the
formulation of Sinopoli et al. [17], who studied Kalman
filtering given measurements over a lossy communication
channel. They derived the Kalman filter equations as func-
tions of the stochastic acquisition variables. Kim and Eustice
[14] and Indelman et al. [2] included acquisition variables
in belief-space planning for robotics, but their formulations
removed the effect of the acquisition randomness in the
resulting belief. Instead, we seek to model the variability in
the outcomes with respect to uncertainty in order to design
objective functions for planning that are sensitive to risk.

Extensive ongoing research in economics and finance
continues to examine methods for making smart investment
decisions given a number of risky assets [18]. Modern
portfolio theory originates from the classical methods of
Markowitz [19], who used the graphical concept of an
efficient frontier to maximize expected return for a given
amount of tolerance to risk. Another approach to portfolio
optimization, which we examine in this paper, optimizes
a von Neumann-Morgenstern utility function that defines
rational investor behavior [20]. This approach has been
frequently examined in the broader literature discussing risk
aversion in Markov decision processes (MDPs), specifically
related to exponential utility optimization [21, 22] and stem-
ming from the original work of Howard and Matheson
[23]. Our proposed method also closely resembles methods
for analyzing the internal variance [24, 25] and parametric
variance [26, 27] present in MDPs, although our focus is on
developing a framework for planning in real-world mobile
robotics applications.

II. METHOD

The derivation of our method closely follows that of
Indelman et al. [2] in format and notation.

A. Optimal Planning Problem

We are interested in finding a set of control actions,
U0:K−1, over a horizon of K planning steps1 that minimizes
some function of the robot’s belief over this horizon, B0:K .
The optimal planning problem is formulated as

U∗0:K−1 = arg min
U0:K−1

J(B0:K , U0:K−1), (1)

with an objective function comprised of stage costs and a
final cost dependent on the predicted belief of the robot at
each planning step:

J(B0:K , U0:K−1) =

K−1∑
k=0

ck(Bk,uk) + cK(BK). (2)

Previous works solved for the control actions in a trajectory-
smoothing optimization, such as gradient descent [2] or
dynamic programming [3]. Alternatively, we can peform this
optimization within a sampling-based planning framework by
selecting the sampled set of control actions that minimizes
the objective [9, 10]. We will return to the discussion of the
optimal planning problem after examining the belief of the
robot and its evolution.

B. Belief Inference

We define the belief of the robot at a given planning step
k ∈ [1,K] as

Bk = p(Xk|Z0,U0, Z1:k,Γ1:k, U0:k−1), (3)

where Xk is the state vector of interest and Z0 and U0 are
the prior measurements and controls, respectively, up to the
planning event. Z1:k are the random update measurements
and Γ1:k are the corresponding random acquisition variables.
The belief vector is represented by a multivariate Gaussian
with mean and covariance matrix (given in terms of the
inverse information matrix):

Bk ∼ N (X∗k ,Λk
−1), (4)

found using the maximum a posteriori (MAP) estimate

X∗k = arg min
Xk

−logBk. (5)

The Gaussian motion model for transitioning to step k+1
from step k is

xk+1 = f(xk,uk) + wk,

wk ∼ N (0,Ωw
−1).

(6)

However, at planning time, the update measurements (Z1:k)
are unknown. In addition, it is also unknown whether or not
each measurement will be acquired. Therefore, we introduce
a Bernoulli random variable for each measurement that mod-
els its acquisition. The set of random acquisition variables at

1Note that we do not compute a policy, but a set of actions to be executed
in an open-loop or model predictive control scheme with replanning.



a given planning step k is Γk = {γk,j}nkj=1, where nk is the
number of possible measurements at step k. Therefore, we
use the following Gaussian observation model for the update
measurements:

zk,j = h(Xj
k) + vk,j(γk,j),

vk,j(γk,j) ∼ N (0, (γk,jΩ
k,j
v + (1− γk,j)Ω0)−1),

(7)

where Ωk,jv is the information contributed by a successful
measurement and Ω0 is the information contributed by
an unsuccessful measurement. It is easily identified that
unsuccessful measurements add zero information; that is,
the second term of (7) vanishes, resulting in the following
observation model that is still Gaussian:

zk,j = h(Xj
k) + vk,j(γk,j),

vk,j(γk,j) ∼ N (0, (γk,jΩ
k,j
v )−1).

(8)

Using the standard assumption of an uninformative prior
on the measurements, we can write the distribution of the
state from (3) as

p(Xk|Z0,U0, Z1:k,Γ1:k, U0:k−1) ∝

p(X0|Z0,U0)

k∏
i=1

p(xi|xi−1,ui−1)p(Zi,Γi|Xi),
(9)

where

p(Zi,Γi|Xi) =

ni∏
j=1

p(zi,j |γi,j , Xj
i )p(γi,j |Xj

i ), (10)

and Xj
i are the state variables associated with measurement

j at planning step i.
Online, each γi,j of interest is observed by the robot

upon receiving the associated measurement zi,j . Acquisition
variables corresponding to measurements not received do not
inform the estimate of the state. But within the prediction,
it is unknown which measurements will be received ahead
of time. Previous work incorporated the random acqui-
sition variables within an expectation-maximization (EM)
framework [2], but this method results in a deterministic
covariance matrix by evaluating γi,j at its mean value of
p(γi,j = 1) within the MAP estimate. Instead, we want
to maintain the randomness of the acquisition variables
throughout the formulation such that the robot can be
aware of the associated acquistion risk in the optimiza-
tion. We approximate the acquisition variables as indepen-
dent, and therefore uninformative to the estimate, such that
p(γi,j |Xj

i ) ≈ p(γi,j), allowing (9) to take the form

p(X0|Z0,U0)

k∏
i=1

p(xi|xi−1,ui−1)

ni∏
j=1

p(zi,j |γi,j , Xj
i ).

(11)
This approach essentially borrows the rationale behind EM
but delays taking the expectation over the acquisition vari-
ables until the evaluation of the objective function (described
later in §II-C).

Inserting the Gaussian motion and observation models of
(6) and (8) into the MAP estimate of (5) and (11), we

minimize the negative log likelihood to arrive at a nonlinear
least-squares problem common to graph-based SLAM [1]:

X∗k = arg min
Xk

[
‖X0 −X∗0‖2Λ0

+

k∑
i=1

‖f(xi−1,ui−1)− xi‖2Ωw+

k∑
i=1

ni∑
j=1

γi,j‖h(Xj
i )− zi,j‖2Ωi,jv

]
,

(12)

where both γi,j and zi,j are random. We can compute a
linearization point for the problem by compounding the
given set of controls, yielding the nominal mean estimate
X̄k(U0:k−1) = {X∗0 , x̄1, . . . , x̄k}. Linearizing about this
nominal mean estimate, the problem collapses into the fol-
lowing representation for the state update vector ∆Xk:

‖Ak(U0:k−1)∆Xk − bk(Z1:k, U0:k−1)‖2Gk(Γ1:k), (13)

where

Ak =


[
Λ

1
2
0 0

]
D(Ωw)

1
2Fk

D(Ωi,jv )
1
2Hk

 , bk =

 0

D(Ωw)
1
2bfk

D(Ωi,jv )
1
2bhk

 , (14)

and

Gk =

I I
D(γi,j)

 . (15)

Here, D( · ) denotes a diagonal matrix with the specified
elements, Fk and Hk are the sparse Jacobians from the
motion and observation models, respectively, and bfk and bhk
are the corresponding residual vectors with stacked elements

bfi = x̄i − f(x̄i−1,ui−1), (16)

bhi,j = zi,j − h(X̄j
i ). (17)

Solving (13) around the linearization point X̄k, we find
the update vector as a function of the random measurements
and the random acquisition variables:

∆Xk(Z1:k,Γ1:k, U0:k−1) = (A>k GkAk)−1A>k Gkbk. (18)

Thus, the belief at planning step k is represented by the mean
vector X∗k = X̄k + ∆Xk and the associated information
matrix as a function of the acquisition variables,

Λk(Γ1:k, U0:k−1) = A>k GkAk. (19)

This gives us a stochastic belief as a function of the random
measurements and acquisition variables at each planning
step, k.

C. Objective Functions

Here we examine costs to insert into the general objective
function of (2). We recall that we derived the belief as
a function of the random measurements and acquisition
variables, meaning we must take the expectation of the
objective function with respect to these variables. Following



the literature [2, 3], we consider costs at stage k that penalize
control effort and the robot uncertainty:

ck(B(Xk),uk) = gu(uk) + E
Γ1:k

[
gΛ(Λk

−1)
]
, (20)

where we leave the functions g( · ) undefined for now. The
expectation is taken on the uncertainty term because the
information matrix Λk is stochastic due to the effect of the
random acquisition variables. Similarly, we can write the
final cost to penalize distance from a desired goal pose and
the final robot uncertainty:

cK(B(XK)) = E
Z1:K ,Γ1:K

[gx(x∗K − xG)] +

E
Γ1:K

[
gΛ(ΛK

−1)
]
.

(21)

The expectation is taken for the goal pose term since the
mean estimate of the belief is random, as it is a function of
both the random measurements and the random acquisition
variables, evidenced in (18).

III. RISK AVERSION

Given the random belief from the planning prediction,
we seek to design objective functions that consider the
stochasticity. Modern portfolio theory provides insight into
how to design objective functions that are risk-averse. We
can consider the robot as an investor with the goal of
maximizing its wealth from a number of risky investments.
However, rather than maximizing wealth, the robot seeks to
maximize information from a number of uncertain sensor
measurements.

Investor behavior can be encoded in a utility function of
wealth, U (W ), such that maximizing the expected utility,
E[U (W )], results in more desirable decisions than directly
maximizing the expected wealth, E[W ]. A utility function
that encodes rational investor behavior satisfies four axioms
[18]:

1) Investors exhibit non-satiation, U ′(W ) > 0.
2) Investors exhibit risk aversion, U ′′(W ) < 0.
3) Investors exhibit decreasing absolute risk aversion,

A ′(W ) < 0, where

A (W ) = −U ′′(W )

U ′(W )
. (22)

4) Investors exhibit constant relative risk aversion,
R′(W ) = 0, where

R(W ) = W ·A (W ). (23)

The first two axioms equate to U (W ) being monotonic and
concave with respect to W . Absolute risk aversion is related
to the absolute amount of wealth an investor puts toward
risky assets. Similarly, relative risk aversion is related to the
fraction of wealth invested in risky assets.

In the robotics planning literature, it is common to design
costs that are quadratic with respect to the control effort
and distance from a goal pose. However, the uncertainty
costs within the planning objective are typically linear in the
trace (or determinant) of the belief covariance [2, 3, 6, 15].

The linear objective function is monotonic but not concave,
meaning it is risk-neutral. Without randomness in the acqui-
sition, this cost is sensible because the belief covariance is
deterministic. However, our formulation leads to a random
belief covariance.

Instead, we prefer to design objective functions that are
risk-averse. We could consider replacing the linear cost with
a quadratic cost, but despite being risk-averse, the quadratic
function does not satisfy the third and fourth axioms above
[18]. Specifically, the quadratic function exhibits increasing
absolute and increasing relative risk aversion. There is a
similar drawback with the exponential utility function [22],
which exhibits constant absolute risk aversion and increasing
relative risk aversion.

A utility function that follows rational investor behavior
defined by the four axioms is the power function [18], given
by

U (W ) =

{
W (1−η)

(1−η) , η 6= 1

logW, η = 1
. (24)

Here, the relative risk aversion actually equals the tunable
(user-defined) parameter η, such that η = 0 corresponds to a
risk-neutral utility and risk aversion increases as η increases.
Since we seek to minimize uncertainty rather than maximize
wealth, we define

W = T − tr(Λk−1) = T −m>vec(Λk
−1), (25)

where T is a user-specified upper bound on the uncertainty
and the trace is expanded using an element selection vector
m. This allows us to write an equivalent penalty function to
the power utility function:

P(W ) = −U (W ) =

{
−W (1−η)

(1−η) , η 6= 1

− logW, η = 1
. (26)

For a random belief covariance and η 6= 1, the expected
value of the power penalty function is approximated using a
Taylor series expansion as

E
Γ1:k

[P(W )] ≈ −E[W ]
(1−η)

1− η +
η

2
Var [W ]E[W ]

(−η−1)
,

(27)
with

E
Γ1:k

[W ] = T −m> E
Γ1:k

[vec(Λk
−1)]

≈ T −m>vec
(

E
Γ1:k

[Λk]
−1

)
,

(28)

and
Var
Γ1:k

[W ] = m>Var
Γ1:k

[
vec(Λk

−1)
]
m. (29)

Finding the necessary terms in the variance equation (29) is
easier with the helpful equation for first-order propagation
of uncertainty:

Var[y(X)] ≈ ∂y

∂X

∣∣∣
E[X]
·Var[X] · ∂y

∂X

∣∣∣>
E[X]

. (30)

The variance of the belief covariance matrix is written in
terms of the variance of the belief information matrix:

Var
Γ1:k

[
vec(Λk

−1)
]
≈ Lk ·Var

Γ1:k

[vec(Λk)] ·Lk>, (31)
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Fig. 2: One-dimensional intuition. (a) The functions describing the probability of acquisition for each measurement source in the one-dimensional example.
(b) The expected value of information contributed to the belief by a measurement from each source. (c) The predictions for the expected value and variance
of the belief covariance as a function of sensor placement. (d) A linear objective function of J = Λ−1, which simply minimizes the expected value of the
predicted belief covariance. (e) The power objective function of the form of (26), with η = 4 and T = 1.5. (f)(g) The resulting covariance for 1000 trials
of Monte Carlo simulations of the sensor belief, placed at x = {−5, 5}. (h) The power objective function graphed for varying values of the parameter η
with T = 1.5. (i) The power objective function graphed for varying values of the uncertainty bound T with η = 4.

where the partial derivative Lk is

Lk = −
(

E
Γ1:k

[Λk]
−> ⊗ E

Γ1:k

[Λk]
−1

)
, (32)

and ⊗ denotes the Kronecker product. The variance of the
belief information matrix is

Var
Γ1:k

[vec(Λk)] = Mk ·Var[Γ1:k] ·Mk
>, (33)

with each column of the partial derivative Mk (indexed by
c) corresponding to an individual γi,j given by

M
(c)
k = vec

(
Hi,j
k

>
Ωi,jv H

i,j
k

)
. (34)

Lk and Mk are the Jacobians used to propagate the uncer-
tainty in the acquisition variables into the space of the belief
covariance. It is worth noting that Hi,j

k is sparse for many
robotics applications, allowing us to efficiently compute (31)
by leveraging sparsity patterns.

We propose the use of the risk-averse power penalty
function within the planning objective function. Replacing
the commonly-used linear uncertainty costs with the power
function of (26) naturally encodes rational decision-making
with respect to the belief uncertainty.

IV. RESULTS

We now present simulation results that show the effect of
the random acquisition variables on the belief and the benefit
of risk-averse planning.

A. One-dimensional Intuition

The following example shown in Fig. 2 illustrates the
intuition behind the method for risk-averse planning. We are
interested in placing a sensor in a one-dimensional environ-
ment given prior belief information Λ0 = 1.0. The sensor is
able to receive measurements from two sources with constant
information. Measurement source Sa has information Ωa and
measurement source Sb has information Ωb = 0.1Ωa. Each
measurement source also has a binary variable describing
whether it is acquired with a parameter dependent on the
placement of the sensor. As such, acquisition variable γa
reaches a peak probability of success of max p(γa = 1) =
0.2 at x = −5. Acquisition variable γb reaches a peak proba-
bility of success of max p(γb = 1) = 1.0 at x = 5. The state-
dependent parameter functions for the acquisition variables
are shown in Fig. 2(a). Each measurement source contributes
expected information E[Λi] = p(γi = 1)Ωi, shown over the
one-dimensional environment in Fig. 2(b). At their respective
peak probabilities of acquisition, Sa contributes twice the
expected information than source Sb, as Sa is 10 times more
informative but Sb is 5 times more likely to be acquired.
Using the method from §II, Fig. 2(c) shows the predictions
of the expected value and variance of the belief covariance
for placing the sensor along the environment.

Consider the simple risk-neutral, linear objective function
of tr(Λ−1), graphed in Fig. 2(d). With an initial sensor
placement of x = 0 and a gradient descent update frame-
work, the placement follows the gradient and converges to
x = −5. Now consider minimizing the risk-averse power
function of (26) with η = 4 and T = 1.5. This objective
function accounts for the uncertain measurement acquisition
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Fig. 3: Results from the planar robot example. (a) The initial trajectory. (b) The resulting trajectory from the gradient-based optimization method of
Indelman et al. [2] with an objective function that is linear in the belief covariance. (c) The resulting trajectory from the gradient-based optimization with
the proposed risk-averse formulation using an objective that includes a power function of the belief covariance. (d)(e)(f) The trace of the robot’s terminating
covariance for 1000 trials of Monte Carlo simulations of the above trajectories. The proposed risk-averse method results in a path that consistently receives
measurements for improved localization.

and is graphed in Fig. 2(e). In this case, the placement
initially at x = 0 converges to the risk-averse location of
x = 5. Monte Carlo simulations of the resulting covariance
from each placement are shown in Fig. 2(f) and Fig. 2(g).
While the placement at x = −5 often yields a very low
uncertainty, it also often receives no measurements. The
placement at x = 5 is guaranteed to receive the measurement
from Sb. Fig. 2(h) and (i) plot the power penalty function
with varying values of η and T .

B. Planar Robot

We can apply the intuition from the previous example
to a planar robot with control authority along the x and y
directions. Rather than placing a sensor, we are interested in
localizing the robot along a trajectory and reaching a goal
region. Similar to the previous example, the robot receives
absolute measurements in x and y from two different sources
of constant information. The information and acquisition
properties for these sources are the same as in the one-
dimensional example (Fig. 2(a), (b)) but extend along the
y-direction. The robot starts at pose (x, y) = (0, 0) with the
goal of reaching a final pose at planning step K = 10 with
y = 20. We update the trajectory using a gradient descent
optimization and use this example to show the applicability
of our formulation to trajectory-smoothing planners.

In this example, we compare our proposed risk-averse
planner to the method of Indelman et al. [2]. Their method
uses the following forms of the costs in (20) and (21):

gu(uk) = ‖δ(uk)‖2Mu
,

gΛ(Λk
−1) = m>vec(Λk

−1),

gx(x∗K − xG) = ‖x∗K − xG‖2Mx
,

(35)

where M represents a weight matrix and (in our imple-
mentation) δ( · ) penalizes deviation from the nominal step

length. The Indelman et al. approach does not model the
variability in the belief covariance. With this method, the
robot settles on a path traveling the peak acquisition zone of
Sa, shown in Fig. 3(b). However, our proposed framework
accounts for the randomness of the acquisition in the belief
covariance matrix by replacing the uncertainty cost above
with gΛ(Λk

−1) = P(W ) from (26). With the risk-averse
optimization, the robot prefers a path traveling the peak
acquisition zone of Sb, shown in Fig. 3(c).

The effect of the randomness of acquisition is clearly
seen when we simulate 1000 runs of the robot traversing
the selected paths. Fig. 3(d), (e), and (f) show the trace of
the marginal covariance of the belief at the final planning
step for the simulations. The uncertainty is often lower with
the Indelman et al. path, but the proposed method path is
preferable with respect to worst-case uncertainties. The risk-
averse path consistently receives measurements for improved
localization despite having larger expected uncertainty.

C. Underwater Visual Inspection Robot

Consider a Hovering Autonomous Underwater Vehicle
(HAUV) performing visual SLAM to inspect a ship hull,
as in Fig. 4. The robot executes a lawnmower-like trajectory
over the underwater portion of the hull to collect camera
images of the environment in a coverage-efficient manner.
However, execution of this policy results in navigation
drift, so the robot must perform loop-closing revisit actions
throughout the mission to bound its uncertainty. Loop-
closures in the visual SLAM formulation come from pairwise
camera registrations between overlapping images. For this
simulation, we design a synthetic environment where most
of the environment is feature-less and has zero registrability.
We use a measure of visual saliency [14] and a Gaussian
process (GP) prediction [15] to model the distribution of



Fig. 4: Visualization of the HAUV performing visual ship hull inspection.

the acquisition variables throughout the environment. Given
a path planning algorithm for finding possible revisit paths,
we evaluate a candidate path based upon its distance traveled
and its final uncertainty, which we frame as the risk-averse
power penalty function. The objective function becomes

J = gu(U0:K−1) + E
Γ1:K

[
P
(
T −m>vec(ΛK

−1)
)]
, (36)

where gu(U0:K−1) computes the path length (scaled by a
weight), the threshold is set to T = 0.05, and m selects the
diagonal elements of the final pose marginal covariance. The
risk parameter is η = 4. We show the benefit of the proposed
risk-averse framework within this type of sampling-based
active SLAM system by comparing to the path evaluation
method of our previous work [15].

Fig. 5 shows the HAUV deciding between two candidate
loop-closure paths at pose number 770 of the mission.
Candidate path A considers revisiting a moderately-salient
portion of the environment centered at pose number 270
in the graph. Candidate path B considers revisiting a more
salient area centered at pose 320 in the graph. Here we see
the tradeoff illustrated throughout this paper: path A has
a high risk-reward ratio. Registering to poses along path
A provides greater information gain as the resulting loop-
closures are larger than loops closed via path B. However,
the higher visual saliency for images along path B means
that registrations to these poses are more likely to occur than
those along path A.

Both the previous and proposed methods select path A in
this scenario. Table I presents statistics from each method
related to the selection, including evaluation times. It also
presents the number of proposed camera registrations for
each path, the average probability of acquisition of these
hypotheses, and the expected values and variances of the
uncertainties predicted using the methodology from §II. We
overlay these predictions on the penalty function contour plot
of Fig. 6(a). Despite the higher variance and longer length,
path A has a lower expected uncertainty than path B. We
see why preferring path A is sensible given the Monte Carlo
simluation results for traveling each path in Fig. 5(b) and
(d). Only 2 trials in 1000 from path A result in uncertainties
greater than the threshold and many trials outperform the
resulting uncertainties of traveling path B.

We investigate a second scenario later in the mission. At
pose number 1145, the robot again decides between revisiting
the same locations along paths A and B (Fig. 1). This time,

TABLE I: Underwater Robot Path Predictions & Statistics

DECISION AT POSE 770 Path A Path B

Distance [m] 21.23 20.45
Registration Hypotheses 39 37

Avg. p(γi,j = 1) 0.232 0.804
E[m>vec(ΛK

−1)] 0.02932 0.03047
Var[m>vec(ΛK

−1)] 9.743E-07 3.791E-09

PREVIOUS METHOD[15]
Evaluation Time [ms] 45.73 59.29

Selected Path A

PROPOSED METHOD

Evaluation Time [ms] 117.75 138.66
Selected Path A

DECISION AT POSE 1145 Path A Path B

Distance [m] 31.79 32.59
Registration Hypotheses 35 33

Avg. p(γi,j = 1) 0.276 0.893
E[m>vec(ΛK

−1)] 0.04464 0.04503
Var[m>vec(ΛK

−1)] 2.400E-06 3.048E-09

PREVIOUS METHOD[15]
Evaluation Time [ms] 90.03 100.46

Selected Path A

PROPOSED METHOD

Evaluation Time [ms] 150.36 198.50
Selected Path B

the robot is farther along in the mission and must travel
farther to close loops, leading to higher predicted uncertain-
ties than in the first scenario. Here, the previous method of
[15] once again selects path A. In contrast, the proposed risk-
averse method strongly prefers path B even though it predicts
a higher expected uncertainty and longer traveling distance
than path A. Fig. 6(b) shows how the penalty function
contours change given the much closer predicted proximity
to the threshold. The Monte Carlo simulations of Fig. 1(b)
and (d) show why choosing path B is desirable in this case.
Traveling path A results in 147 trials of 1000 that exceed the
uncertainty threshold, but the robot can confidently travel
path B without concern.

These results show how the power function naturally
lends itself to desirable behavior in active SLAM. While
the uncertainty is low, the robot is willing to make risky
decisions for possible high rewards. But as the uncertainty
approaches the threshold, the robot exhibits greater absolute
risk aversion, making more conservative but safer decisions.

V. CONCLUSION

We proposed a risk-averse framework for Gaussian belief-
space planning with stochastic measurement acquisition. We
developed a planning formulation that maintains the random-
ness of the measurement acquisition variables and showed
that this resulted in a random belief covariance matrix.
We leveraged this randomness in the belief covariance to
design objective functions for the planning problem that
are risk-averse, inspired by utility optimization in modern
portfolio theory. Our simulation results showed that risk-
averse path planning for mobile robotics applications yields
more desirable outcomes than paths found with previous
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Fig. 5: Results from the first HAUV planning scenario. (a) The trajectory of revisit path A from pose 770 to pose 270 and back. (b) The trace of the final
pose covariance for 1000 trials of a Monte Carlo simulation of traveling path A. (c) The trajectory of revisit path B from pose 770 to pose 320 and back.
(d) The trace of the final pose covariance for 1000 trials of a Monte Carlo simulation of traveling path B.
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Fig. 6: The uncertainty penalty function contours for the HAUV planning scenarios. (a) At pose 770. (b) At pose 1145.

approaches, using both trajectory-smoothing and sampling-
based frameworks.
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