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ABSTRACT

In order to navigate autonomously, many self-driving vehicles require precise localization

within an a priori known map that is annotated with exact lane locations, traffic signs,

and additional metadata that govern the rules of the road. This approach transforms the

extremely difficult and unpredictable task of online perception into a more structured local-

ization problem—where exact localization in these maps provides the autonomous agent a

wealth of knowledge for safe navigation.

This thesis presents several novel localization algorithms that leverage a high-fidelity

three-dimensional (3D) prior map that together provide a robust and reliable framework

for vehicle localization. First, we present a generic probabilistic method for localizing an

autonomous vehicle equipped with a 3D light detection and ranging (LIDAR) scanner. This

proposed algorithm models the world as a mixture of several Gaussians, characterizing the

z-height and reflectivity distribution of the environment—which we rasterize to facilitate fast

and exact multiresolution inference. Second, we propose a visual localization strategy that

replaces the expensive 3D LIDAR scanners with significantly cheaper, commodity cameras.

In doing so, we exploit a graphics processing unit to generate synthetic views of our belief

environment, resulting in a localization solution that achieves a similar order of magnitude

error rate with a sensor that is several orders of magnitude cheaper. Finally, we propose a

visual obstacle detection algorithm that leverages knowledge of our high-fidelity prior maps

in its obstacle prediction model. This not only provides obstacle awareness at high rates

for vehicle navigation, but also improves our visual localization quality as we are cognizant

of static and non-static regions of the environment. All of these proposed algorithms are

demonstrated to be real-time solutions for our self-driving car.

xii



CHAPTER 1

Introduction

Car accidents claim the lives of roughly 1.24 million people per year (World Health Organi-

zation, 2013). In the United States alone, deaths top thirty thousand with over 6 million

crashes per year (Maddox, 2012). Despite these devastating statistics, the public has grown

to accept traffic accidents because vehicles provide a vital piece of technology for our culture

and are relatively safe per capita, where average drivers can expect to be in a car accident

only once every ten years. Fortunately, fatality rates have declined over the past several

decades due to advancements in passive safety and active safety measures. However, 93% of

these remaining crashes are a result of some human error—a byproduct of increased mobile

phone usage and other internal vehicle distractions.

Over the past several years, many have looked toward robotics as a solution to reduce

the number of traffic accidents and enable those that are unable to drive for various medical

conditions—an attractive option as it removes the risk of distracted drivers from roadways.

The growth in mobile robotics during this time has made this a reality, allowing self-driving

vehicles to safely navigate roadways congested with other human-driven vehicles. Systems

such as the Google driverless car have successfully driven hundreds of thousands of miles

without user intervention (Thrun, 2010), and several car manufacturers have begun looking

into commercialization of such technology.

A common approach to self-driving cars is to use detailed prior maps that are annotated

with precise lane locations, traffic signs, and other metadata that govern the rules of the road.

These maps are generated offline, which allows the use of complex algorithms that are not

necessarily “real-time” to be used by the operating self-driving car. The use of prior maps

allows researchers to turn some of the difficult perception tasks into a localization problem.

Localization in the robotics community is a mature research area that yields a bounded

problem given the well structured environment an automobile operates in. The needs of the

car are a localization system that can robustly track and verify that the perceived world

matches its prior belief, as downstream components of the autonomous car (e.g., planning and

control) rely on precise localization for decision making. Therefore, localization robustness is

1



critical as it is a subsystem that cannot fail or the online autonomous platform would no

longer be able to operate.

This thesis focuses on extending the state-of-the-art to increase robustness of localization

for autonomous cars. We propose a fast and efficient three-dimensional (3D) light detection

and ranging (LIDAR) localization algorithm that can jointly reason over prior structure and

appearance. Additionally, we propose a visual localization algorithm that is able to achieve a

similar order of magnitude error rate as its LIDAR counterpart using an optical monocular

camera that is an order of magnitude cheaper. Finally, we leverage these detailed prior maps

in our proposed visual obstacle detection system, which in turn, can be used to improve

the performance of our visual localization system. These parts combined yield a robust,

multi-modal localization system for self-driving cars.

1.1 Simultaneous Localization and Mapping

Robots operating in an a priori unknown environment use a class of algorithms referred

to as simultaneous localization and mapping (SLAM) to answer the questions “where am

I?” and “what does my environment look like?” When attempting to solve the full SLAM

problem, we are interested in concurrently estimating the robot’s full trajectory and the

map it is operating in to answer these two questions. In this section, we consider solving

the SLAM problem in a metric framework as it is more natural for our application, though

there are many alternative solutions that consider SLAM in a topological (Angeli et al., 2009;

Choset and Nagatani, 2001) or a hybrid metric-topological formulation (Beeson, Modayil,

and Kuipers, 2009; Blanco, Fernández-Madrigal, and Gonzalez, 2008).

We consider the robot’s trajectory as a set of poses, X = {xi}
n

i=0, with typically xi ∈ R
6,

though these vectors can be augmented to capture other time-dependent state elements.

To solve the SLAM problem, we seek to find the optimal alignment of our trajectory and

map, M, given noisy odometry measurements U = {ui}
n

i=1 and other sensory measurements

(typically of the map) Z = {zk}
p

k=1. Note that in various applications, this map can be made

up of point landmarks, occupancy grids, etc., or the map can be circumvented altogether

using sensory measurements directly to establish constraints between two poses (this is known

as pose-graph SLAM); this full SLAM problem is depicted in Fig. 1.1.

Formally, we seek to find the maximum a posteriori (MAP) estimate of our trajectory

and map by evaluating

X∗,M∗ = argmax
X,M

p (X,M|U,Z) . (1.1)

2



Figure 1.1: Sample factor graph for solving the full SLAM. In solving the SLAM problem,
we seek the optimal arrangement of pose nodes, {xi}, and map configuration, M, given
noisy sensor measurements in the form of vehicle odometry, {ui}, and observations {zk}.
Note that the map representation here is a generic representation that can encompass point-
based landmarks, occupancy grids, and other map representations that each have their own
estimation requirements within the full SLAM problem.

By modeling our noisy odometry and sensory measurements as Gaussian random variables,

xi = fi(xi−1, ui) + wi, (1.2)

zk = hk(xik ,M) + vk, (1.3)

where fi( · ) and hk( · ) are our process and observation models, respectively, and wi ∼ N (0,Σi)

and vk ∼ N (0,Σk), we can represent the joint distribution as

p(X,M,U,Z) = p(x0)
n∏

i=1

P (xi|xi−1, ui)

p
∏

k=1

P (zk|xik ,M) (1.4)

∝
n∏

i=1

e−
1
2
‖fi(xi−1,ui)−xi‖

2
Σi

p
∏

k=1

e
− 1

2
‖hk(xik

,M)−zk‖
2
Σk . (1.5)

Thus, to solve the SLAM problem of Eq. 1.1, we can find the MAP estimate by minimizing

the negative log of the joint probability:

X∗,M∗ = argmax
X,M

p(X,M|U,Z) = argmax
X,M

p(X,M,U,Z) (1.6)

= argmin
X,M
− log p(X,M,U,Z) (1.7)

= argmin
X,M

{
n∑

i=1

‖fi(xi−1, ui)− xi‖
2
Σi

+

p
∑

k=1

‖hk(xik ,M)− zk‖
2
Σk

}

. (1.8)
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1.1.0.1 Filtering Solutions

Filtering frameworks approach the SLAM problem from a recursive Bayesian estimation

standpoint. With measurements under Gaussian noise, the extended Kalman filter (EKF) is

the optimal minimum mean squared error (MMSE) estimator in which system nonlinearities

are handled by linearizing the process (Eq. 1.2) and observation models (Eq. 1.3). Typically,

these applications (Davison et al., 2007; Leonard and Durrant-Whyte, 1991a; Smith, Self,

and Cheeseman, 1990) continuously marginalize out prior robot poses, thus solving for only

the most recent robot pose and the map of its environment:

x∗n,M
∗ = argmax

xn,M
p (xn,M|U,Z) . (1.9)

As the map, M, continues to grow over time, the problem quickly becomes intractable to

solve real-time as the EKF requires expensive matrix inversions on each recursive update.

Many researchers, including Bar-Shalom, Rong Li, and Kirubarajan (2001), have instead

looked at the extended information filter (EIF) to overcome these computational limitations

of the EKF. The EIF is the dual of the EKF, where state belief is parameterized in terms

of the information vector and information matrix (inverse covariance matrix). Though the

covariance matrix of the EKF is typically a dense matrix, Thrun et al. (2004) noted that

this reparameterization results in a nearly sparse information matrix, where elements encode

spatial relationships between landmarks. The authors then enforce a sparsification procedure

yielding an exactly sparse representation that facilitates constant time updates and linear

memory usage in number of landmarks.

Eustice, Singh, and Leonard (2006) noted that the explicit marginalization of prior

robot poses (Eq. 1.9) is the reason for information matrix fill-in and sparsification leads to

overconfident state estimates (Eustice, Walter, and Leonard, 2005). Instead, they propose to

use a delayed state EIF that solves the full SLAM problem without marginalizing historic

robot poses. This framework maintains exact sparsity in the information matrix, enabling

very large scale filtering results.

1.1.0.2 Optimization Solutions

Ultimately, filtering methods suffer because they commit to a single linearization for process

(Eq. 1.2) and observation models (Eq. 1.3) as they are measured, which can pose a problem

as linearization errors compound. Viewing Eq. 1.8 as a nonlinear least squares problem

has led the SLAM community to leverage sparse linear algebra techniques to solve the

full SLAM problem. Further, storing the full nonlinear measurements allows for continuous

relinearization of the measurements observed. Dellaert and Kaess (2006); Kaess, Ranganathan,
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and Dellaert (2008); Kaess et al. (2012), Olson, Leonard, and Teller (2006b), Thrun and

Montemerlo (2006), and Kummerle et al. (2011) have all considered solving SLAM using

various optimization approaches.

1.1.0.3 Monte Carlo Solutions

The SLAM problem can alternatively be solved using sampling based approaches in which

a finite set of particles can be used to model the posterior distribution (as opposed to

using parametric Gaussian densities). Particles are then weighted and resampled as new

measurements are processed.

Solving landmark-based SLAM directly this way would be intractable as the required

number of particles to capture the full state space would be incredibly large. This led

Montemerlo et al. (2002, 2003) to consider the Rao-Blackwellization of the SLAM problem

whereby the posterior density can be factored as: p (X,M|U,Z) = p (M|X,Z) p (X|U,Z).

Thus, particles can be used to capture the statistics (i.e., p (X|U,Z)) of the robot, while each

map element can be modeled as an independent Gaussian distribution conditioned on the

robot.

1.2 Localization within Metric Maps

In many domains, a map can be obtained ahead of time reducing to the single question of

“where am I in this map?” These maps can either be provided from human cartographers or

built using SLAM during previous traversals of the world. This leads us to solving a simpler

estimation problem than the full SLAM problem because our map is known a priori, resulting

in the following estimation goal:

X∗ = argmax
X

p (X|M,U,Z) . (1.10)

Frequently, smoothing the full robot trajectory in this form is not done, and can simply be

reduced to filtering over the most recent robot pose,

x∗n = argmax
xn

p (xn|M,U,Z) . (1.11)
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As in the previous section, this distribution can evolve using recursive Bayesian estimation as

new measurements are observed. More succinctly, Bayes rule allows us to repeatedly estimate:

p (xn|M,U,Z) = η p (zk|xn,M)
︸ ︷︷ ︸

likelihood

p (xn|M,U, z1:k−1)
︸ ︷︷ ︸

prior

(1.12)

Thus as new measurements are made distributed according to the likelihood distribution, our

prior belief can be updated.

The problem of localization falls into two distinct categories depending on the amount of

prior information available: local and global localization (Fox, Burgard, and Thrun, 1999).

In local localization, one is concerned with refining a pose belief given some prior information

(thus, local uncertainty) and a lack of measurements could cause the robot belief to diverge

and lose track in the map. However, in global localization, there is no prior belief and the

robot must equally weight its likelihood of being anywhere within the map (thus, global

uncertainty). Even more difficult is the kidnapped-robot problem proposed by Engelson (1994),

in which the robot has a confident prior on its location and is miraculously moved to another

location in the environment without notification. Research looking at solving this problem

must be cognizant of this possibility and realize when sensor data is suddenly incoherent

with the world, indicating a necessity for re-global localization.

For applications that require global localization, many researchers will only apply global

localization techniques until the posterior confidence exceeds a predetermined threshold,

consequently the robot will transition to local localization strategies, as is done by Ozog and

Eustice (2014) while visual localizing aside a ship hull. However, these two phases are not

required to be two distinctly different estimation techniques.

1.2.1 Kalman Filter Localization

Kalman filtering has been successfully used to track the position of a robot through a prior

map, but is typically not successful for global localization as it only captures a unimodal

belief of the robot pose. Gutmann, Weigel, and Nebel (2001) noted that the Kalman filter was

sufficient in their application for global localization, though only because of their relatively

small environment; in larger environments, it would be impossible to consider the many

permutations necessary for global localization. However, when considering local localization,

the Kalman filter can be an ideal choice for fusing measurements and tracking pose (Chaves,

Wolcott, and Eustice, 2015; Negenborn, 2003). Further, Kalman filtering has been a common

approach for localizing in a map consisting of point beacons (Leonard and Durrant-Whyte,

1991b; Olson, Leonard, and Teller, 2006a).
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1.2.2 Monte Carlo Localization

Monte Carlo localization (MCL) has become a popular approach to the global localization

problem as it is trivial to implement in software, well suited to handle multi-modal beliefs,

and yields solutions that quickly converge to the global pose; the techniques were introduced

in a sequence of works by Dellaert et al. (1999) and Fox et al. (1999). MCL works by

randomly sampling particles through the map according to a pose prior that can be fully

uninformed. These particles are then weighted and resampled according to coherence of

sensory measurements to the prior map. Then, each particle samples and propagates according

to the platform’s odometry model, and the observation updates iterate. The work was then

altered by Thrun et al. (2001), where the proposal distribution was altered by instead sampling

from the observation model, then weighted according to the odometry model.

With the emergence of low-cost depth sensors, such as the Microsoft Kinect, there is

an abundance of new research being published looking at localizing such sensors in prior

maps. Many of these methods rely on an iterative alignment to a 3D prior map in point

cloud space, as proposed by Newcombe et al. (2011) and Cunha et al. (2011). More recently,

Fallon, Johannsson, and Leonard (2012) use a Monte Carlo scheme for estimating a Microsoft

Kinect’s posterior pose, exploiting OpenGL for generating synthetic depth-views. Additionally,

rather than taking the common approach to evaluate likelihoods by evaluating point-to-plane

distances, as is common in iterative closest point (ICP) cost functions, they instead create a

generative likelihood function—comparing against synthetic particle filter views.

1.2.3 Self-driving Car Localization

Many self-driving car localization approaches rely on the methodology of localization within a

prior map, where doing so provides a wealth of knowledge regarding the operating environment

of the vehicle, including lanes, traffic signals, and other rules of the road. Typically, these

approaches are a local localization task, where the objective is to track the position of

the vehicle through the prior map or previous robot experiences; with external references

available such as global positioning system (GPS), global localization strategies are usually

not necessary.

Algorithms proposed by Levinson et al., which utilize 3D LIDAR scanners and an

integrated GPS/INS system, have been considered the benchmark method for autonomous

car localization for many years. In their work, they extract the ground plane points from

3D LIDAR scanners and build an orthographic map of ground-plane intensities (see Fig. 1.2

for an example map). They then use online measurements to localize their vehicle using

either a particle filter (Levinson, Montemerlo, and Thrun, 2007) or histogram filter (Levinson
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Figure 1.2: Sample prior map used for LIDAR reflectivity-based localization; commonly used
by autonomous cars. This map represents a portion of Bonisteel Ave. on the University of
Michigan’s North Campus.

and Thrun, 2010). Further, for increased robustness, they consider the variance of this

orthographic prior map so that their Bayesian inference is able to appropriately weight more

confident measurements.

Napier and Newman (2012) extended a similar orthographic ground-image localization

technique to use a stereo camera pair directed at the ground. Their work relaxes the

requirement of highly expensive GPS/INS solutions, instead using state-of-the-art visual

odometry to augment their localization. This method was able to achieve centimeter-level

precision by maximizing mutual information (MI) between camera measurements and the

expected map view.

Finally, Stewart and Newman (2012) present a solution called LAPS, which was inspired

by the localization side of Newcombe, Lovegrove, and Davison (2011)’s DTAM (Dense

Tracking and Mapping). Given their prior map, they project known scene points into a pair

of estimated camera frames. They then compute the normalized information distance (NID)

between the appearance of the projection in the two frames. This process is then repeated

until overall NID is minimized.

1.3 Visual SLAM

1.3.1 Feature-based Methods

There are two distinct methods for feature-based visual SLAM: filtering frameworks and,

more recently, keyframe-based systems. Both methodologies use unique, repeatable image

features, such as scale-invariant feature transform (SIFT) features proposed by Lowe (2004), to

establish constraints between the current pose and the underlying map. Filtering frameworks
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continuously marginalize out prior poses, summarizing all accumulated information in a

probability distribution over the current pose and belief map. On the contrary, keyframe-

based approaches store keyframes in a pose-graph of the full SLAM problem. Localization is

then typically done by using two-view bundle adjustment to minimize the reprojection error

against keyframes in the graph.

The seminal filtering approach to monocular SLAM is that of Davison et al. (2007). In

this work, features are modeled as landmarks in an EKF estimation problem. While the

approach works well in office settings, it has the similar issue of other SLAM problems in

that it does not scale well. As with the SLAM community, computer vision faced the similar

question of “Why filter?” (Strasdat, Montiel, and Davison, 2012), instead proposing to solve

the full SLAM problem using bundle adjustment (BA).

As an alternative to filtering, more modern efforts include a distribution of keyframes,

typically connected by a pose-graph. Localization is done by performing a two-view bundle

adjustment between the current image and a similar keyframe in the map—establishing

a 5-degree of freedom (DOF) pose constraint that minimizes reprojection error. To keep

localization tractable, these methods rely on a place recognition front end, such as FAB-MAP

(Cummins and Newman, 2008), to efficiently propose link hypotheses between keyframes, as

bundle adjustment can be an expensive task. A primary benefit of keyframe-based visual

SLAM over filtering is its scalability to larger environments.

Keyframe-based pose-graph SLAM has been frequently used from localizing off-road

vehicles as done by Konolige and Agrawal (2008) to autonomous underwater vehicles (AUVs)

as done by Eustice (2005) and Kim and Eustice (2013). The PTAM framework, proposed by

Klein and Murray (2007), uses the keyframe approach for managing an underlying map, which

they then perform local and global bundle adjustment over to generate feature landmarks for

localization. They then treat localization as a separate task, assuming a static map.

All of these visual SLAM strategies rely on co-observing robust image features; however,

these features are often not time invariant and vary with time of day and weather conditions.

To circumvent this issue, Churchill and Newman (2012) store sequences of different camera

views called experiences, and Konolige and Bowman (2009) cluster views into candidate

exemplars. These approaches of storing all possible views from a given location further

complicates the localization problem because it provides even more keyframes to compare

against. Carlevaris-Bianco and Eustice (2012) present a possible solution to this problem by

using a Chow-Liu tree to model the temporal relationship between views, providing a way to

predict similar views based on the current image sequence.
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1.3.2 Direct Methods

Recent approaches consider direct methods where the underlying belief is that the world

is made up of planar patches that exhibit brightness constancy across successive images.

This approach allows for direct use of image intensity values for image alignment, as de-

veloped by Irani and Anandan (2000), eliminating the need to have robust image feature

detectors/descriptors and the explicit need to perform data association.

Early direct visual SLAM systems tracked locally planar patches in a scene. For example

Molton, Davison, and Reid (2004) and Silveira, Malis, and Rives (2008) demonstrated

successful results, with the latter utlizing a novel method for handling illumination changes.

Newcombe, Lovegrove, and Davison (2011) proposed DTAM, which estimates fully dense

depth maps using a monocular camera stream by minimizing a global energy function with

spatial regulurization.

Direct methods have since been applied to visual odometry (Forster, Pizzoli, and Scara-

muzza, 2014), dense monocular reconstruction (Pizzoli, Forster, and Scaramuzza, 2014), and

the full SLAM problem including novel loop closure methods (Engel, Sturm, and Cremers,

2013; Engel, Schöps, and Cremers, 2014).

1.4 Visual Obstacle Detection

Research to date considering visual obstacle detection using a monocular camera can be

grouped into three primary categories. The first is that of framing the problem as a tracking

task in which image pixels are tracked over time with optical flow. Using various approaches,

this signal can be used to derive and segment out obstacles from the temporal image flow.

The second category is quite similar to the first by tracking sparse feature sets over time to

triangulate a local depth map to perform obstacle detection over. Finally, the task can also

be approached as an image-space segmentation problem.

1.4.1 Obstacle Detection using Optical Flow

1.4.1.1 Optical Flow Methods

The goal of optical flow extraction is to estimate the projection of the 3D scene flow onto a

monocular camera’s imaging surface. This scene flow arises from relative motion between

objects in the scene and the camera. Estimating this two-dimensional (2D) motion field in

the image frame can be an especially difficult task because, from the view of a 2D image, one

can only reason about the apparent motion of brightness patterns in an image. The apparent
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motion of brightness patterns alone does not always reflect the true motion field; for example,

a fixed, rotating object may appear to be translating from the camera frame (e.g., the barber

pole illusion). Similarly, in a uniform, textureless scene, there simply isn’t enough brightness

variance to measure optical flow despite the fact that the scene is under motion.

Many optical flow estimation algorithms rely on the assumption of the brightness constancy

constraint. This assumption is that the illumination of a 3D scene point remains constant

over a short time interval. More formally,

I(x+∆x, y +∆y, t+∆t) ≈ I(x, y, t), (1.13)

where I(x, y, t) is the intensity of the image at pixel location 〈x, y〉 and time t. Expressing

this constraint as the time derivative of a scene point’s intensity being zero, we can use the

chain rule for differentiation to derive

dI

dt
=
∂I

∂x

dx

dt
+
∂I

∂y

dy

dt
+
∂I

∂t
= 0. (1.14)

Further, the terms in this derivation can be easily interpreted: ∂I
∂x

and ∂I
∂y

correspond to the

image’s spatial derivatives, which we’ll denote Ix and Iy, and
∂I
∂t

corresponds to the temporal

image derivative, which we’ll denote It. Also, dx
dt

and dy

dt
are the desired image plane flow

measurements, u and v. Writing this out as

Ixu+ Iyv + It = 0, (1.15)

we see this is an underdetermined linear system, with two unknowns in one equation. Because

of this, the brightness constancy assumption alone only allows us to calculate the “normal

flow” that is normal to the image isophotes (i.e., in direction of the brightness gradient). To

solve this, we must introduce different smoothness constraints in the flow field. As concisely

pointed out by Barron, Fleet, and Beauchemin (1994), nearly all optical flow extraction

methods come down to a 3-step process: (i) prefiltering to enhance signal-to-noise ratio in the

image, (ii) extraction of measurements such as spatio-temporal derivatives or image features,

and (iii) an optimization over these measurements, while assuming some smoothness in the

flow field.

Historically, smoothness constraints come in two varieties: global and local approaches.

One of the seminal pieces in optical flow research is the work of Horn and Schunck (1981),

in which they enforced a global smoothing of the flow field. Using variational calculus, they
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estimated flow with an iterative solution for minimizing a global error function,

E2 =

∫ ∫

(Ixu+ Iyv + It) + α2

((
∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂v

∂x

)2

+

(
∂v

∂y

)2
)

dxdy, (1.16)

where the first term is the standard brightness constancy constraint and the second term

is the smoothness regularization with weighting factor α2. While their solution yields a

desirable, dense flow field, errors are often present because the algorithm smooths sharp

discontinuities in the flow field, which is common in real-world scenarios with varying depths

of field.

As an alternative to global smoothing, Lucas and Kanade (1981) proposed a local smooth-

ing approach that makes the assumption that the flow of a pixel is similar to its neighboring

pixels. This assumption turns optical flow estimation into a weighted least squares problem

at each pixel, pulling evidence from neighboring pixels. Further, to avoid ill-posed least

squares problems, they only estimate optical flow at corners, where Ix and Iy gradients are

strong—resulting in a sparse flow field.

Many of the latest state-of-the-art methods that are used employ a combination of global

and local constraints. For example, work of Bruhn, Weickert, and Schnörr (2005) literally

combines the two methods by replacing the individual brightness constancy term with a tensor

that integrates brightness constancy constraints over a spatial window. Additionally, others

expand on Horn and Schunck’s method by adding an additional discontinuity-preserving

smoothness constraint to the energy minimization (Brox and Malik, 2011; Brox et al., 2004;

Brox, Bregler, and Malik, 2009), this term makes it possible to resolve large displacements in

optical flow. Liu advanced this again by substituting the brightness constancy with a SIFT

descriptor constancy term at each pixel (Liu, 2009).

A growing trend in the literature is to use a randomized approach called PatchMatch,

originally proposed by Barnes et al. (2009, 2010) for image editing applications (e.g., image

retargeting, completion, and reshuffling). The algorithm argues for finding, for each pixel,

it’s nearest neighbor in another image, where “neighbor” is defined in terms of the local

patch around a pixel (hence, matching patches between images). However, finding the true

nearest neighbor would be computationally intractable given the state space of an image.

Instead, they demonstrate a randomized approach that iteratively randomizes beliefs and

propagates good matches to neighboring pixels. Recent papers have looked at various ways

of transitioning this ideology into an optical flow or stereo matching framework (Bao, Yang,

and Jin, 2014; Chen et al., 2013). These methods have been shown to be more robust for

large displacement optical flow.
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1.4.1.2 Optical Flow Applications

Most early work using optical flow for obstacle detection had an intended use with a stationary

camera for surveillance tasks. These works typically focus on segmenting the dynamic parts

of a scene aside from an otherwise static image. Haag and Nagel (1999) look at image

edge elements, where the optical flow is more accurate, to guide their model-based tracking.

Work by Rosales and Sclaroff (1999) tracked objects in 3D using an EKF, while also using a

background subtraction mechanism.

Earliest notable work with applications to obstacle detection from a moving vehicle is

that of Krüger, Enkelmann, and Rössle (1995). In this work, optical flow vectors are first

clustered as a noise reduction and speed enhancement step. These clustered flow vectors are

then used in a probabilistic framework to classify into three succinct object categories: (i)

ground plane, (ii) static obstacle, and (iii) dynamic obstacle. Quite similarly, Roberts and

Dellaert (2013) proposed obstacle detection as a classification problem where optical flow

vectors are used to classify superpixels into a set of optical flow templates.

Roberts and Dellaert (2014) then extended this work to infer these optical flow templates

directly using the spatio-temporal gradients, leaving optical flow as a latent variable in the

estimation. This Bayesian framework allows them to avoid the expensive computation of

optical flow vectors.

McManus et al. (2013) applied optical flow for background detection on an autonomous

vehicle, which is the dual of the obstacle detection problem. This system assumes an already

known localization within a dense 3D prior map, which they then compare real-time optical

flow against. They perform this comparison by predicting optical flow and running the same

real-time optical flow algorithm on the synthetically generated views derived from the prior

map.

1.4.2 Obstacle Detection using Depth Reconstruction

Methods looking to reconstruct the local depth of the scene are akin to approaches in the

structure from motion and monocular SLAM community. Work by Yamaguchi, Kato, and

Ninomiya (2006) is able to track sparse features and use consistent features for determining

egomotion, yet label inconsistent features as dynamic obstacles. Wedel et al. (2006) derive

scene depth by considering the scale factor change of image regions that are tracked between

images, noting that this method is more robust to detecting distant obstacles near the focus

of expansion. Finally, Becker et al. (2013) demonstrate dense, accurate depth maps obtained

in a variational estimation over scene structure and egomotion, which also yields depth map

uncertainties.
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1.4.3 Obstacle Detection using Segmentation

Segmentation methods to obstacle detection look at single image decomposition into object

categories using either extracted features or the full image. Perhaps the most successful

general obstacle detection through classification is the work of Felzenszwalb et al. (2010);

this work uses HOG-like image features for part-based object detection in a latent SVM.

Held, Levinson, and Thrun (2012) extended this approach by specializing the detector to car

detection—considering a simplified, structured environment that allows for constraints on

context and scale of the detected objects.

Without relying on features for classification, Ulrich and Nourbakhsh (2000) directly

classify each pixel as obstacle or not by comparing against a learned appearance model

of ground images—adaptively learning this appearance model as the robot traverses the

environment. Further, road scene segmentation has been a heavily researched area that

typically requires a learned appearance model of various class labels, such as roadways,

obstacles, and vegetation (Alvarez et al., 2012; Brostow et al., 2008; Irie and Tomono, 2013;

Tighe and Lazebnik, 2010). Many of these works leverage a 2D Markov random field (MRF)

over the image plane to robustly fuse different extracted features and cues, which can then

be optimized over using graph cut (Boykov, Veksler, and Zabih, 2001)

More recently, the use of 1D MRFs have been proposed in which the variables form a

chain across the image, left-to-right, and model a partitioning between the top and bottom

halves of an image column. The notion is that obstacles in the image frame are resting on

the roadway, thus, our imager observes two disjoint sets per column: the road and obstacles

on the road. Viewing the problem in this way enforces a strict regularization on the problem

of obstacle detection from cameras. This idea was originally conceived by Badino, Franke,

and Pfeiffer (2009) in their “Stixel World” and was used for obstacle detection with stereo

cameras. The task was also considered with monocular cameras in which the appearance of

the partition is discerned from cues that are hand-tuned (Yao et al., 2015) or learned using a

convolutional neural network (CNN) (Levi, Garnett, and Fetaya, 2015).

This approach has also been proposed in a multi-level framework so that obstacles can be

split to a higher fidelity than strictly ground versus obstacle, instead looking at many layers

of obstacles that can exist in an image column. The original stixel-world was augmented

to include this by Pfeiffer and Franke (2011). Similar multi-layer dynamic programming

solutions have been considered in generic image segmentation (Felzenszwalb and Veksler,

2010) as well as for multi-class image labeling (Liu et al., 2015).
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1.5 Next Generation Vehicle (NGV) Project

Since 2012, the University of Michigan and Ford Motor Company have been developing a

fully autonomous vehicle as part of the Next Generation Vehicle (NGV) project; sample

platforms developed through this project are shown in Fig. 1.3. The end goal of the project

is to develop a system that enables full platform autonomy. Work with this project allows us

direct access to platforms and these vehicles are all equipped with the following sensors:

• Four Velodyne HDL-32E 3D LIDAR scanners

• Applanix POS-LV 420 inertial navigation system (INS) with external DMI

• Point Grey monocular camera

• Delphi radar

The arrangement of our four LIDAR scanners is especially unique in that we opted for

a distributed network of smaller scanners, as opposed to the larger and more expensive

Velodyne HDL-64E. While this requires us to carefully calibrate each sensor with respect to

each other—including extrinsic and remittance calibration—it allows for more unique sensing

patterns and is a step toward our eventual target of considering a network of even smaller

and cheaper 3D LIDAR scanners than the Velodyne HDL-32Es that can simply augment the

needs of the vision system. This configuration also allows our platform to be robust to sensor

outages; while we cannot operate autonomously without full sensor input, an outage from

one of our sensors allows us to more safely execute emergency procedures with the remaining

available sensors.

1.6 Thesis Outline

The current state-of-the-art of localization within prior maps for autonomous cars has relied

heavily on registration with a 3D LIDAR scanner against a ground reflectivity map. This

thesis is interested in solving many issues that can improve on this approach with the goal

of greater robustness, toward an always available localization solution. We further have a

thrust in limiting the use of intermediate feature layers in our approach, where we have a

preference of using data in its rawest form as often as possible for localization, thus reducing

the failure points of our system. We address the following core problems:

1. Localization using ground-plane reflectivities alone can lead to issues and localization

divergence under poor weather, degraded ground appearance, and in areas that do not

provide enough visual variation for accurate localization.
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(a) TORC ByWire XGV (b) Ford Fusion Hybrid Autonomous Research Vehicle

Figure 1.3: Two of the several autonomous vehicles available as part of the Next Generation
Vehicle project. Our highly configurable TORC ByWire XGV that is outfitted with an
adjustable roof rack helpful for prototyping various sensor configurations is shown in (a),
while (b) shows one of our Ford Fusion Hybrids. These platforms are equipped with four
Velodyne HDL-32E 3D LIDAR scanners, an Applanix POS-LV 420 INS, a monocular camera,
and automotive radars.

2. Significant cost of LIDAR sensors limit the ability to add additional sensors as a measure

of redundancy—while cameras provide similar data content for localization at a fraction

of the cost. Meanwhile, the current approaches to visual localization often consider

feature-based methods that rely on hand-tuned features that can be prone to failure.

Toward this objective, we have produced the following contributions1:

1. Collected an extensive dataset of over 500 km of road data spanning several months;

these datasets traverse construction zones including areas that are fully repaved and

a dataset collected under heavy snowfall. Further, we generated ground-truth pose

estimates for all trajectories so that we can benchmark the quality of our proposed

work.

2. Developed a Gaussian mixture map representation that allows us to condense the full

3D and reflectivity information of the world into a compact, parametric representation.

This allows us to jointly reason over structure and appearance of our environment in

an efficient multiresolution, branch-and-bound search. Our proposed method is robust

to areas where appearance has been altered by heavy snowfall or road construction,

and in areas that are visually feature poor.

3. Developed a visual localization framework that allows for localization within LIDAR-

derived maps, which allows for accurate, redundant localization using inexpensive sensors.

1Portions of this work appear in Wolcott and Eustice (2014, 2015, 2016)
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Our approach uses whole-image matching against a projected view of the LIDAR maps,

evaluating candidate registrations using normalized mutual information (NMI).

4. Developed a visual obstacle detection pipeline that leverages these detailed prior maps

for improved obstacle detection. Further, this understanding of obstacles in the visual

field of view allows us to account for them during localization for added robustness.

1.6.1 Document Roadmap

The contributions are detailed in the following chapters:

Chapter 2 We show that the full 3D state of the world can be captured into a compact

Gaussian mixture map, which we can register an online point cloud into using an efficient

multiresolution, branch-and-bound search. This efficient approach allows registration

rates that match the high framerate of our LIDAR sensors. We further show our

method jointly reasons over structure and appearance of the environment, which allows

our method to be robust to areas that are visually feature poor or have undergone

severe degradation relative to the original mapping. Thorough evaluation over more

than 500 km of on-road data is performed that culminates in what we believe to be the

state-of-the art for robust, LIDAR-based localization.

Chapter 3 We propose a method for visually localizing into prior maps built using a

survey vehicle equippped with LIDAR scanners. In this section, we efficiently generate

synthetic views of this prior map and use NMI to directly evaluate raw pixel data for

registration of our camera’s location within this prior map. We demonstrate our method

on experimental datasets that show that the use of a camera alone for localization can

achieve similar orders of magnitude error rates as its LIDAR counterparts with a sensor

that is several orders of magnitude cheaper.

Chapter 4 We introduce a visual obstacle detection framework that allows for improved

robustness to visual occlusions in our proposed visual localization method. Further,

we demonstrate that our method, which relies on a detailed prior map, can rival

state-of-the-art methods for visual obstacle segmentation.

Chapter 5 We conclude by highlighting the key contributions of this thesis and present

areas for future work.

Appendix A We detail the odometry model used throughout our thesis on our platforms,

including our proposed learned uncertainty model.
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Appendix B We summarize our offline SLAM framework that is used to construct maps for

localization and provide a mechanism for generating ground-truth for our experimental

analysis.
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CHAPTER 2

Fast LIDAR Localization using

Multiresolution Gaussian Mixture Maps

2.1 Introduction

Over the past several years, fully autonomous, self-driving cars have become feasible with

progress in the simultaneous localization and mapping (SLAM) research community and

the advent of consumer-grade three-dimensional (3D) light detection and ranging (LIDAR)

scanners. Systems such as the Google driverless car use these LIDAR scanners combined

with high accuracy GPS/INS systems to enable cars to drive hundreds of thousands of miles

without user control (Thrun, 2010). As manufacturers continue to reduce the price and

increase the aesthetic appeal of 3D LIDAR scanners, their use on production automated

vehicles will become a reality.

In order to navigate autonomously, the prevalent approach to self-driving cars requires

precise localization within an a priori known map. Rather than using the vehicle’s sensors

to explicitly extract lane markings, traffic signs, etc., metadata is embedded into a prior

map, which reduces the complexity of perception to a localization problem. State-of-the-art

methods (Levinson and Thrun, 2010; Levinson, Montemerlo, and Thrun, 2007) use reflectivity

measurements from 3D LIDAR scanners to create an orthographic map of ground-plane

reflectivities. Online localization is then performed with the current 3D LIDAR reflectivity

scans and an inertial measurement unit (IMU).

Reflectivity-based methods alone can fail when the road appearance is degraded over time

or occluded by harsh weather. In this work, we seek a fast, optimal scan matcher that allows

us to quickly localize a vehicle within a prior map by exploiting the 3D structure of the scene

in addition to ground-plane reflectivities.

We propose the use of a pair of Gaussian mixture maps—a two-dimensional (2D) grid

structure where each grid cell contains a Gaussian mixture model. One such map charac-

terizes the distribution over z-height (i.e., vertical structure) and another for capturing the
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Figure 2.1: Overview of our proposed LIDAR localization scheme. We propose the use of
Gaussian mixture maps—a 2D grid over xy where each cell in the grid holds a one-dimensional
Gaussian mixture model that accurately models the distribution of points contained in this
infinite-height cell. We consider two representations that independently model z-height and
reflectivity of points, then perform registration in these maps by formulating a branch-and-
bound search over multiresolution, rasterized versions of the Gaussian mixture maps where
coarser resolutions provide an upper-bound over the finer resolutions. This methodology finds
the guaranteed optimal registration over a user-specified search space. The figure on the left
depicts a z-height Gaussian mixture map, where the grid is colored by the difference between
the two Gaussian modes in the cell, blue indicates 2 overlapping mixture components around
the ground-plane and purple indicates two distinct modes captured including ground-plane
and superstructure; the figure on the right shows the multiresolution look-up tables that our
method uses.

distribution over reflectivity (i.e., appearance). Gaussian mixture maps allow us to fully

extract all point cloud data while mapping and compress the distributions into a compact,

parametric representation.

When used for localization, we can again use all online point cloud data to register against

these maps, thus improving robustness of our method by avoiding the need to extract higher

level features to perform registration. While this registration may appear expensive, we

present a novel upper-bound through rasterizations of the sum of Gaussian mixtures that

enables us to formulate the scan matching problem as a branch-and-bound search. See

Fig. 2.1 for a sample of these maps.

In this chapter, we present Gaussian mixture map localization as we initially published in

(Wolcott and Eustice, 2015) as well as several extensions. This work represents the following

contributions:
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• Data reduction of large point clouds to a compact mixture of Gaussians, capturing

both structure and appearance of the point cloud.

• An online rasterization of these parametric maps that enables a fast branch-and-bound

registration formulation for real-time, guaranteed-optimal registration.

• A robust formulation that jointly considers structure and point appearance using a

robust cost function for removing outliers.

• Implementation of our algorithms on a graphics processing unit (GPU) that yields 40×

speedup over the central processing unit (CPU), which allows us to localize using all

point cloud points without spatial downsampling.

• Extensive evaluation over several hundred kilometers of road data, in which we demon-

strate successful localization through diverse environments including heavy snowfall, con-

struction, and asphalt repaving—all demonstrating robustness to appearance changes.

2.2 Related Work

Automated vehicles require robust localization algorithms with low error and failure rates.

One of the most pervasive strategies relies on observation of ground plane reflectivities, a

signal that captures lane markings, pavement variation, tar strips, etc. Levinson, Montemerlo,

and Thrun (2007) initially proposed using a 3D LIDAR scanner to observe the ground-plane

reflectivities, with which they were able to build orthographic maps of ground reflectivities

and perform localization using the current 3D LIDAR scans and an IMU. Baldwin and

Newman (2012) employed a similar approach by using a 2D LIDAR scanner to build 3D

swathes as the vehicle traversed the environment.

Despite attempts by Levinson and Thrun (2010) to model slight changes in appearance of

these ground plane maps by considering the variance of the prior map (in addition to previous

methods that only captured the mean), appearance based methods can fail when harsh

weather is present in the environment—for example, rain puddles and snowdrifts can build

up and occlude the view of the informative ground signal, see Fig. 2.2. Additionally, long

two-lane roads with a double lane-marker between them can allow longitudinal uncertainty

to grow unbounded due to lack of texture perpendicular to the road. Thus, to increase

robustness to these types of scenarios, we are interested in augmenting these appearance

methods by exploiting the 3D structure of the scene that is observed with a LIDAR scanner

in a fast and efficient manner.
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Specifically, we are interested in registering a locally observed point cloud to some prior

3D representation of our environment. Many similar robotic applications use iterative closest

point (ICP) (Besl and McKay, 1992), generalized iterative closest point (GICP) (Segal,

Haehnel, and Thrun, 2009), normal distributions transform (NDT) (Magnusson, 2009), or

other similar variants to register an observed point cloud to another point cloud or distribution.

Registration using these methods typically requires defining a cost function between two

scans and evaluating gradients (either analytical or numerical) to iteratively minimize the

registration cost. Due to the nature of gradient descent, these methods are highly dependent

on initial position and are subject to local minimums.

To overcome local minima and initialize searches near the global optimum, several works

have been proposed that extract distinctive features and perform an alignment over these first.

For example, Rusu (2009) and Aghamohammadi et al. (2007) presented different features

that can be extracted and matched from a raw point cloud. Pandey et al. (2011) bootstrap

their registration search with visual feature correspondences (e.g., SIFT). However, these

feature-based approaches rely on extracting robust features that are persistent from various

viewpoints.

As an alternative to searching for a single best registration for each scan, Chong et al.

(2013), Kümmerle et al. (2008), and Maier, Hornung, and Bennewitz (2012) all demonstrated

localization implementations built upon a Monte Carlo framework. Their approach allows

particles to be sampled throughout the environment and evaluated relative to a prior map.

This filtering methodology should be more robust to local minima because the particles should

ideally come to a consensus through additional measurements—though this is dependent on

random sampling and can make no time-based optimality guarantees.

Finally, multiresolution variations on the above algorithms have been proposed that allow

expanded search spaces to be explored in a coarse-to-fine manner in hopes of avoiding local

minima. This has been applied to ICP (Granger and Pennec, 2002), NDT (Magnusson, 2009;

Ripperda and Brenner, 2005; Ulaş and Temelta, 2013), and occupied voxel lists (Ryde and

Hu, 2010). These searches use heuristics to greedily guide the coarse-to-fine steps that yield

good results in practice, but still cannot guarantee global optimality.

We employ techniques presented by Olson (2009, 2015) to formulate the multiresolution

search as a branch-and-bound problem that can guarantee global optimality over our search

space. In this work, we extend Olson (2009) to handle full-3D point clouds by creating

efficient Gaussian mixture maps for fast and accurate inference. Similar to Maddern, Pascoe,

and Newman (2015), we formulate a joint cost function that allows LIDAR localization using

z-height and reflectivity maps, though our approach captures the full distribution rather than

just a mean and a fixed variance.
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(a) Good Weather (b) Light Snow on Roads

(c) Poor Texture in Road

Figure 2.2: Common snapshots of orthographic LIDAR reflectivity maps. Notice the severe
degradation of quality in the snow covered roads and the hallucination of lane markings
caused by tire tracks through snow. Also, poor texture is a common occurrence on two-lane
roads, which often result in laterally constrained cost functions.
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2.3 Gaussian Mixture Maps

The key challenge to fast localization is a prior representation of the world that facilitates

efficient inference. We propose using Gaussian mixture maps that discretize the world into

a 2D grid over the xy plane, where each cell in the grid contains a Gaussian mixture that

characterizes the 3D points contained within this infinite column. To capture both structure

and appearance, we construct a pair of independent Gaussian mixture maps that capture the

z-height and reflectivity distribution of each cell, respectively.

The Gaussian mixture map over z-height offers a compact representation that is quite

similar to a 2.5D map, with the flexibility of being able to simultaneously and automatically

capture the multiple modes prevalent in the world—including tight distributions around the

ground-plane and wide distributions over superstructure. This representation is quite similar

to NDT maps—Gaussian mixture maps exist in the space between the 2D-NDT (Biber, 2003)

and the 3D-NDT (Magnusson, 2009). Like these approaches, Gaussian mixture maps can

be viewed as a Gaussian mixture over the environment, though our maps are a collection of

discontinuous one-dimensional Gaussians rather than a continuous multivariate Gaussian.

This means that, when registering a point, likelihood evaluation is a function of z conditioned

on the corresponding xy cell the point falls in.

Moreover, the z-height Gaussian mixture map is also similar to multi-level surface (MLS)

maps from Triebel, Pfaff, and Burgard (2006), which cluster the point cloud into horizontal

and vertical structure components using distance-based heuristics. Rather than reducing our

point cloud into similar discrete intervals to characterize the z-height distribution, we instead

run expectation-maximization (EM) to fit a Gaussian mixture model for each grid cell to

capture the true probabilistic distribution of our observed point cloud.

The reflectivity Gaussian mixture map is a generalized version of the probabilistic reflec-

tivity maps presented by Levinson and Thrun (2010). Their approach fits a single Gaussian

per cell, while Gaussian mixture maps can fit more than one mode to capture above-ground

appearance features (e.g., signs, building facades, foliage) as well as accurately capture the

true distributions at the edge of lane markers.

The reminder of this section details construction of these maps and how they are used in

a joint framework for robustly registering a vehicle equipped with LIDAR sensors.

2.3.1 Map Construction

The first portion of our localization framework is the offline mapping stage, which generates

the map to be used for online localization. Our goal here is to generate a map that is

metrically accurate to the environment. To do this, we use the state-of-the-art in nonlinear
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least-squares, pose-graph SLAM and measurements from a 3D LIDAR scanner to map the

3D structure in a global frame.

As detailed in Appendix B, our offline SLAM pipeline provides a ground-truth set of

poses, X = {xi}
M
i=0 optimized into a locally consistent frame. Each ground-truth pose has a

corresponding point cloud, Pi = {pj}
n
j=1, where pj = [xj, yj, zj, rj]

⊤ is the metric position of

a point in space and its corresponding reflectivity as measured by our laser scanner. Each

point is motion compensated according to our odometry to account for motion during point

cloud acquisition.

We then transform each of these point clouds into the SLAM optimized frame, accumu-

lating into a single, global point cloud, P = {xi ⊕ Pi}
M
i=0, where ⊕ denotes the head-to-tail

composition operation (Smith, Self, and Cheeseman, 1990) transforming each body-frame

point cloud into the SLAM frame. Accumulating every point directly would be inefficient in

memory and computation, so we instead use a sparse histogram implemented with a hash

table. Thus, we incrementally build two separate sparse histograms Hz(x, y, z) and Hr(x, y, r)

whose hash key is a bitwise concatenation of cell locations,

keym(x, y,m) = ⌊x/qxy⌋⌊y/qxy⌋⌊m/qm⌋ (2.1)

where qxy is the corresponding Gaussian mixture map grid resolution that will be analyzed in

Section 2.6.2, m ∈ {z, r}, and qm is the resolution set to the desired fidelity of z and r. The

corresponding hash value is a histogram count that is gradually incremented as points are

added to the sparse histogram. In order to capture the variance of our LIDAR scanner and

reduce discretization errors, we blur each point by incrementing neighboring histogram cells

according to a Gaussian kernel with standard deviation of 5 cm. This helps us later account

for measurement uncertainty in our likelihood evaluation.

Next, we perform weighted EM for each “column” in Hz and Hr to construct Gaussian

mixture maps for z-height, Gz ← Hz, and reflectivity, Gr ← Hr. These two reductions are

independent and can again be generalized as Gm ← Hm for clarity.

For a specific cell (x̂, ŷ), we extract the corresponding histogram “column” of data,

Em(x̂, ŷ) =
{

e
(x̂,ŷ)
i

}f

i=1
= Hm(x = x̂, y = ŷ, :), (2.2)

where e
(x̂,ŷ)
i = [ci,mi]

⊤ is the ith histogram entry with count ci for the cell centered at

(x̂, ŷ, mi); f is the number of cells observed in this histogram column.

We are then interested in condensing this column of data into a Gaussian mixture,

Gm(x = x̂, y = ŷ) =
{

g
(x̂,ŷ)
j

}g

j=1
, where g

(x̂,ŷ)
j = [wj, µj, σj]

⊤ is the jth component of g
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Gaussians, parameterized by weight, mean, and standard deviation, respectively. This is

achieved using the EM algorithm to iteratively estimate likelihood of Gaussian components

given the data (Expectation) and re-estimate new components that maximize this expected

likelihood (Maximization). Histogram counts, ci, are used to weight the expected likelihood

derived in the expectation step.

Contrary to our previous work that iterated through multiple numbers of Gaussians, g,

choosing the number of parameters that best fit the data while penalizing proportional to

number of mixture components to avoid overfitting (Wolcott and Eustice, 2015), we found

that this approach does not scale well with creating large maps and overcomplicates the online

usage of the maps. We instead suggest a fixed number of Gaussians so that EM only needs

to be run once per map cell. In the worst case, this results in redundant Gaussians summing

to the same resulting likelihood distribution. We provide discussion and recommendations in

Section 2.6.2.1 for how many Gaussians to choose and a visual depiction of what each map is

capturing can be seen in Fig. 2.12, Fig. 2.13, and Fig. 2.14.

In this work, we present two methods for deriving the Gaussian mixture map over

reflectivity. First, we consider the reflectivity of the entire point cloud resulting in Gr ← Hr.

Alternatively, we can use the 3D position of each point in space to extract the ground-plane

only using a region growing method emanating from the known ground height around the

vehicle; this results in a Gaussian mixture over ground surface reflectivities Gr,grd ← Hr,grd.

This is a general representation that is identical to the probabilistic maps presented by

Levinson and Thrun (2010) when the number of Gaussian components is g = 1.

2.3.2 Registration Formulation

Given a point cloud, P, we seek to find the optimal transformation that maximizes the

likelihood of being drawn from the underlying Gaussian mixture maps, G = {Gz,Gr}. This is

directly formulated as the maximum likelihood estimate (MLE) to find the optimal alignment

T*,

T ∗ = argmax
T

L(P|T,G), (2.3)

where T = [x, y, z, r, p, h]⊤ is a 6-DOF transformation that transforms points of P into G.

The point cloud is made up of a set of n points, P = {pi}
n
i=1, where pi = [xi, yi, zi, ri]

⊤ is

the metric position and reflectivity of each point. We assume independence between points
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to arrive at

T ∗ = argmax
T

∑

i

L(pi|T,G). (2.4)

We further assume independence between z-height of a point and its reflectivity, and use the

chain rule over xi and yi,

L(pi|T,G) = L(zi|T,Gz, xi, yi)L(ri|T,Gr, xi, yi)L(xi, yi). (2.5)

We further marginalize out xi and yi, realizing that this distribution is fully captured by the

blurring in our maps—thus, the corresponding distribution L(xi, yi) is already accounted for

in the likelihood measure. This results in the joint likelihood over structure and appearance

as

L(pi|T,G) = L(zi|T,Gz, xi, yi)L(ri|T,Gr, xi, yi). (2.6)

These likelihoods are computed by first transforming the point [xi, yi, zi]
⊤ by T , resulting

in [x′i, y
′
i, z

′
i]
⊤ = T ⊕ [xi, yi, zi]

⊤. This allows us to compute each likelihood by indexing into

the corresponding Gaussian mixture maps and summing over the mixture components,

L(zi|T,Gz, xi, yi) = L(z
′
i|Gz(x

′
i, y

′
i))

=
∑

j

wij
√

2πσij2
exp

(

−
(z′i − µij)

2

2σij
2

)

,
(2.7)

and
L(ri|T,Gr, xi, yi) = L(ri|Gr(x

′
i, y

′
i))

=
∑

j

wij
√
2πσij2

exp

(

−
(ri − µij)

2

2σij
2

)

,
(2.8)

where wij , µij , and σij are the weight, mean, and standard deviation, respectively, of the jth

component of Gz(x
′
i, y

′
i) and Gr(x

′
i, y

′
i).

However, we notice that these points may be drawn from the underlying Gaussian mixture

maps or are obstacles drawn from a separate distribution. To limit the effect of outliers

in our registration formulation, we modify (2.7) and (2.8) by mixing them with a uniform

distribution. Specifically, the robust likelihoods take the form

L′(zi|T,Gz, xi, yi) = αL(zi|T,Gz, xi, yi) + (1− α)U(zi), (2.9)
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and

L′(ri|T,Gr, xi, yi) = βL(ri|T,Gr, xi, yi) + (1− β)U(ri), (2.10)

where α and β are mixing parameters that control the region of influence of the underlying

Gaussian mixture—having the effect of truncating the Gaussian distribution outside this

region of influence. Further, the range of the uniform distributions are inconsequential,

though are set to the range of the data. The resulting maximization including robust cost

functions then looks like

T ∗ = argmax
T

∑

i

L′(zi|T,Gz, xi, yi)L
′(ri|T,Gr, xi, yi). (2.11)

The addition of the robust cost function is quite important for points in the roadway where

Gaussian mixtures of the ground plane z-height typically have an extremely small variance.

Without the robust formulation, these points would dominate the cost function and force the

registration to overfit to outliers (e.g., obstacles). Moreover, we compute the log-likelihood

for numerical stability, which allows us to compute a running sum independently as a parallel

reduction.

Further, if the reflectivity Gaussian mixture map is modeled using the ground plane only

(Gr,grd is used), then we only evaluate the reflectivity likelihood using ground points from P .

Online we use the same region growing method to extract the local ground plane; points not

belonging to the ground plane will have a fixed likelihood that has no impact on the cost

function. Note, however, that the z likelihood is still computed for all points in P .

Considering now the optimization to find T ∗, we make the observation that a typical

wheeled-robotic platform is well constrained in roll, pitch, and height because (i) most IMUs

constrain roll and pitch to within a few degrees due to observation of the gravitational force

(note that wheeled platforms only traverse minor roll/pitch) and (ii) any wheeled vehicle must

be resting on the ground surface, which constrains height with a prior map. Thus, (2.3) can

be maximized by exhaustively searching over a range of x, y, and heading transformations.

As in Olson (2009), we can efficiently compute these by applying the heading rotation to all

points first, then evaluate at xy translations.

With our solution within the vicinity of the optimum, we then perform a simple, constrained

6-DOF hill-climbing to lock into the global optimum over our search space, T ∗. This allows

for the small, but necessary refinements of height, roll, and pitch. Because our registration

problem is parameterized by the search boundaries, we are able to use pose priors to improve

run-time performance. A detailed overview of registration into our Gaussian mixture map

can be found in Algorithm 1 and Algorithm 2.
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Algorithm 1 Full Registration
Input: GMM G = {Gz,Gr}, Point Cloud P , guess T0 = (x0, y0, z0, r0, p0, h0), search space X, Y , H
Output: Optimal registration, T ∗ = (x∗, y∗, z∗, r∗, p∗, h∗)
1: (x̂, ŷ, z0, r0, p0, ĥ) = SEARCH(x0, y0, z0, r0, p0, h0)
2: (x∗, y∗, z∗, r∗, p∗, h∗) = HILL-CLIMB (x̂, ŷ, z0, r0, p0, ĥ)

Algorithm 2 Exhaustive Search
Input: GMM G = {Gz,Gr}, Point Cloud P , guess T0 = (x0, y0, z0, r0, p0, h0), search space X, Y , H
Output: Best 2D registration = (x̂, ŷ, ĥ)
1: best = −∞
2: for hi in h0 +H do
3: apply rotation hi to P
4: for xi, yi in {x0, y0}+XY do
5: likelihood = L(P|xi, yi,G) ⊲ (2.11)
6: if likelihood > best then
7: best = likelihood
8: (x̂, ŷ, ĥ) = (xi, yi, hi)
9: end if
10: end for
11: end for

2.4 Multiresolution Branch-and-Bound

Typically, exhaustively searching for the maximum likelihood is not a realistic, tractable

solution. In this section, we replace the expensive, exhaustive search with an efficient

multiresolution branch-and-bound search.

2.4.1 Multiresolution Formulation

The idea behind our multiresolution search is to use a bounding function that can provide an

upper-bound over a collection of cells in our reference map. This means that a majority of

the search can be executed at a coarser resolution that upper-bounds the likelihood at finer

scales. Using tight bounds can transform the exhaustive search presented in the previous

section into a tractable search that makes no greedy assumptions. The branch-and-bound

strategy achieves exactly the same result as the exhaustive search, only arrives at it in a

more efficient manner.

For evaluating a single transformation (i.e., (Tx, Ty)), one must evaluate the log-likelihood

of each point in a point cloud, then sum all of these for a total log-likelihood. Therefore in

the exhaustive case, each point is evaluated against a single Gaussian mixture. In order to

search a range of transformations, such as (Tx, Ty) to (Tx +Nqxy, Ty +Nqxy), each point is

evaluated against a total of (N + 1)2 Gaussian mixtures. However, each cell in our map is
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Figure 2.3: A one-dimensional example of our multiresolution search formulation, where
we demonstrate how a single point cloud point would traverse through the multiresolution
tree. Given some knowledge that the best transformation aligns the point somewhere within
a-h, we begin the search at the coarsest resolution in cell a. Using branch-and-bound and
computing upper-bounds over the Base GMM distribution in the multiresolution layers, we
can efficiently search large spaces by avoiding low likelihood registrations (as depicted by
dashed lines and open circles). In this figure, the notation ga-h refers to the fact that inference
in that cell is an upper-bound over the distributions ga – gh, where gx is the Gaussian mixture
in cell x of the Base GMM. Note that contrary to several other multiresolution approaches,
coarser resolutions in our framework do not imply a coarser resolution map. We maintain
uniform resolution by using many overlapping coarse blocks—a technique that facilitates
tighter upper-bounds.

quite spatially similar, meaning that inference into (Tx, Ty) yields a similar log-likelihood as

(Tx + qxy, Ty), so the exhaustive search can often spend unnecessary time in low-likelihood

regions that can ideally be ruled out quicker.

We formulate a branch-and-bound search that exhaustively searches over the coarsest

resolution providing upper-bounds over a range of transformations. These coarse search

results are then added to a priority queue, ranked by upper-bound likelihoods. We then

iterate through this priority queue, branch to evaluate the next finer resolution, and add

back to the priority queue. The search is then complete once the finest resolution is returned

from the priority queue.

We propose a slightly different multiresolution map structure than is traditionally con-

sidered. In many domains, multiresolution searches imply building coarser versions of your

target data and making evaluations on that (e.g., the image pyramid). However, our approach

creates many overlapping coarse blocks (as depicted in Fig. 2.3) to better compute tight

upper-bounds. This optimization makes the trade off for better bounds as opposed to a

smaller memory footprint.

Because our maps are the same resolution throughout each multiresolution layer, this

results in us taking larger strides through the coarser resolutions, where stride = 2layer · qxy.

Branching factor and number of multiresolution maps is completely user-defined. In our

experiments, we opted for a branching factor of 2; that is, (Tx, Ty) branches into (Tx, Ty),
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Figure 2.4: Demonstration of the rasterization performed on the original Gaussian mixture
map to facilitate exact upper-bounds. We begin with a parametric 2D map that encodes
a Gaussian mixture in each cell, where the grid is colored by the difference between the
two Gaussian modes in the cell, blue indicates 2 modes around the ground-plane and purple
indicates multiple modes captured including ground-plane and superstructure. We then
rasterize each cell (note we display the likelihood, not log-likelihood for clarity); these rasterized
representations can then be used to create rasterized upper-bounds for multiresolution search.
The first step of this evaluates the upper-bound at each discretization by taking the max of
the underlying cell rasterizations. Note that as you continue to move to coarser resolutions
the distribution generalizes quite well—data for this figure was generated from looking at
the edge of a tree, where the multiresolution map can capture the two common modes of
tree limbs and ground-plane. In this figure, the notation ga-d means the rasterization is an
upper-bound over the ga – gd rasterizations.

(Tx + stride, Ty), (Tx, Ty + stride), and (Tx + stride, Ty + stride) of the finer resolution map.

Refer to Algorithm 3 and Fig. 2.3 for a more detailed overview.

2.4.2 Rasterized Gaussian Mixture Maps

Finding tight, parametric bounds for a collection of Gaussians is a rather difficult task, so we

instead opt for a non-parametric solution in the form of rasterized lookup tables. We take

our parametric Gaussian mixture map and compute a rasterized version by evaluating the

log-likelihood at a fixed discretization, generating a rasterization for each grid cell. Upper

bounds can then be exactly computed between neighboring grid cells by taking the max across

each discretization in the rasterized lookup table. While localizing, likelihoods at the finest

resolution are computed using the original Gaussian mixture maps and the rasterized maps

only facilitate fast traversal through the search tree. See Fig. 2.4 for a visual representation

of these maps.

For a pure localization task such as ours, lookup tables can be pre-computed offline.

However, we decided to store only the parametrized Gaussian mixture maps on disk to

avoid storing extremely large maps. We are then able to efficiently compute rasterized
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Algorithm 3 Multiresolution Search
Input: Base and Multires GMM G = {Gz,Gr}, Point Cloud P, guess (x0, y0, z0, r0, p0, h0), search

space X, Y , H
Output: Best registration = (x̂, ŷ, ĥ)
1: // init. priority queue with search over coarse resolution
2: Initialize PriorityQueue ⊲ priority = log-likelihood
3: coarsest = N
4: Prot = empty ⊲ rotated point clouds
5: for hi in h0 +H do
6: // store rotated clouds — do transformations once
7: T = f(0, 0, z0, r0, p0, hi) ⊲ [x, y] applied later
8: Prot [hi] = T ⊕ P
9: for xi in x0 +X/2coarsest do
10: for yi in y0 + Y/2coarsest do
11: cur.layer = coarsest
12: cur. [x, y, h] = [xi, yi, hi]
13: cur.L = L(Prot [hi] |xi, yi,G [coarsest]) ⊲ (2.11)
14: PriorityQueue.add(cur)
15: end for
16: end for
17: end for
18: // iterate priority queue, branching into finer resolutions
19: while prev = PriorityQueue.pop() do
20: if prev.layer == 0 then
21: // at finest resolution, can’t explore anymore
22: // this is the global optimum
23: (x̂, ŷ, ĥ) = prev. [xi, yi, hi]
24: return(x̂, ŷ, ĥ)
25: end if
26: // branch into next finer resolution
27: for xi in

[
prev.x, prev.x+ 2prev.layer−1

]
do

28: for yi in
[
prev.y, prev.y + 2prev.layer−1

]
do

29: cur.layer = prev.layer − 1
30: cur. [x, y, h] = [xi, yi, prev.h]
31: cur.L = L(Prot [prev.h] |xi, yi,G [cur.layer]) ⊲ (2.11)
32: PriorityQueue.add(cur)
33: end for
34: end for
35: end while
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Base GMM

Multires-5

Multires-4

Multires-3

Multires-2

Multires-1

Multires-6

hi hi+3 hi+6 hi+9 hi+12 hi+15hi-3hi-6hi-9hi-12hi-15

Figure 2.5: Sample multiresolution search space traversal. Top-bottom represents coarse-to-
fine searching, left-right represents different slices through our heading search, and each pixel
depicts an xy translation searched. Log-likehoods are colored increasingly yellow-black, purple
and non-existent cells are areas not needed to be explored by the multiresolution search, and
the optimal is indicated in green. We exhaustively search the coarsest resolution, then use
branch-and-bound to direct our traversal through the tree. For typical scan alignments, we
only have to search approximately 1% of the transformations in the finer resolutions, doing a
majority of the work in the coarser resolutions.

multiresolution maps online from our parameterized Gaussian mixture map as a background

job. This is done incrementally using each successive multiresolution layer to build the next.

Note that our rasterized multiresolution maps are a generic representation that can also

be used with other map types including standard NDT maps, MLS maps, occupancy voxels,

etc. After converting one of these maps to a rasterized multiresolution map, the remainder of

our proposed pipeline can be used for fast registration of a point cloud.

A sample search through our multiresolution search space can be seen in Fig. 2.5. The

shown example explores a 25 m× 25 m area at 16 cm resolution in approximately 2 seconds,

while only needing to evaluate 1% of the transformations necessary in the exhaustive search.

2.5 Localization Filter

Our localization task is framed as an estimation problem over the full 6-degree of freedom

(DOF) dynamics of our vehicle, where our state vector is µk = [xk, yk, zk, φk, θk, ψk]
⊤. We

propose to use an extended Kalman filter (EKF) to estimate our vehicle state from various

measurement sources. An EKF provides a simple way to fuse information from multiple

sensing modalities; though in this section we only consider integrating our vehicle odometry

and multiresolution registrations into our EKF estimation.

We define a discrete time process model and incorporate our registration corrections into

33



our state filter:

Predict µ̄k = f(µk−1,uk)

Σ̄k = FkΣk−1F
⊤
k +Qk

Update Kk = Σ̄kH
⊤
k (HkΣ̄kH

⊤
k + Rk)

−1

µk = µ̄k +Kk

(
zk − hk(µ̄k)

)

Σk = (I−KkHk)Σ̄k(I−KkHk)
⊤ +KkRkK

⊤
k

Here, f( · ) is our nonlinear plant model that integrates odometry measurements from an

Applanix IMU, uk, with uncertainty Qk and linearized Jacobian Fk; refer to Appendix A for

further discussion on this proposed odometry model. Hk is a linear observation model (identity

matrix) and Kk is the corrective Kalman gain induced by our registration measurement with

uncertainty Rk. The measurement zk is exactly the output of our multiresolution registration

detailed in Section 2.4, zk = T ∗. We use fixed measurement uncertainties, Rk, that were

empirically determined (discussed in Section 2.6.4); however, one could fit a conservative

covariance using the explored search space as shown by Olson (2009).

One issue with this formulation is that when measurements arrive there is a non-zero

latency associated with registering the measurements. This presents a problem when we

attempt to add the measurement to our EKF because the measurement would be applied

to the future state of the robot. Thus, as soon as the measurement is received (near zero

latency), we augment our EKF with a delayed-state (Leonard and Rikoski, 2000). In our

discrete model, this leads to an expanded state belief as:

xk =
[
µ

⊤
k ,µ

⊤
k−1

]⊤
.

Thus, we can continue to apply odometry prediction directly to the most recent state, but

apply the registration correction on the associated delayed-state. The correlation inherent

between temporal poses will allow the effect of this measurement to then propagate to the

current state belief. We then marginalize this delayed-state as it is no longer necessary

to maintain in our state vector. This formulation also facilitates the integration of more

measurements from various sources to increase robustness, despite the fact that these sources

can have varying latencies associated with them.

Our filter is initialized in a global frame from a single dual-antenna global positioning

system (GPS) measurement with high uncertainty, which provides a rough initial guess of

global pose with orientation. We adaptively update our multiresolution search bounds to

ensure that we explore a 4σ window around our posterior distribution. This dynamic approach
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(a) TORC ByWire XGV (b) Ford Fusion Hybrid Autonomous Research Vehicle

Figure 2.6: Test platforms used for evaluation of multiresolution Gaussian mixture map
localization: a TORC ByWire XGV and a Ford Fusion Hybrid Autonomous Research Vehicle.
Both platforms are equipped with 4 Velodyne HDL-32E LIDAR scanners and an Applanix
POS-LV 420 INS.

allows us to improve throughput as our posterior confidence increases, while leaving room to

statistically eliminate outlier measurements by evaluating the corresponding measurement

normalized innovation squared (NIS). Note that aside from using GPS for initializing the

filter, our proposed localization method only uses input from inertial sensors, a wheel encoder,

and 3D LIDAR scanners.

2.6 Evaluation

In this section, we present a thorough evaluation of our proposed theory covering a diverse

set of real-world experiments. All algorithms were implemented in C/C++ using CUDA and,

unless otherwise specified, experiments were run on a workstation computer equipped with an

Intel Xeon E5-2670 CPU and an NVIDIA GeForce GTX TITAN X GPU. For parallelization

in CUDA, we parallelized the inner-loop calculation of registration likelihood (implemented

as a parallel sum reduction).

2.6.1 Platforms and Datasets

We evaluate our proposed methods using data collected on our autonomous platforms, a

TORC ByWire XGV (Fig. 2.6(a)) and a Ford Fusion Hybrid Autonomous Research Vehicle

(Fig. 2.6(b)). These automated vehicles are equipped with four Velodyne HDL-32E 3D

LIDAR scanners and an Applanix POS-LV 420 IMU. Given the use of four independent

LIDAR scanners, it is crucial to perform extrinsic calibration between these to establish a
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rigid body transformation between the IMU and each sensor. This is achieved by formulating

a pose-graph as in Appendix B and treating the calibration parameters as unknowns in the

optimization.

Moreover, reflectivity measurements need to be calibrated against a known reference

map such that measurements are consistent: (i) within each LIDAR scanner, (ii) between

LIDAR scanners on the same platform, and (iii) between platforms, as mapping data must

be consistent with data observed online. To achieve this, we use a method similar to that

proposed by Levinson and Thrun (2014), which derives a map from observed reflectivity

to true reflectivity. In their work, each beam rotates about an axis perpendicular to the

ground-plane, which allows for learning a mapping observed reflectivity → real reflectivity

to implicitly account for angle of incidence. However, our rotation axes are not perpen-

dicular to the ground-plane, so we must alter their approach by learning the mapping

{observed reflectivity, rotation angle} → real reflectivity.

Experiments are presented on two primary datasets collected with our platforms:

• PG14 Dataset : Set of 14 logs collected over 3 months with the TORC and Fusion

platforms, each log approximately 38 km in length covering a loop near Ann Arbor,

Michigan, over Plymouth Road, Gotfredson Road, and M-14 highway. This dataset

totals 525.72 km in length, covering common use cases including highway, rural, and

residential areas at various times of day, including rush hour. Furthermore, there were

3 construction zones that evolved over the data collection; 2 of which resulted in full

repavings of more than 0.5 km each. See Fig. 2.7 for a visual depiction of the route and

an overview of each log.

• Downtown Dataset : Set of 5 logs collected with the TORC platform, each spanning a

3 km loop through downtown Ann Arbor, Michigan. This dataset totals 14.92 km of

urban roadways and one of these logs was collected on a snowy day with snow actively

falling and covering the ground, as depicted in Fig. 2.17(a). See Fig. 2.8 for a visual

depiction of the route and an overview of each log.

Collectively, these datasets cover samplings through various environments including highway,

urban, rural, and residential roadways during various conditions including heavy traffic, heavy

snowfall, and construction zones.

In each of these datasets, the first 2 logs are used for map construction to remove stationary

dynamic obstacles (e.g., parked cars). These two mapping logs are stitched together into a

single pose-graph, then all data for map construction is compiled at the sparse histogram level,

as detailed in Section 2.3.1. Each subsequent log was merged into this pose-graph to provide

experimental ground-truth for each—more details can be seen in Appendix B.1. We assume
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Ann Arbor—PG14

ID Date Platform Length

P-M1 May 1, 2015 TORC 38.0 km
P-1 May 8, 2015 TORC 37.9 km
P-3 May 15, 2015 TORC 37.8 km
P-5 May 21, 2015 TORC 37.8 km
P-7 June 5, 2015 TORC 37.9 km
P-9 June 12, 2015 TORC 37.8 km
P-11 July 24, 2015 TORC 37.9 km

ID Date Platform Length

P-M2 May 1, 2015 Fusion 37.9 km
P-2 May 8, 2015 Fusion 33.4 km
P-4 May 15, 2015 Fusion 37.9 km
P-6 May 21, 2015 Fusion 37.9 km
P-8 June 5, 2015 Fusion 37.9 km
P-10 June 12, 2015 Fusion 37.9 km
P-12 July 24, 2015 Fusion 37.9 km

Total: 525.72 km

Figure 2.7: PG14 Dataset : a dataset of 14 manually driven loops near Ann Arbor, Michigan,
covering Plymouth Road, Gotfredson Road, and M-14 highway. This dataset was collected
over a span of 3 months and covers residential roads (blue), rural roads (purple), and a
highway (red). Moreover, we observed 3 construction zones over data acquisition (orange).
The two zones on the right resulted in full repavings that included the addition of left turn
lanes that were not completed until P-11 and P-12. In our evaluation with this dataset, P-M1
and P-M2 were used for map construction.
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Ann Arbor—Downtown

ID Date Platform Length

D-M1 Nov. 19, 2013 TORC 3.0 km
D-M2 Nov. 19, 2013 TORC 3.0 km
D-1 Nov. 20, 2013 TORC 3.0 km
D-2 Nov. 20, 2013 TORC 3.0 km
D-3 Dec. 17, 2013 TORC 3.0 km

Total: 14.92 km

Figure 2.8: Downtown Dataset : a dataset of 5 manually driven loops through downtown Ann
Arbor, Michigan, covering urban driving scenarios. D-3 was collected while heavy snow was
falling and covered significant portions of the roadway. In our evaluation with this dataset,
D-M1 and D-M2 were used for map construction.

the accuracy of this ground-truth is an order of magnitude better than our localization errors

and was manually verified by viewing the consistency of resulting LIDAR data reprojected

into this common map reference frame.

2.6.2 Map Parameter Selection

This section intends to analyze the impacts of varying map parameters, both in terms of

resulting localization errors as well as disk space requirements for storing maps. The primary

user configurable map settings include: (i) grid resolution, (ii) number of Gaussians per

cell, and (iii) reflectivity maps that contain full 3D appearance (Gr) or appearance of the

ground-plane only (Gr,grd). Moreover, these first two settings can be tuned for each map type

(structure versus appearance). All of these variabilities lead to a wide search space of possible

map combinations.

To fully experiment and determine the optimal map parameters, we constructed 360

maps to run evaluation over (180 using the PG14 Dataset and 180 using the Downtown

Dataset). Each of these sets of 180 maps were made by varying 12 grid resolutions (6.4 cm,

8.0 cm, 12.8 cm, 16.0 cm, 25.6 cm, 32.0 cm, 51.2 cm, 64.0 cm, 80.0 cm, 128.0 cm, 160.0 cm,

and 256.0 cm), 5 different number of Gaussians per grid cell (1–5), and were generated for

our 3 map types, (Gz, Gr, and Gr,grd).

In our implementation, we store our maps on disk in 64 m × 64 m tiles. Thus, grid

resolutions considered here were chosen to evenly divide these tiles. Moreover, to efficiently

generate hundreds of maps, we construct our sparse histogram map representations at the
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6.4 cm and 8.0 cm resolutions only, then build the remaining maps using these histograms

(e.g., the 25.6 cm map is constructed by pooling a 4× 4 window of the 6.4 cm histogram).

As a first reference to qualitatively demonstrate what is being captured in our maps, we

looked at 5 versions of Gz, Gr, and Gr,grd, at a resolution of 25.6 cm, in which we varied the

number of Gaussians per cell from 1–5. Snapshots of these maps are visually depicted in

Fig. 2.9, Fig. 2.10, and Fig. 2.11, respectively.

Within the z-height map, Fig. 2.9, we immediately see that increasing the number of

Gaussians leads to overfitting. This is clear in the ground-plane and superstructure where

many components share the same mean. There is a significant qualitative improvement from a

1-Gaussian map to a 2-Gaussian map. In the 1-Gaussian case, we see that there’s a necessary

blurring between ground and superstructure (trees, lightposts, etc.), while the 2-Gaussian

case can easily capture a mode near the ground-plane and a mode covering superstructure.

This trend continues through higher fidelity maps as we see the ground is captured in the

lowest mean component and the increase in number of Gaussians allows for more overfitting

to building facades and other superstructure. Keeping these modes separate and distinct is

important for discarding obstacles that may appear in the void between ground and structure,

thus we expect there to be a noticeable localization improvement between the 1-Gaussian

and higher number maps.

Looking at the reflectivity maps, Fig. 2.10 and Fig. 2.11, we again notice overfitting

beyond 2 Gaussians. Using 2 or more Gaussians is necessary for Gr, as there appears to be

two distinct modes per cell: the appearance of the ground and the appearance of above ground

features. In both maps, multiple Gaussian components allows us to better capture edge

effects (transitions from asphalt to road paint), where ground-plane road paint is typically

much smaller than the 25.6 cm grid resolution. The state-of-the-art method (Levinson and

Thrun, 2010), depicted as the 1-Gaussian ground only map in Fig. 2.11, leads to a more

washed out image as these edges blur between high and low reflectivity—thus capturing a

large Gaussian variance in these cells.

2.6.2.1 Map Parameter Sweep

We performed a series of evaluation over these 360 maps constructed in which we hold the

experimental log fixed while evaluating against each map. Thus, we used P-3 to test against

PG14 Dataset maps and D-2 to evaluate against Downtown Dataset maps. Further, we test

using each map type independently (Gz, Gr, Gr,grd), assuming that the resulting combination

of the structure and appearance maps will yield more robust measurements, without directly

optimizing over the exorbitant number of cross possibilities between all map types.

To benchmark our registration quality we took known ground-truth for our evaluation
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Figure 2.9: Gaussian mixture map components contained within the z-height map, Gz,
capturing ground-plane, buildings, trees, lightposts, and traffic lights. Left-to-right, each
column in this figure represents a different map, ranging from a Gaussian mixture map
containing only 1 component per cell to one containing 5 components per cell. Bottom-to-top,
we display the mean of the ith Gaussian component, ordered by increasing component mean
(z-height); white cells indicate no Gaussian mixture component exists because no data was
available during mapping or the Gaussian mixture resulting weight was less than 0.001.

log and generated a randomized offset every 40 m of road travel. This random offset was

sampled uniformly within 2.5 m×2.5 m of the ground-truth pose. This randomly sampled

point can then be viewed as the initial guess, T0, into our Gaussian mixture map registration

framework. The expectation is that the resulting registration event will converge on the

ground-truth pose.

Results for the parameter sweep over Gz, Gr, and Gr,grd are presented in Fig. 2.12, Fig. 2.13,

and Fig. 2.14, respectively. These figures show the longitudinal and lateral median absolute

deviation with respect to ground-truth, and results are divided between downtown, highway,

and other (encompassing rural and residential roads) portions, along with a summary over

all roadways. Median absolute deviation was chosen over other statistics as it is a robust,

outlier-proof measure of variability.

As expected, we see that error grows as a function of coarser grid resolution across all map

types, and we are constrained far better laterally than we are longitudinally. Furthermore,
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Figure 2.10: Gaussian mixture map components contained within the reflectivity map,
Gr, capturing appearance of ground-plane, foliage, etc. Left-to-right, each column in this
figure represents a different map, ranging from a Gaussian mixture map containing only 1
component per cell to one containing 5 components per cell. Bottom-to-top, we display the
mean of the ith Gaussian component, ordered by increasing component mean (reflectivity).
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Figure 2.11: Gaussian mixture map components contained within the reflectivity map, Gr,grd,
capturing appearance of ground-plane only. See Fig. 2.10 for more description.
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we see that all map types perform markedly better on the downtown portions, as can be

expected given the significant structure and well maintained road paint. Across most of these

plots, we notice that there are significant error spikes at very fine resolutions. This is believed

to be caused by overfitting as there is simply not enough training data to accurately learn

the Gaussian mixture maps.

Looking at the evaluation over Gz, we see a noticeable improvement from 1 to 2+ Gaussians

in both lateral and longitudinal error. As predicted in the previous section, the ability to

rule out obstacles between superstructure and ground-plane plays an important role here.

Considering the evaluation over Gr, it is clear that 2+ Gaussians is necessary as anticipated—

given that 2 modes are needed to capture ground-plane appearance and above-ground

appearance. On the contrary, Gr,grd performs best with a single Gaussian, though only at

fine resolutions. However, as grid cell size is increased, it is necessary to use 2+ Gaussians so

that features are not blurred away.

Throughout all of these sweeps, it is not immediately clear that more than 2 Gaussians is

necessary as there is not a significant performance improvement by doing so.

Map Size: In addition to performance metrics, in many cases map parameter selection

must also consider the required disk space for map storage. In Fig. 2.15, we look at the

corresponding disk space required per km of map data. As expected, finer resolution maps get

exponentially larger relative to coarser grid resolutions. Additionally, ground-only reflectivity

maps are significantly smaller than those constructed using all points—this is because ground-

only maps are restricted to areas within a few meters of the roadway, while full maps can

include points over 50 meters away.

For our maps, all Gaussian mixture components (i.e., weight, mean, variance) are stored

as single-precision floating point values and the maps are compressed using gzip. Therefore,

more intricate compression schemes can be used and map sizes presented here should be

viewed as a worst case scenario.

We envision that our maps can be streamed to an autonomous car, where our 64 m×64 m

tiles can be continuously downloaded over a 4G connection. We assume a network bandwidth

of nominally 2 MBps and a vehicle certainly traveling less than 150 kph. Thus, we have an

available streaming budget of roughly 48.0 MB/km.

Considering this budget, we decided on a 2-Gaussian, 25.6 cm z-height map (Gz), and

a 1-Gaussian, 6.4 cm ground-only reflectivity map (Gr,grd). Note that our reflectivity map

selection is roughly the same as Levinson’s probabilistic appearance maps. The combination

of these two maps found the best balance between performance, while falling under our

required budget at roughly 44.3 MB/km. We found that the superior performance of the
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(a) Gz Sweep Downtown
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(b) Gz Sweep Downtown (zoomed)
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(c) Gz Sweep Highway
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(d) Gz Sweep Highway (zoomed)
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(e) Gz Sweep Other
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(f) Gz Sweep Other (zoomed)
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(g) Gz Sweep All
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(h) Gz Sweep All (zoomed)

Figure 2.12: Summary of parameter sweep over grid resolution and number Gaussians in
z-height Gaussian mixture maps, Gz, and the resulting longitudinal (solid lines) and lateral
(dashed lines) median absolute deviation (MAD)—partitioned into downtown, highway, other
(rural and residential), and a summary over all data.

43



laterallongitudinal

0 50 100 150 200 250

grid resolution (cm)

0 cm

20 cm

40 cm

60 cm

80 cm

100 cm

m
e
d

ia
n

 a
b

s
o
lu

te
 d

e
v
ia

ti
o
n 5 Gaussians/cell

4 Gaussians/cell

3 Gaussians/cell

2 Gaussians/cell

1 Gaussian/cell

(a) Gr Sweep Downtown
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(b) Gr Sweep Downtown (zoomed)
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(c) Gr Sweep Highway
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(d) Gr Sweep Highway (zoomed)
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Figure 2.13: Summary of parameter sweep over grid resolution and number Gaussians in
reflectivity Gaussian mixture maps, Gr, and the resulting longitudinal (solid lines) and lateral
(dashed lines) median absolute deviation (MAD)—partitioned into downtown, highway, other
(rural and residential), and a summary over all data.
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10 20 30 40 50 60

grid resolution (cm)

0 cm

5 cm

10 cm

15 cm

20 cm

m
e
d

ia
n

 a
b

s
o
lu

te
 d

e
v
ia

ti
o
n

(b) Gr,grd Sweep Downtown (zoomed)
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(d) Gr,grd Sweep Highway (zoomed)
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(f) Gr,grd Sweep Other (zoomed)
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Figure 2.14: Summary of parameter sweep over grid resolution and number Gaussians in
ground-plane only, reflectivity Gaussian mixture maps, Gr,grd, and the resulting longitudinal
(solid lines) and lateral (dashed lines) median absolute deviation (MAD)—partitioned into
downtown, highway, other (rural and residential), and a summary over all data.
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Figure 2.15: Map size for Gaussian mixture maps over z-height (Gz), reflectivity (Gr), and
ground-plane reflectivity (Gr,grd). Sizes are listed as a function of Gaussian mixture map grid
resolution and number of Gaussians per cell. All sizes are per kilometer of road travel.

ground-only reflectivity maps on the highway are an added benefit as z-height is least effective

there.

The remainder of this chapter will perform experiments over this map configuration alone.

2.6.3 Registration Experiments

Since our odometry source has significantly low drift-rates, registration deficiencies can be

masked by a well-tuned filtering framework. Thus, this section looks directly at evaluating

the unfiltered registrations that exploit structure and appearance within the vicinity of

ground-truth results.

Identical in setup to our parameter sweep discussed in the previous section, we now look

at a sweep over all logs in our dataset while holding map settings fixed—showing that our

map is robust for localizing over time. Again we randomly sample a point uniformly within

2.5 m× 2.5 m of ground-truth every 40 m, and evaluated the resulting transformation from

our multiresolution registration framework relative to this ground-truth. To fully understand

the contributions of each map type, we perform 3 registrations per ground-truth sample: (i)

using structure alone (Gz), (ii) using appearance alone (Gr,grd), and (iii) using structure and

appearance jointly (Gz, Gr,grd).

Errors are summarized per data log in Fig. 2.16, where we show median absolute deviation

bars for longitudinal and lateral errors, along with first and third quartile error whiskers.

Over most of PG14 Dataset, we see high longitudinal errors when using reflectivity alone

that becomes well constrained with the addition of 3D structure. In most logs, we see that

the joint cost function yields an improvement in our registrations. However, in the case of
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the Downtown Dataset, it is not surprising that the joint cost function is heavily dictated by

z (seeming to ignore the more accurate reflectivity measurements) because the significant

number of point returns off of 3D structure that dominate the cost function.

Results are summarized for all datasets in Table 2.1.

Longitudinal Lateral
Map Median 1st/3rd Qtr. Median 1st/3rd Qtr.

Gz 8.5 cm (3.8 cm, 16.7 cm) 8.0 cm (3.4 cm, 15.9 cm)
Gr,grd 10.9 cm (3.8 cm, 35.0 cm) 4.6 cm (2.0 cm, 8.6 cm)
Gz,Gr,grd 7.7 cm (3.4 cm, 15.2 cm) 5.3 cm (2.4 cm, 9.8 cm)

Table 2.1: Comparison of errors between Gaussian mixture map types, showing the median,
first quartile, and third quartiles of absolute deviation (longitudinally and laterally).

2.6.3.1 Heavy Snowfall Registrations

We more thoroughly looked at z-height registrations alone in the snow-filled Downtown

Dataset, D-3, by randomly sampling within 10 m of the ground-truth pose. We present these

results in two ways. First, we compiled the results into a histogram, as shown in the top

row of Fig. 2.17(b). Here we see that our proposed solution is able to return to within 25 cm

of the ground-truth with minimal outliers. Additionally, we see that because our method

exploits the 3D structure, it is not impacted by harsh weather and significant amounts of

falling snow, as depicted in Fig. 2.17(a).

Second, we display this same registration error as a function of initial offset input to the

scan matcher, as displayed in the bottom row of Fig. 2.17(b). We show that our registration

success is not dictated by distance from the optimum, as long as our search space is able to

enclose the true transformation.

2.6.3.2 Construction Zone Registrations

We further look at registration errors through one of the three construction zones that was

repaved during our dataset collection, see Fig. 2.18. In this figure, we display our single map

containing Gz and Gr,grd built using P-M1 and P-M2 data in Fig. 2.18(a). Figures (b)-(d)

shows registration results evaluated against Gz, Gr,grd, and the joint measurement over both.

Further, each of these figures are drawn over a reference reflectivity map that was built using

data on each day to demonstrate the changes over time—note that the map in (a) was still

used for all experiments.
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Figure 2.16: This figure shows the registration errors from randomly sampled points along
each log using Gz, Gr,grd , and {Gz,Gr,grd}, marked by z, r, and zr, respectively. Bars indicate
the longitudinal (red) and lateral (green) median absolute deviation (MAD) and the error
whiskers mark the first and third quartiles of absolute deviation. In most logs, the joint
likelihood measure over structure and appearance yields improved performance relative to the
likelihood measure over structure or appearance alone. Moreover, the use of structure prevents
large longitudinal errors during the PG14 Dataset and allows for consistent localization during
the snow dataset, D-3. The reflectivity alone does quite well in some circumstances, such as
the Downtown Dataset where road paint is well maintained, though the joint measure still
results in errors less than 10 cm.
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(a) Heavy Snowfall Point Cloud
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(b) Downtown Dataset—D-3

Figure 2.17: In (a), we show a point cloud rendering of typical snowfall (with ground-plane
removed) during the D-3 dataset. Orange and brown points located at the center of the
figure shows the dense snow returns. In (b), we demonstrate registration error using z-height
alone on the snow-filled dataset, D-3. The top row shows a histogram of our L2 error,
demonstrating good registration performance. The bottom row shows a plot of initial offset
versus registration error, where we show that our scan matching errors are independent of
initial guess.
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Even before construction began in Fig. 2.18(b), reflectivity poorly constrains longitudinally

due to limited features—the method relies on cutouts into driveways and roads for success.

Over time, the ability to localize using reflectivity alone becomes impossible because the

appearance is fundamentally different; however, localization using Gz remains effective and

the joint measurement is not distracted by erroneous reflectivity measurements.

2.6.4 Filtered Experiments

We integrated our registration algorithm into the EKF localization framework described in

Section 2.5. The only measurements used were those from a GPS unit for initialization, our

IMU for vehicle odometry, and our multiresolution scan matches considering structure and

appearance initialized around our 4σ posterior belief. Standard deviation for these scan

registrations was set relative to our median absolute deviation derived in the previous section,

1.4826 ·MAD; this scaling is so that MAD can be viewed as a consistent estimator of normally

distributed variance (Rousseeuw and Croux, 1993). Further, we evaluate the measurement

NIS and only include measurements that are 99% likely to be consistent with our filter—this

allows our filtering to be robust to outliers.

Results are tabulated in Table 2.2, where we present longitudinal, lateral, and heading

errors relative to ground-truth. Errors are shown in terms of RMS errors as well as percentages

of filtered poses that fall within 5 cm, 25 cm, and 1 m (longitudinally and laterally). Overall,

we see that our measurements result in better constraints laterally than longitudinal; lateral

RMS errors are typically less than 10 cm and longitudinal RMS errors are within the range

of 10–13 cm.

Further, we demonstrate each log graphically over satellite imagery in Fig. 2.19, Fig. 2.20,

and Fig. 2.21, where each log’s trajectory is colored by L2 error. We see that errors are

frequently along highway and rural roads where longitudinal constraints become dependent

on visible 3D structure (unconstrained via reflectivity as showin in Fig. 2.18). A common

problem occurs when passing large semi-trailer trucks that fully occlude field of view of

informative 3D structure beside the road, often leading to noisy measurements.

Additionally, we see our method is robust to radical appearance changes. This can be

seen Fig. 2.19(g) and Fig. 2.20(g) where our method can remain localized through repavings

that completely altered the appearance of 0.5-1.0 km stretches of road. There are occasional

spikes of inaccuracy through these regions, though we still maintain localization through

these periods of drastic appearance changes. Moreover, we demonstrate in Fig. 2.21(e) that

we are able to remain localized through heavy snowfall that was present during the D-3 log.
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RMS Error p(err<5 cm) p (err<25 cm) p(err<1 m)
Session Long. Lat. Hdg. Long. Lat. Long. Lat. Long. Lat.

P-M1 10.1 cm 6.5 cm 0.09 ◦ 60.9 % 58.3 % 96.8 % 99.4 % 100.0 % 100.0 %
P-M2 6.6 cm 5.4 cm 0.09 ◦ 68.6 % 69.7 % 99.1 % 99.8 % 100.0 % 100.0 %
P-1 13.3 cm 8.4 cm 0.13 ◦ 33.2 % 56.9 % 94.3 % 98.4 % 100.0 % 100.0 %
P-2 10.3 cm 7.6 cm 0.11 ◦ 40.3 % 56.1 % 98.0 % 99.3 % 100.0 % 100.0 %
P-3 10.7 cm 8.2 cm 0.13 ◦ 41.0 % 50.4 % 97.7 % 98.9 % 100.0 % 100.0 %
P-4 10.8 cm 8.3 cm 0.16 ◦ 38.5 % 46.0 % 98.5 % 99.4 % 100.0 % 100.0 %
P-5 11.9 cm 9.3 cm 0.20 ◦ 36.7 % 44.4 % 96.2 % 98.4 % 100.0 % 100.0 %
P-6 8.4 cm 8.2 cm 0.15 ◦ 46.6 % 45.3 % 99.1 % 99.4 % 100.0 % 100.0 %
P-7 12.7 cm 9.1 cm 0.12 ◦ 34.3 % 41.5 % 94.4 % 99.0 % 100.0 % 100.0 %
P-8 12.2 cm 9.5 cm 0.12 ◦ 45.1 % 40.6 % 94.4 % 98.5 % 100.0 % 100.0 %
P-9 16.2 cm 9.8 cm 0.13 ◦ 34.8 % 47.3 % 91.1 % 98.1 % 100.0 % 100.0 %
P-10 12.2 cm 10.6 cm 0.12 ◦ 41.5 % 43.0 % 95.7 % 96.6 % 99.9 % 100.0 %
P-11 15.0 cm 12.3 cm 0.15 ◦ 30.3 % 41.4 % 92.2 % 96.8 % 99.9 % 99.9 %
P-12 11.0 cm 12.7 cm 0.12 ◦ 40.3 % 34.3 % 97.4 % 95.6 % 100.0 % 100.0 %

D-M1 10.7 cm 8.9 cm 0.17 ◦ 30.0 % 43.1 % 98.3 % 99.3 % 100.0 % 100.0 %
D-M2 12.5 cm 10.3 cm 0.17 ◦ 30.4 % 50.9 % 96.4 % 97.1 % 100.0 % 100.0 %
D-1 10.8 cm 9.8 cm 0.18 ◦ 39.7 % 39.4 % 98.7 % 97.3 % 100.0 % 100.0 %
D-2 11.6 cm 9.1 cm 0.16 ◦ 26.8 % 45.6 % 95.4 % 98.2 % 100.0 % 100.0 %
D-3 11.8 cm 10.9 cm 0.15 ◦ 42.5 % 36.4 % 96.8 % 97.7 % 100.0 % 100.0 %

Table 2.2: Filtered results using joint measurements over structure and appearance for all
datasets. We show longitudinal, lateral and heading RMS errors in addition to percentage
of filtered poses that are within 5 cm, 25 cm, and 1 m of ground-truth, longitudinally and
laterally. Top half of table tabulates results over the PG14 Dataset, and the bottom half
covers the Downtown Dataset.
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(a) Gz and Gr,grd Maps

(b) Fusion, May 8

(c) Fusion, June 5

(d) Fusion, July 24

0.0 cm 10.0 cm 20.0 cm 30.0 cm 40.0 cm 50.0 cm

Figure 2.18: This figure demonstrates the registration quality of our joint measurement
function over a segment of road that is poorly constrained by appearance and undergoes
significant construction. In (a), we show the map constructed for our experiments (showing
the maximum mean component), visualizing the structure (purple-green) and appearance
(black/white) together. In (b)-(d), we show registrations performed over each map type
spanning different logs, rendering: a map that reflects the appearance on that day, registration
L2 error (colored dots), and sample cost function sweeps (right). Despite appearance cost
functions that poorly constrain our pose and radically change, our z-height measurements
and resulting joint measurements remain well constrained.
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(a) P-M1 (May 1) (b) P-1 (May 8) (c) P-3 (May 15)

(d) P-5 (May 21) (e) P-7 (June 5) (f) P-9 (June 12)

(g) P-11 (July 24) (h) Reference

0.0 cm 10.0 cm 20.0 cm 30.0 cm 40.0 cm 50.0 cm

Figure 2.19: Filtered results using joint measurements over structure and appearance for
the TORC logs of the PG14 Dataset, where the trajectory is colored by L2 error. Most
noticeable errors are longitudinal—primarily on the highway or other long, straight stretches
with little variation in that dimension. Further, note the slight increase in errors through
construction zones. Despite these increases, our filter does not diverage and remains localized
within acceptable tolerances. A route reference is provided in (h) highlighting residential
roads (blue), rural roads (purple), highways (red), and construction zones (orange).
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(a) P-M2 (May 1) (b) P-2 (May 8) (c) P-4 (May 15)

(d) P-6 (May 21) (e) P-8 (June 5) (f) P-10 (June 12)

(g) P-12 (July 24) (h) Reference

0.0 cm 10.0 cm 20.0 cm 30.0 cm 40.0 cm 50.0 cm

Figure 2.20: Filtered results using joint measurements over structure and appearance for
the Fusion logs of the PG14 Dataset, where the trajectory is colored by L2 error. Most
noticeable errors are longitudinal—primarily on the highway or other long, straight stretches
with little variation in that dimension. Further, note the slight increase in errors through
construction zones. Despite these increases, our filter does not diverage and remains localized
within acceptable tolerances. A route reference is provided in (h) highlighting residential
roads (blue), rural roads (purple), highways (red), and construction zones (orange).
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(a) D-M1 (Nov. 19) (b) D-M2 (Nov. 19) (c) D-1 (Nov. 20)

(d) D-2 (Nov. 19) (e) D-3 (Dec. 17)

0.0 cm 10.0 cm 20.0 cm 30.0 cm 40.0 cm 50.0 cm

Figure 2.21: Filtered results using joint measurements over structure and appearance for the
Downtown Dataset, where the trajectory is colored by L2 error. Aside from initial convergence
time for the filter (the bright yellow segment on the bottom of each figure), our method
does quite well in the urban environment. This includes staying well localized through heavy
snowfall during D-3 log.
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2.6.5 Run-time Analysis

Given that our registration approach is a function of desired search space, we analyze the

run-time performance at several search windows of: 1 m × 1 m, 2 m × 2 m, 4 m × 4 m,

8 m× 8 m, and 16 m× 16 m. Fig. 2.22 shows framerate for each of these search spaces at a

single rotational search, in which each registration likelihood is evaluated using approximately

300, 000 points. Results are presented for the CPU implementation and we show a 30–

40× speedup for both the exhaustive and multiresolution branch-and bound search when

implemented on a GPU. Relative to our work presented in (Wolcott and Eustice, 2015), we

no longer have to significantly downsample our point cloud to achieve real-time localization.

Note the time speedup is more pronounced when more than one rotational offset is considered

because the multiresolution search can short-circuit quicker.

During online performance, we initially need to perform a dense search over a window

of ∼ 10 m× 10 m, which can be achieved in a little over a second. Over time, these search

windows gradually shrink according to our posterior pose belief such that we can perform

online localization using all point cloud points at roughly 5−10 Hz

Furthermore, rasterizing the Gaussian mixture maps into multiresolution lookup tables

must be carefully managed when implemented on the CPU as these take 4562 ms to construct.

However, this is dramatically improved to 114 ms when implemented on a GPU (40× speedup).

2.6.6 Alternative Uses of GMM

In addition to localization, Gaussian mixture maps over z-height can be used for other

purposes. In this section, we briefly present two possible use cases: point cloud compression

and obstacle background subtraction.

2.6.6.1 Point Cloud Compression

Storing raw point clouds can require more than 500 MB per km of road. As an alternative,

Gaussian mixture maps over z-height can be a parametric method for compactly storing

terrestrial maps. In Fig. 2.23, we show the efficacy of our method for retaining the true

point cloud distribution using 1, 2, 3, 4, and 10 Gaussians per grid cell—this figure shows

points that are within 2.5 standard deviations of each mixture component. It is clear that a

single Gaussian per cell would be insufficient, though as few as 2 appears to well capture the

building facade and foliage. These maps require roughly 10 MB, 20 MB, 30 MB, 40 MB, and

100 MB, respectively, per km of road.
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Figure 2.22: This figure shows registration framerates of our proposed localization method
using Gaussian mixture maps over various search spaces. Left-to-right we show framerates
using the CPU for exhaustive search (red), multiresolution branch-and-bound (blue), and
again using a downsampled point cloud that was necessary in our previous work to meet
acceptable localization framerates (Wolcott and Eustice, 2015) (green). We further show the
exhaustive search (purple) and the branch-and-bound search (orange) when implemented on
a GPU. Note, these figures were generated only searching over a single rotational offset.
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Point Cloud 10 Gaussians 4 Gaussians
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Figure 2.23: Gaussian mixture maps over z-height can be used for point cloud compression.
In this figure, we demonstrate the initial point cloud, seen in the top-left and corresponding
reconstructions using various Gz maps.
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Figure 2.24: Sample point cloud colored by Mahalanobis distance from the underlying map’s
Gaussian mixture. Note the parked cars in red and agreeing prior map in blue (including
ground-plane, building facades, trees, and lightposts). Our method allows us to expand our
obstacle sensing horizon, as we can not sense the ground-plane beyond 40 m.

2.6.6.2 Obstacle Background Subtraction

Another benefit of using structure in our automated vehicle’s localization pipeline is that

it provides a probabilistic method to classify point cloud points as dynamic obstacles or

belonging to the background environment. In generating the likelihood for a registration, we

evaluate the likelihood of each scan point against the prior map, which tells us how likely

each scan point is to be part of the map. By looking at points that poorly align to the

prior map (i.e., those with low likelihoods), we can perform a classification. We do this by

setting a Mahalanobis distance threshold and labeling points that exceed this threshold as

obstacles—this selection is precisely the outlier thresholds set to minimize effect of outliers in

our robust cost formulation of (2.9). Our formulation allows us to do this classification on a

frame-by-frame basis and extend our sensing range of obstacles. Visualization of point cloud

classification can be seen in Fig. 2.24.
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2.7 Conclusion

In this chapter, we demonstrated Gaussian mixture maps that reduce large point clouds

into a compact, parametric representation that maintains expressibility over structure and

appearance. Through the use of multiresolution rasterized maps that can be computed

online, we can efficiently traverse these maps to find the guaranteed optimal registration using

branch-and-bound search, rather than finding local optima as with modern scan matchers.

Finally, we integrated this into an EKF to demonstrate that our autonomous platform can

remain well localized in a prior map over more than 500 km of road data. Our proposed

system is able to handle harsh weather and poorly textured roadways, which is a significant

advantage over the current state-of-the-art methodologies for automated vehicle localization.

We further demonstrated that localization can be done through construction zones undergoing

drastic appearance changes, allowing us in future work to consider maintaining and updating

these maps as they change.
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CHAPTER 3

Visual Localization within LIDAR Maps

3.1 Introduction

While the predominant strategy for localizing an autonomous vehicle is through the use of

three-dimensional (3D) light detection and ranging (LIDAR) scanners, in this chapter we look

at trying to solve the same problem using only a monocular camera. Quite likely the greatest

near-term enabler for self-driving cars is the increased use of camera systems in addition

to expensive LIDAR scanners. We envision that the future of perception on autonomous

vehicles will be a mix of low-cost LIDAR and radar sensors, with a complementary suite of

several cameras.

Our approach leverages a graphics processing unit (GPU) so that we can generate several

synthetic, pin-hole camera images, which we then directly compare against streaming vehicle

imagery. This differs from other visual localization approaches, like Wu and Ranganathan

(2013), which rely on sophisticated feature sets. This significantly simpler approach avoids

over-engineering the problem by formulating a slightly more computationally expensive

solution that is still real-time tractable on a mobile-grade GPU and capable of high accuracy

localization.

In this chapter, we propose exploiting 3D prior maps augmented with surface reflectivities

constructed with a survey vehicle equipped with 3D LIDAR scanners. We localize a vehicle

by comparing imagery from a monocular camera against several candidate views, seeking

to maximize normalized mutual information (NMI) (as outlined in Fig. 3.1). The key

contributions of this chapter are:

• We present a multi-modal approach that allows us to use LIDAR-based ground maps,

which accurately depicts the metric and surface reflectivity of the ground, for localization

with a monocular camera.

• We benchmark our visual localization method with state-of-the-art LIDAR-based

localization strategies.
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NMI

Test Platform

3D Prior Map

Synthetic Views

Live Camera Data NMI Cost Map

Figure 3.1: Overview of our proposed visual localization system. We seek to localize a
monocular camera within a 3D prior map (augmented with surface reflectivities) constructed
from 3D LIDAR scanners. Given an initial pose belief, we generate numerous synthetic views
of the environment, which we then evaluate using normalized mutual information against our
live view from camera imagery.
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• We show a GPU implementation that can provide real-time localization at ∼ 10 Hz.

3.2 Related Work

Early visual simultaneous localization and mapping (SLAM) methodologies employ filtering

frameworks in either an extended Kalman filter (EKF) (Davison et al., 2007) or FastSLAM

framework (Eade and Drummond, 2006), to generate a probability distribution over the belief

pose and map of point features. In order to accurately localize within these point feature

maps, one relies on co-observing these features. However, these features frequently vary with

time of day and weather conditions, as noted by Napier and Newman (2012), and cannot be

used without an intricate observability model, similar to that presented by Carlevaris-Bianco

and Eustice (2012).

In the context of autonomous vehicles, Wu and Ranganathan (2013) and Ranganathan,

Ilstrup, and Wu (2013) try to circumvent this by identifying and extracting higher order

features from road markings in images that are far more robust and representative of static

infrastructure. Their method is able to densely and compactly represent a map by using a

sparse collection of features for localization. However, their method also assumes reliability

of features and requires a flat ground, whereas our projective registration requires no features

extraction and allows for more complex geometries.

Rather than relying on specific image features in our prior map (and complicated, hand-

tuned feature extractors), our method is motivated by the desire to avoid point features

entirely and do whole image registration relative to a static, 3D map captured by survey

vehicles.

In work by Stewart and Newman (2012), the use of a 3D map for featureless camera-based

localization that exploits the 3D structure of the environment was explored. They were able

to localize a monocular camera by minimizing normalized information distance between the

appearance of 3D LIDAR points projected into multiple camera views. Further, McManus

et al. (2013) used a similar 3D map with reflectivity information to generate synthetic views

for visual distraction suppression.

This approach has been previously considered, but methods thus far rely on the recon-

struction of the local ground plane from a stereo camera pair. Senlet and Elgammal (2011)

create a local top-view image from a stereo pair and use chamfer matching to align their

reconstruction to publicly available satellite imagery. Similarly, Napier and Newman (2012)

use mutual information to align a live camera stream to pre-mapped local orthographic

images generated from the same stereo camera. With both of these methods, small errors in

stereo pair matching can lead to oddly distorted orthographic reconstructions, thus confusing
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the localization pipeline. Further, our multi-modal approach allows us to take advantage of

LIDAR scanners to actively capture the true reflectivity of our map, meaning our prior map

is not susceptible to time of day changes in lighting and shadows.

The use of mutual information for multi-modal image registration has been widely used

in the medical imaging domain for several decades (Maes et al., 1997; Pluim, Maintz, and

Viergever, 2003). More recently, the idea has been transferred to robotics for calibration of

visual cameras to LIDAR scanners (Pandey et al., 2012; Taylor, Nieto, and Johnson, 2013).

This sensor registration has mostly been considered an offline task due to the expense of

generating synthetic views for calibration.

To move this into real-time localization, we propose using a GPU to generate synthetic

views, which we can then use a normalized measure of mutual information to optimize over

our vehicle’s pose. The GPU has been frequently used in robot localization for precisely

this reason, including: Kinect depth-SLAM (Fallon, Johannsson, and Leonard, 2012), image

feature correspondence search for SIFT features (Charmette, Royer, and Chausse, 2010), and

line features (Kitanov, Bisevac, and Petrovic, 2007).

More recently, Pascoe et al. (2015) expanded from our work to consider a full 3D

optimization in a method called FARLAP. Their method derives analytic gradients that allow

them to use gradient-based methods to optimize their image registration cost function.

3.3 Prior Map

In order to develop a prior map suitable for localization, our survey robots make a traversal

through the environment equipped with a 3D LIDAR scanner. As detailed in Appendix B,

we solve an offline SLAM problem to generate a map to be used for online localization.

This provides us with an optimized pose-graph, where each pose in our survey is metrically

accurate to the route driven.

From the optimized pose-graph, we construct a dense ground-plane mesh. For each

pose in our optimized set of poses, X = {xi}
M
i=0, we take each corresponding point cloud,

Pi = {pj}
n
j=1, where pj = [xj, yj, zj, rj]

⊤ is the metric position and reflectivity of a point, and

extract the local ground-plane from these using a region growing method starting at known

ground-plane near the vehicle; resulting in ground-plane point clouds, Qi ⊆ Pi. Note, this

region growing method is identical to that used in Section 2.3 to extract the ground-plane

for Gaussian mixture maps of the ground-plane reflectivities.

We then transform each point cloud into the global frame, Q′
i = xi ⊕Qi, where ⊕ is the

head-to-tail composition operation (Smith, Self, and Cheeseman, 1990). All of these point

clouds are then accumulated into a global point cloud, Q = {Q′
i}

M
i=0. We then reduce this
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(a) Camera Image (b) Ground-only Synthetic Image (c) Full 3D Synthetic Image

Figure 3.2: In this chapter, we are interested in registering the camera image shown in (a) by
generating synthetic LIDAR images of our prior map. This can be done using (b) only the
ground mesh or with (c) the ground mesh and 3D structure point cloud. We chose to use
ground maps only as it significantly increased scene prediction time.

point cloud into two grid maps Z and R to model the z-height and reflectivity of the ground

surface, respectively. We chose grids that are 10 cm in resolution to ensure capturing road

paint features and each cell’s value is taken as the median value of point cloud points that

fell into the grid cell. A sample of these grid maps can be seen in Fig. 3.3(a).

We then use these maps to generate triangle meshes online for localization. As our robot

traverses the world, the z-height and reflectivity grids are loaded from disk. For each grid cell

in these overlapping grids, we generate a vertex at the center of each cell, where z-height and

reflectivity is obtained from Z and R, respectively. These vertices are then connected into

triangles as shown in Fig. 3.3(b), resulting in the full triangle mesh rendered in Fig. 3.3(c).

This algorithm is logically equivalent to extracting the ground-plane at each point and draping

an orthographic texture over a varying z-height map; see Algorithm 4 for more details.

Note that our system is not limited to ground-only maps. We applied our method to

incorporate the full 3D point cloud in our prior map (e.g., buildings, street poles, trees)

as depicted in Fig. 3.2, but found that the added structure did not appreciably increase

registration quality enough to warrant the additional rendering cost (the 3D structure more

than doubled scene prediction time). Furthermore, our two grid approach for modelling the

ground-plane results in a compact representation when stored on disk. On the other hand,

generating a scalable method to model the 3D world at a high enough fidelity that is usable

for vision systems is incredibly difficult (point clouds are quite large).

However, we did find that it was extremely important to use a mesh surface as opposed

to a strict planar texture because the planar texture did not accurately depict the curvature

of the road (e.g., the crown of the road), as can be seen in the map colored by z-height in

Fig. 3.4(c).
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(a) Reflectivity and z-height Grids

(b) Tessellation of Reflectivity and z-height Grids (c) Resulting Mesh Texture

Figure 3.3: This figure demonstrates the tessellation performed online to generate 3D textures
for localization. Offline we generate two grids during mapping: one where each pixel contains
a reflectivity value and another where each pixel contains the z-height of the ground-plane;
these are shown in (a). Online, these maps are tessellated as shown in (b) to generate a mesh
where each vertex position is derived from the z-height grid and the appearance is derived
from the reflectivity grid. The resulting textured mesh can be seen in (c).
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(a)

(b)

(c)

Figure 3.4: Sample ground mesh used to generate synthetic views of the environment. In
(a), we show a 400 m× 300 m ground mesh colored by surface reflectivity, with a zoomed
in view shown in (b) (this region is highlighted in red in (a)). We show the same zoomed
view, colored by z-height to demonstrate the height variation we are able to capture with our
ground-mesh in (c); yellow-to-red represents ∆z = 30 cm.
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Algorithm 4 Pose-Graph to Ground-Mesh
Input: Optimized pose-graph, X = {x0, · · · ,xM}, and point clouds, P = {P0, · · · ,PM},
Output: Triangle ground-mesh, T = {t0, · · · , tN}
1: // extract ground-plane point cloud
2: Initialize global, ground-plane point cloud, Q = {}
3: for xi in X do
4: // extract ground-plane point cloud
5: Qi = ExtractGround(Pi)
6: // for each point in point cloud, transform from body frame to global frame
7: Q′

i = xi ⊕Qi

8: // append to global point cloud
9: Q ← Append(Q′

i)
10: end for
11: // build grids
12: Initialize empty 10 cm grids, Z and R for z-height and reflectivity
13: for each point qj in Q do

14: [xj , yj , zj , rj ]
⊤ = qj

15: // update median in each grid cell
16: Z [xj , yj ] ← UpdateMedian(Z [xj , yj ] , zj)
17: R [xj , yj ]← UpdateMedian(R [xj , yj ] , rj)
18: end for
19: // tessellate grids to form ground-plane mesh
20: Initialize ground mesh, T = {}
21: for xk, yk in {Z,R} do ⊲ for each pixel in these grids
22: if MaxDiff(Z [xk, yk], Z [xk, yk+1], and Z [xk+1, yk+1]) < zthreshold then
23: v0 = {xk, yk,Z [xk, yk] ,R [xk, yk]}
24: v1 = {xk, yk+1,Z [xk, yk+1] ,R [xk, yk+1]}
25: v2 = {xk+1, yk+1,Z [xk+1, yk+1] ,R [xk+1, yk+1]}
26: T ← AddTriangle(v0, v1, v2)
27: end if
28: if MaxDiff(Z [xk, yk], Z [xk+1, yk+1], and Z [xk+1, yk]) < zthreshold then
29: v0 = {xk, yk,Z [xk, yk] ,R [xk, yk]}
30: v1 = {xk+1, yk+1,Z [xk+1, yk+1] ,R [xk+1, yk+1]}
31: v2 = {xk+1, yk,Z [xk+1, yk] ,R [xk+1, yk]}
32: T ← AddTriangle(v0, v1, v2)
33: end if
34: end for
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3.4 Projective Image Registration

Given an initial pose prior T0 = [x0, y0, z0, r0, p0, h0]
⊤, the goal of our image registration

problem is to find the relative two-dimensional (2D) offset ∆T = [∆x,∆y, 0, 0, 0,∆h]⊤ that

optimally aligns the projected map,M, against our camera image, I. Our approach can be

formulated as,

∆T ∗ = argmax
∆T

NMI (I, L), (3.1)

where L = proj(M, T0⊕∆T ) is the synthetic LIDAR image generated by projecting the map

into our hypothesized camera location at T0⊕∆T and ⊕ is the head-to-tail composition. This

optimization is framed as a local search problem within the vicinity of T0 and could be done in

an exhaustive manner by generating a predicted view for the entire dom(x)× dom(y)× dom(h)

search volume to avoid local maxima of hill-climbing searches. The remainder of this section

details our method for efficiently generating these predicted views (L), how we can improve

on the exhaustive search approach, and our NMI evaluation metric.

3.4.1 Generating Predicted Views

Given a query camera pose parameterized as [R|t] = f(T0 ⊕∆T ), where R and t are the

camera’s rotation and translation, respectively, our goal is to provide a synthetic view of our

world from that vantage point. We use OpenGL, which is commonly used for visualization

utilities, in a robotics context to simulate a pin-hole camera model, similar to Fallon,

Johannsson, and Leonard (2012).

All of our ground-plane mesh triangles are drawn in a world frame using indexed vertex

buffer objects. These triangles are incrementally passed to the GPU as necessary as the

robot traverses the environment—though the maps in our test set can easily fit within GPU

memory. We pass the projection matrix,

P = M ·K ·

[

R t

0 1

]

, (3.2)

to our OpenGL Shading Language (GLSL) vertex shader for transforming world vertex

coordinates to frame coordinates. Here,

M =









2
w

0 0 −1

0 − 2
h

0 1

0 0 − 2
zf−zn

−
zf+zn

zf−zn

0 0 0 1









(3.3)
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and

K =









fx α −cx 0

0 fy −cy 0

0 0 zn + zf zn × zf

0 0 −1 0









, (3.4)

where w and h are the image’s width and height, zn and zf are the near and far clipping

planes, and the elements of K correspond to the standard pinhole camera model. Note that

the negative values in K’s third column are the result of inverting the z-axis to ensure proper

OpenGL clipping.

For efficient handling of these generated textures, we render to an offscreen framebuffer

that we then directly transfer into a CUDA buffer for processing using the CUDA-OpenGL

Interoperability. Sample synthetic views can be seen in Fig. 3.5. In our system, we further

use frustum culling to limit the number of triangles drawn; this allows our pipeline to easily

generate over 1, 000 synthetic frames per second.

3.4.2 Simplified Rotational Search

A näıve approach to this local search problem would be to use the OpenGL pipeline to generate

a synthetic view for each discrete step within the search volume, dom(x)× dom(y)× dom(h).

However, this would result in generating nx×ny×nh synthetic views. Because the predicted

view rasterization is the primary bottleneck of the system (taking nearly 1 ms for each render),

here we propose a method of warping the camera measurement to explore the heading space

(warpings can be performed at 0.1 ms instead and can be parallelized with the serial OpenGL

rasterizations).

For each homogeneous point in our source camera image, ui, we can warp the point by a

given rotation R and translation t via,

ui′ = KRK−1ui +Kt/zi, (3.5)

where K is the camera calibration matrix and zi is the scene depth at pixel i. Considering

only rotations, this point transfer can be done without regard to scene depth and is therefore

no longer a function of what the camera is imaging. This allows us to precompute a bank of

rotational mappings that we can then apply to each source image,

ui′ = KRK−1ui. (3.6)

This technique allows us to use the OpenGL pipeline to generate only nx×ny synthetic
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Figure 3.5: Sample synthetic views generated by our OpenGL pipeline. These views were
generated by varying longitudinal and lateral translation around the optimally aligned image
(center).

views, first, then compare each against nh (warped) measurements. We still evaluate the same

number of candidate pairs, though we significantly reduce our OpenGL pipeline overhead. A

sample of these rotations can be seen in Fig. 3.6. The combination of our methods allow us

to evaluate over 10, 000 candidate registrations per second.

3.4.3 Normalized Mutual Information Image Registration

Mutual information has been successfully used in various fields for registering data from

multi-modal sources. Mutual information provides a way to statistically measure the mutual

dependence between two random variables, A and B. Most commonly, mutual information is

defined in terms of the marginal and joint entropies of each:

MI(A,B) = H(A) +H(B)−H(A,B), (3.7)
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Figure 3.6: Sample warping applied to images to reduce the overall
search space for image registration; pictured here are warps of ∆h =
{−6.0◦,−4.5◦,−3.0◦,−1.5◦, 0.0◦, 1.5◦, 3.0◦, 4.5◦, 6.0◦} By rotating each source image
in place, we can optimally pull out as much information from a single OpenGL rendered
image.

where these entropies can be realized by evaluating the Shannon entropy over the random

variables A and B:

H(A) = −
∑

a∈A

p(a) log p(a), (3.8)

H(B) = −
∑

b∈B

p(b) log p(b), (3.9)

H(A,B) = −
∑

a∈A

∑

b∈B

p(a, b) log p(a, b). (3.10)

This mutual information formulation clearly demonstrates that maximization of mutual

information is achieved through the minimization of the joint entropy of A and B. This

72



-75 cm -50 cm -25 cm 0 cm 25 cm 50 cm 75 cm

lateral offset

1.02

1.04

1.06

1.08

1.1

N
M

I

LIDAR reflectivity

im
a
g

e
 i
n

te
n

s
it

y

LIDAR reflectivity LIDAR reflectivity LIDAR reflectivity LIDAR reflectivity LIDAR reflectivity LIDAR reflectivity

im
a
g

e
 i
n

te
n

s
it

y

im
a
g

e
 i
n

te
n

s
it

y

im
a
g

e
 i
n

te
n

s
it

y

im
a
g

e
 i
n

te
n

s
it

y

im
a
g

e
 i
n

te
n

s
it

y

im
a
g

e
 i
n

te
n

s
it

y

Figure 3.7: This figure demonstrates a sample registration to provide intuition into the mutual
information (MI) measurement. Consider an image in which we generate a synthetic view at
fixed lateral offsets to ground-truth. The top row shows the corresponding normalized mutual
information at each offset. The middle row shows a blending of the image and the synthetic
LIDAR image (colored purple-blue). To compute the mutual information, a joint histogram
table is computed for each offset and MI is maximized when these joint histograms are
minimally dispersed; signifying underlying signal agreement. Note that MI is actually higher
at ±75 cm than ±50 cm because MI is concerned with finding the best overlap even if that
overlap yields negative correlation (the road markers are perfectly out of phase here)—the
partial overlap at ±50 cm yields more dispersion in the joint histogram table relative to
±75 cm where two modes are distinctly made.

optimality coincides with minimizing the dispersion in the joint histogram for the two random

variables. A sample demonstrating this with sample joint histogram tables can be seen in

Fig. 3.7.

By viewing the problem in this information theoretic way, we are able to capture more

interdependency between random variables than with simple similarity or correlation-based

measures. For example, tar strips in the road frequently appear dark in LIDAR reflectivity, yet

bright in visual imagery. Correlative methods can only measure either a negative or positive

correlation and often fails under varying illumination. However, because maximization of

mutual information is concerned with seeking tightly compact joint distributions, we can

successfully capture this mutual dependence (see Fig. 3.10(b)). Note that it would be quite

difficult to create a hand-tuned feature detector that could identify this type of information

for localization.

Because our source imagery and predicted views have varying amount of overlap (largely

due to our warping technique and our synthetic views not being fully dense images), we
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instead employ a normalized mutual information measure. The amount of overlap between

two candidate images can bias the standard mutual information measure toward lower overlap

image pairs. To avoid these effects, Studholme, Hill, and Hawkes (1999) proposed an overlap

invariant measure of mutual information, normalized mutual information (NMI):

NMI(A,B) =
H(A) +H(B)

H(A,B)
. (3.11)

This measure shares the same desirable qualities of the typical mutual information shown in

(3.7), but is more robust to overlap changes.

In summary, our image registration results in the following optimization:

∆T ∗ = [∆x∗,∆y∗,∆h∗]⊤ = argmax
∆x,∆y,∆h

NMI (W,L), (3.12)

where W = warp(I,∆h) is the warping of the source imagery, I, that spans the rotational

search space, and L = proj(M, T0 ⊕ [∆x,∆y]⊤) refers to the synthetic views that are

generated over the translational search space.

3.5 Results

We evaluated our theory through data collected on our TORC ByWire XGV autonomous

platform, as seen in Fig. 3.1. This automated vehicle is equipped with four Velodyne HDL-

32E 3D LIDAR scanners, a single Point Grey Flea3 monocular camera, and an Applanix

POS-LV 420 inertial navigation system (INS).

Algorithms were implemented using OpenCV (Bradski and Kaehler, 2008), OpenGL, and

CUDA and all experiments were run on a laptop equipped with a Core i7-3820QM central

processing unit (CPU) and mid-range mobile GPU (NVIDIA Quadro K2000M).

As in Section 2.6, we made two passes through the same environment (on separate days)

and aligned the two together using our offline SLAM procedure outlined in Appendix B.1.

This allowed us to build a prior map ground-mesh on the first pass through the environment.

Then, the subsequent pass would be well localized with respect to the ground-mesh, providing

sufficiently accurate ground-truth in the experiment (accuracy an order of magnitude greater

than our localization errors). Experiments are presented on two primary datasets:

• Downtown: 3.0 km trajectory through downtown Ann Arbor, Michigan in which

multiple roads are traversed from both directions and the dataset contains several

dynamic obstacles. Note, this is referred to as M-D1, M-D2, and D-1 in the previous

chapter.
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• Stadium: 1.5 km trajectory around Michigan Stadium in Ann Arbor, Michigan. This

dataset presents a complicated environment for localization as half of the dataset is

through a parking lot with infrequent lane markings.

3.5.1 Image Registration

We first present the results of our raw image registration to detach the registration quality

from a filtered estimate. To evaluate our image registration alone, we took our ground truth

pose belief over the Downtown dataset and tried to perform an image registration to our map

once a second. Ideally, we should be able to perfectly register our prior map, however, due

to noise or insufficient visual variety in the environment, we end up with a distribution of

lateral and longitudinal errors.

We present these results in two ways. First, we show our vehicle’s trajectory through

the prior map in which we color our longitudinal and lateral errors at each ground-truth

pose, shown in Fig. 3.9. In this figure, larger and brighter markers indicate a larger error

in registration at that point. One can immediately notice that we are not perfectly aligned

longitudinally on long, straight stretches; during these stretches, the system frequently relies

on a double, solid lane marking to localize off of. To maintain accuracy, the system requires

occasional cross-streets, which provide more signal for constraining our pose belief.

Second, we show the same results in histogram form, as can be seen in Fig. 3.8, where we

see that our registration is primarily concentrated within ±30 cm of our ground-truth. A

common mode can be found in the tails of the histograms. This is caused by areas that are

visually feature poor or obstructed by significant obstacles; for example, lane markings can

often be perceived by the survey vehicle’s LIDAR scanners and captured in our prior map,

yet the subtle transition between pavement and faded lane markings cannot be observed by

our camera. In these scenarios, the optimal normalized mutual information will try to pull

the registration toward the edges of our prior map—the edges are often feature poor as well,

and this alignment minimizes the joint entropy of the two signals.

Finally, we present several scenarios of our image registration succeeding (Fig. 3.10) and

common causes of failure (Fig. 3.11). These figures were generated by exploring within a

local window around known ground truth.

In Fig. 3.10(b), we see the benefit of using a mutual information derived cost function over

computing image correlation. Mutual information is able to exploit the statistical dependence

between the two signals regardless of some linear relationship; this is demonstrated by finding

positive correlation dependence in most of the image and negative correlation in matching

bright tar strips to their dark appearance from the LIDAR. Further, because our prior map
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Figure 3.8: Histograms of longitudinal and lateral error that our projective image registration
produces (i.e., we are not using our localization filter to generate this). Most frequently, our
proposed method is able to stay within ±30 cm of ground truth. Large frequency in the tails
of the histograms are caused by feature poor regions where the NMI biases towards the edges
of the search limits (which was ±1.5 m here).

is not corrupted by shadows, our localization can withstand shadow in our images as shown

in Fig. 3.10(c). This is because multiple modes will build up in our joint histogram table for

a given LIDAR value—one for the illuminated parts of the image and one for the shadowed

regions.

While we do see some resilience to obstacles in Fig. 3.10(a), this is because a majority of

the image still exhibits a statistical dependency to the LIDAR image. As the image becomes

more overwhelmed with obstacles, as in Fig. 3.11(a), the joint likelihoods become erroneously

sampled and our registrations fail.

Additionally, our method can only be effective when the underlying map has enough

visual variation. Our proposed approach fails in Fig. 3.11(b) because the underlying map is

quite feature poor and in Fig. 3.11(c) where we can only be constrained laterally as there is

limited longitudinal discrepancy.
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(a) Longitudinal Errors

(b) Lateral Errors

Figure 3.9: Longitudinal and lateral errors in our image registration, sampled at each second
of our trajectory; larger and brighter markers indicate regions where image registration
produced higher errors longitudinally (a) or laterally (b). In (a), we see that, especially
on the third street from the bottom, we are only well constrained longitudinally in and
around intersections; quite often, we are only constrained laterally due to a double, solid lane
divider being the only feature in view. In (b), we see that our method provides good lateral
registration—the few bright spots seen are when the vehicle is stopped at an intersection
with a vehicle obstructing our view. Note that in these two figures, perfect longitudinal or
lateral registration is indicated by dark red or green, respectively.
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(a) Typical observation, unaffected by dynamic obstacle

(b) Positive and negative correlation captured by cost function (bright tar strips in imagery aligns with dark
prior map)

(c) Our method is robust to uniform shadowing

Figure 3.10: Successful image registrations. From left-to-right, we show three images: the
source image, the best predicted synthetic LIDAR image, and an alpha-blending of the source
and synthetic image. The normalized mutual information cost map is also shown, where each
tile in the cost map represents a different heading slice of the 3D cost surface, each pixel then
represents an xy translation, and the maximum found is marked with a green ‘+’. Note, the
cost surface should be maximized at the center pixel of the center tile.
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(a) Our method is not robust to all dynamic obstacles

(b) Poor imagery and low feature content in prior map

(c) Only constrained laterally by double lane marker

Figure 3.11: Failure modes of our image registration. From left-to-right, we show three
images: the source image, the best predicted synthetic LIDAR image, and an alpha-blending
of the source and synthetic image. The normalized mutual information cost map is also
shown, where each tile in the cost map represents a different heading slice of the 3D cost
surface, each pixel then represents an xy translation, and the maximum found is marked with
a green ‘+’. Note, the cost surface should be maximized at the center pixel of the center tile.
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3.5.2 Filtered Localization

We next looked at the filtered response of our system that incorporates the projective image

registration into the EKF localization framework described in Section 2.5, where we include

measurements only from the inertial sensors, a wheel encoder, and our monocular camera.

Image registration uncertainty, Rk, is estimated by fitting a covariance to the explored cost

surface, as is done in Olson (2009).

Moreover, we compare our localization performance against our own implementation of

the state-of-the-art LIDAR-based localization proposed by Levinson and Thrun (2010). Our

LIDAR-based system builds orthographic ground images using the four Velodyne HDL-32E’s

onboard; these orthographic ground images can then be aligned to an orthographic prior map

built using an accumulation of these scans.

We present longitudinal and lateral errors over time for global positioning system (GPS),

LIDAR-based localization, and our proposed single camera algorithm within the Downtown

and Stadium datasets (see Fig. 3.12). These results are summarized in Table 3.1. Here we

show that we are able to achieve longitudinal and lateral root mean squared (RMS) errors of

19.1 cm and 14.3 cm, respectively, on the Downtown dataset. Further, we obtain longitudinal

and lateral RMS errors of 45.4 cm and 20.5 cm, respectively, on the Stadium dataset. Our

proposed solution is able to maintain error levels at a similar order of magnitude as the

LIDAR-based options, while using a sensor that is several orders of magnitude cheaper.

Note that the Stadium results show a rather large variance in longitudinal error; this is

because half of the dataset is through a parking lot containing little visual variation. Also, we

are slow to initially converge longitudinally because the first 20 s of the run is on a two-lane

road containing only a double, solid lane marker.

Downtown RMS Error Stadium RMS Error
Method Longitudinal Lateral Longitudinal Lateral
GPS 91.0 cm 100.5 cm 81.7 cm 73.4 cm
LIDAR-based 12.4 cm 8.0 cm 14.3 cm 10.9 cm
Proposed 19.1 cm 14.3 cm 45.4 cm 20.5 cm

Table 3.1: Comparison of RMS errors for GPS, LIDAR-based localization, and our proposed
vision-only localization. Our method is able to remain sufficiently well localized for use in an
automated vehicle.
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(a) Downtown—Filtered Results.
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(b) Stadium—Filtered Results.

Figure 3.12: Here we present our localization accuracy in terms of longitudinal and lateral
error relative to SLAM-optimized ground-truth over time. Our proposed solution achieves a
similar order of magnitude performance as the state-of-the-art LIDAR-based solutions while
being several orders of magnitude cheaper. GPS alone is presented to show that it cannot
provide reliable localization for automated vehicles. Despite significant longitudinal errors
in the Stadium dataset, we are still able to maintain lateral alignment, which is critically
important for lane-keep.

3.6 Conclusion

In this chapter, we showed that a single monocular camera can be used as an information

source for visual localization in a 3D LIDAR map containing surface reflectivities. By

maximizing normalized mutual information, we are able to register a camera stream to

our prior map. Our system is aided by a GPU implementation, leveraging OpenGL to

generate synthetic views of the environment; this implementation is able to provide corrective

positional updates at ∼ 10 Hz. Moreover, we compared our algorithm against the state-of-

the-art LIDAR-only automated vehicle localization, revealing that our approach can achieve

a similar order of magnitude error rate, with a sensor that is several orders of magnitude

cheaper.

81



CHAPTER 4

Probabilistic Obstacle Partitioning for

Improved Localization

4.1 Introduction

Localization is a key task for autonomous cars; systems such as the Google driverless car rely

on precise and detailed maps for safe operation (Urmson, 2015). Light detection and ranging

(LIDAR) sensors are capable of providing rich information—including metric range and

point appearance. Robust methods can use this data for vehicle localization, for example by

extracting the ground-plane for alignment to a prior map, as done by Levinson et al. (Levinson

and Thrun, 2010; Levinson, Montemerlo, and Thrun, 2007).

Due to decreased cost and the ability to have robust, redundant sensing, vision sensors as

part of the localization pipeline can be a great enabler for autonomous platforms. Contrary

to LIDAR approaches, identifying the ground-plane from a camera image is a much more

challenging task. In Chapter 3, we considered localizing with just a monocular camera by

aligning the whole image to a prior map. This can be problematic as the ground-plane can

frequently be obscured by obstacles within view of the camera. As indicated in Fig. 3.11(b),

our visual localization system can easily be distracted when the image is dominated by

obstacles, leading to a degradation in localization.

In this chapter, we are interested in partitioning an image stream into obstacles and prior

map as shown in Fig. 4.1, with the goal of only using the portions of the image containing

the prior map for localization. This addition will lend itself to a more robust end-to-end

visual localization system.

We propose to leverage our textured prior map, consisting of a ground-plane mesh, to

formulate a Markov random field (MRF) that models the image partition between the obstacles

and the ground-plane. We present several probabilistically motivated energy functions that

can be fused in this MRF framework. Specifically, the prior map allows us to evaluate ground

likelihood by conditioning our belief on the expected appearance from the prior map. This
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(a) (b)

Figure 4.1: In this chapter, we propose to extract optical flow vectors and probabilistically
evaluate them against expected flow vectors. We present an MRF framework that fuses
various energy potentials, in addition to optical flow likelihood, such that minimizing the
energy results in an optimal partition of the image space into ground-map and obstacles, as
denoted by the green line through (b).

distribution is captured by the joint histograms used when computing mutual information.

Moreover, we present a probabilistic method to evaluate optical flow likelihood against our

three-dimensional (3D) prior map, taking into account expected motion parallax.

Our proposed approach is evaluated on a challenging urban dataset where lighting is

non-uniform and our camera is an 8-bit monochrome sensor (note, explicitly no color used

to demonstrate effectiveness of our approach). We demonstrate our proposed algorithms

by looking at errors with respect to hand-labeled groundtruth. Additionally, we look at

bringing this obstacle partition into the visual localization pipeline and present results that

demonstrate improved registration when obstacle masks are used.

4.1.1 Related Work

Our problem of road segmentation can be cast as a more general scene segmentation problem,

of which there has been a vast amount of research. Semantic labels can typically be learned

using extracted features (Sturgess et al., 2009), features that are learned as well (Alvarez

et al., 2012), or using some coarse prior knowledge of the environment (Irie and Tomono,

2013). Felzenszwalb et al. (2010) present a deformable parts based model that uses a trained

latent SVM over HOG-like features to detect various object categories. These methods were

later extended by Held, Levinson, and Thrun (2012), realizing that vehicles are constrained

to the ground plane, formulating a scale and context weighting.
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In our work, we are less interested in developing a classifier that relies on feature extraction

and offline-learning; instead we are interested in using the full image with minimal feature

extraction (nothing more than gradients) for road segmentation. Our motivation is to augment

any potential gaps in learning or mis-tuned feature extractors to improve robustness in our

approach.

Modeling the ground plane appearance distribution directly from image data has been

successful in many domains. Ulrich and Nourbakhsh (2000) build a histogram appearance

model for the ground plane, learning this distribution with the assumption that the lower

window of the image is mostly ground plane. Dahlkamp et al. (2006) improves on this by

restricting appearance learning to within co-registered laser range finder returns. In addition,

they and Álvarez and Ĺopez (2011) use an RGB colorspace transform to minimize the effect

of shadows by actively removing them from their appearance model. These works heavily

rely on color images that are clearly more discriminative than grayscale images.

Others have looked to exploit camera motion to infer scene structure and motion. Consid-

ering a temporal stream of images, Zhang et al. (2006) looked at the residual error from focus

of expansion estimation. Similar to our proposed work, others have assumed a locally planar

ground in which motion can be inferred (Lourakis and Orphanoudakis, 1998) or provided via

odometry (Braillon et al., 2006). Moreover, Wedel et al. (2007) proposed classifying between

foreground and background by warping sequential images onto multiple plane hypotheses.

In this work, we are instead interested in computing dense optical flow fields as it lends

itself to a probabilistic formulation that can capture uncertainties in camera motion and

can more easily be used to detect dynamic obstacles. Most early work using optical flow for

obstacle detection had an intended use with a stationary camera for surveillance tasks. These

works typically focus on segmenting the dynamic parts of a scene aside from an otherwise

static image. Haag and Nagel (1999) look at image edge elements, where the optical flow is

more accurate, to guide their model-based tracking. Work by Rosales and Sclaroff (1999)

tracked objects in 3D using an extended Kalman filter (EKF), while also using a background

subtraction mechanism. Many of these methods can not translate to our domain as the key

assumption of a stationary camera is violated.

The use of optical flow for obstacle detection of dynamic obstacles from a dynamic vehicle

was first looked at in the joint works by Enkelmann et al. (1994) and Krüger, Enkelmann,

and Rössle (1995). In these works, optical flow vectors are sparsely extracted and compared

against estimated model flow vectors. The latter of these two works extends the former with

robust filtering and statistical point classification into one of three sets—ground plane, static

obstacle, and dynamic obstacle—noting the probabilistic model of each. Roberts and Dellaert

(2013) performed a similar classification employing dense flow fields, though found problems
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when faced with textureless image regions. Our work intends to extend theirs because we

acknowledge the benefits of dense flow fields in obstacle estimation, though we introduce a

penalty to discredit optical flow measured in texturesless areas.

Similar to our work, McManus et al. (2013) applied optical flow for background detection

on an autonomous vehicle assuming an already known localization within a 3D prior map.

They evaluate the likelihood of this optical flow by computing optical flow twice—first on

the raw images then on the image warped via the 3D prior map—and comparing the flow

vectors.

Badino, Franke, and Pfeiffer (2009) proposed a novel idea called the “Stixel World” in

which image processing demands can be significantly reduced under the context of on-vehicle

cameras. The representation is such that the world can be decomposed into a set of vertical

stixels that directly correspond to a column in image space. A key insight here is that the

pixels between the bottom of the image and the first obstacle in each column is strictly

identified as free-space—thus imposing a 1D image space partitioning that can be efficiently

solved using dynamic programming.

Our work is quite similar in underlying machinery to more recent work by Yao et al. (2015)

and Levi, Garnett, and Fetaya (2015), both closely resemble the stixel-world formulation,

while using a monocular camera. In Yao et al. (2015), they propose inference in a 1D MRF

that incorporates various cues including pixel appearance, image edges, temporal consistency,

and spatial smoothness. However, many of these cues are severely biased towards the bottom

of the images, leading to a brittle system when faced with difficult imagery. In Levi, Garnett,

and Fetaya (2015), they use a convolutional neural network (CNN) learn the appearance of

the image partition offline. We propose a set of cues that are probabilistically motivated,

allowing joint reasoning over appearance and inferred motion.

4.2 Preliminaries

In our work, we use a survey vehicle equipped with 3D LIDAR scanners to construct a

detailed prior map for localization. As detailed in Section 3.3, we build a 3D mesh of the

ground-plane that we texturize using reflectivity measurements from the LIDAR, as shown

in Fig. 4.2.

We then localize an image, It, taken at time t from a monocular camera within this

prior map,M, by exploiting the statistical dependency between camera intensity values and

LIDAR reflectivities. Using a coarse prior (such as that from GPS), we generate several
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(a) Prior Map (b) Synthetic Image (c) Image with Expected Depth

Figure 4.2: Using a survey vehicle equipped with 3D LIDAR scanners, we can offline generate
a rich mesh of the ground-plane colored by LIDAR reflectivity, as shown in (a). OpenGL
is used to generate synthetic viewpoints and expected depth of this prior map, (b) and (c).
The synthetic image and depth are relied upon for obstacle partitioning.

synthetic views of the prior map, maximizing normalized mutual information (NMI):

x̂t = argmax
x

NMI (It, Lt), (4.1)

where Lt = proj(M,x) is the synthetic LIDAR image generated by projectingM into the

camera frame at x = [x, y, z, r, p, h]⊤, using the standard pinhole camera model. NMI is a

normalized variant of mutual information that is maximized by minimizing the dispersion

between two random variables (a metric that is evaluated with the entropy of the joint and

marginal histograms of the two signals).

The projections for localization can be done efficiently within OpenGL using custom

shaders. Further, the OpenGL rendering process populates a depth buffer to determine screen

ordering of drawn triangles. This depth buffer can be scaled by the near and far clipping

planes to generate an expected depth image Ẑt. Thus, the localization process provides

expected depths for a given camera location, which we will leverage for obstacle partitioning.

In the following sections, we will detail how we can estimate prior map likelihood and

then how we can incorporate these likelihoods into a Markov random field (MRF) smoothing

framework. A goal of this chapter is to generate image partitions so that NMI can be

computed over those pixels believed to be imaging the prior map.

4.3 Probabilistic Obstacle Partitioning

Our proposed formulation is heavily motivated from the Stixel World presented by Badino,

Franke, and Pfeiffer (2009) and a similar monocular approach for free space estimation (Yao
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Figure 4.3: In probabilistic obstacle partitioning, we propose to use a 1D MRF to partition
an image into two sets: ground-plane (blue) and not ground-plane (obstacles, red). Each
variable in our MRF (green) models a partition point for each column in the image, and has
a unary potential associated with it that is computed using a set of partition likelihoods.
These variables are connected with their pairwise neighbors to enforce smoothness, resulting
in an MRF that can be solved efficiently with dynamic programming.

et al., 2015). Realizing the structure of the roadway as viewed in a camera image, we assume

that there is a distinct separation between free space and obstacles. This defined partition

regularizes the task of identifying obstacles in a camera image. We propose to use a sequence

of camera images to derive probabilistic appearance and inferred motion likelihoods to find

this partition.

Given an image It taken at time t, probabilistic obstacle partitioning seeks an optimal

seam that traverses the image left-to-right, S = {si}
w
i=1, where si can take the value of h+ 1

labels, si ∈ {0, · · · , h} (w and h denote the width and height of It). Considering the ith

column of It, ci = {It(i, j)}
h
j=1, the cut si implies a partitioning of this column into two

disjoint sets such that {It(i, j)}
si
j=1 is sampled from the obstacle set, O, and {It(i, j)}

h
j=si+1

is sampled from the prior map,M. In our framework, i = 1 indicates the leftmost column

and j = 1 indicates the topmost row of the image. An illustrative example of this setup is

provided in Fig. 4.3.

We formulate obstacle partitioning as the maximum a posteriori (MAP) estimation of

the set of column seams conditioned on the previous n camera images,

S∗ = argmax
S

p(S|It, · · · , It−n+1). (4.2)
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Assuming a Markov factorization, we can factor the posterior as

p(S|It, · · · , It−n) ∝ p(It, · · · , It−n|S)p(S)

=
∏

i

p (It, · · · , It−n|si)
∏

j

p (sj|sj−1) , (4.3)

where we assume independence between columns ci. Applying the negative log-likelihood,

the MAP inference results in the following energy function to be minimized:

E =
∑

i

∑

k∈K

wkφk (si)
︸ ︷︷ ︸

unary

+
∑

j

wpφp(sj, sj−1)
︸ ︷︷ ︸

pairwise

, (4.4)

where K represents the set of unary potentials, {a, f, e, l, r}, and wn represents the weighting

for each potential, which can be learned using training data. The MRF forms a chain

connecting neighboring columns and can be efficiently solved using dynamic programming as

a Viterbi problem (Viterbi, 1967).

The pairwise potential is modeled as a truncated quadratic to enforce smoothness across

the seam,

φp (sj, sj−1) = min(|sj − sj−1|, Tp)
2, (4.5)

where Tp is a threshold that allows the potential to enforce local smoothness without excessively

penalizing large jumps, as should be allowed with objects near the camera. The remainder of

this section details the unary potentials that exploit appearance and motion in the images.

4.3.1 Unary Potentials

4.3.1.1 Appearance Potential

We derive an appearance based potential that can be learned online using a monochrome

camera. The theory could easily be applied to color imagery, though we opted against

to demonstrate the effectiveness of our motion potential presented next (color can be an

extremely discriminative feature in this context).

The motivation for this potential is to maximize the likelihood of the class assignments

(obstacle and prior map) using image intensities. The potential is defined as

φa (si) = − log p (ci|si) , (4.6)

where ci is the set of pixels in the ith column and the likelihood term is derived assuming
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independence and recalling the strict partitioning of the data at si:

p (ci|si) =
h∏

j=1

p(It(i, j)|si) (4.7)

=

si∏

j=1

p(It(i, j)|O)
︸ ︷︷ ︸

obstacle
likelihood

h∏

j=si+1

p(It(i, j)|M)
︸ ︷︷ ︸

prior map
likelihood

. (4.8)

The obstacle appearance model is computed using a joint histogram to maintain,

p(It(i, j)|O) = p(It(i, j)|i,O). (4.9)

This can be thought of as a 2D histogram with image intensity on one axis and image column

on the other. We convolve this with a Gaussian kernel so as to avoid over-fitting and smooth

the likelihoods. See Fig. 4.4(h) for a sample of this conditional distribution.

The prior map appearance model is slightly more intricate in that each intensity is

conditioned on the reflectivity of the projected prior map; therefore,

p(It(i, j)|M) = p(It(i, j)|Lt(i, j)). (4.10)

This conditional distribution is managed via the joint histogram over image intensity and

LIDAR reflectivity—this is the same distribution used to compute NMI for localization,

Fig. 4.4(f). See Fig. 4.4(h) for a sample of this conditional distribution.

Both of these conditional histograms are learned online using the previous n pairs of

images and extracted seams. Combined with the other potentials and the smoothing pairwise

potential, the appearance prior continuously learns the obstacle and prior map distributions.

In this work, we used a sliding time window over the last several seconds of data—this should

be kept short so distributions can adapt to lighting changes.

4.3.1.2 Optical Flow Potential

Appearance potentials alone can perform quite poorly in complex environments where partial

illumination can distract the measure; moreover, 8-bit grayscale imagery makes it difficult

to differentiate between cars and roadways. In this section, we present a motion potential

derived from evaluating the likelihood of optical flow vectors—with the expectation that

this can invalidate distracted areas due to parallax and physically moving objects. This

illumination robust measure can further aid the appearance potential by maintaining the

extracted partition through complex lighting transitions so that the appearance likelihoods
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(a) Image (b) Synthetic LIDAR View
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Figure 4.4: This figure demonstrates the histograms used for computing appearance-based
likelihoods for the image and synthetic LIDAR view shown in (a) and (b), respectively.
Figures (c)-(e) demonstrate likelihoods used for obstacle appearance conditioned on image
column, while (f)-(h) show likelihoods used for ground appearance conditioned on the prior
map reflectivity. Left-to-right, we start with a joint realization derived over the previous
temporal time window, which we then blur to generalize the distributions. Finally, we convert
the joint histograms into conditional histograms by normalizing by histogram column in (e)
and (h). Note that (f) is identical to the joint histogram used for localization, (3.10).
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can adapt to new lighting distributions.

Optical Flow Likelihood: We first extract optical flow vectors Ut = {u1, . . .uw}, where

ui denotes a column of optical flow vectors, ui = {fi,1, . . . , fi,h} and fi,j = [ui,j, vi,j]
⊤ is the

optical flow at pixel (i, j). We use known egomotion xe = [x, y, z, r, p, h]⊤ derived from vehicle

odometry, an estimate on the motion uncertainty Σe (as detailed in Appendix A), and the

expected scene depth, Ẑt, as outlined in Section 4.2, to calculate the expected optical flow

measurement using the homogeneous point transfer (Hartley and Zisserman, 2004):

vt−1 = KRK−1vt +Kt/Ẑt(i, j), (4.11)

where vt−1 = [x, y, 1]⊤ represents the expected homogeneous pixel location in It−1 of vt =

[i, j, 1]⊤ (a homogeneous pixel in the current image It). Further, K represents the pinhole

camera calibration matrix and [R|t] is the camera motion derived from xe. Therefore, the

expected optical flow measurement is

f̂i,j = vt−1 − vt. (4.12)

Additionally, we can use the unscented transform (UT) to propagate motion uncertainty,

Σe, and scene depth uncertainty at each pixel, σ2
z , through the nonlinear point transfer of

(4.11), yielding ΣUT. This process of predicting optical flow is quite similar to pose-constrained

correspondence search (PCCS) (Eustice, Pizarro, and Singh, 2004)) and is visually detailed

in Fig. 4.5.

The uncertainty estimate, ΣUT, only accounts for optical flow uncertainty induced by

errors in odometry or expected scene depth. We extend this by estimating the uncertainty of

measuring optical flow at each pixel considering the spatial image gradients and uncertainties

in the spatio-temporal gradients, yielding Σg—we adopted the method proposed by Simoncelli,

Adelson, and Heeger (1991). This allows us to make use out of poorly constrained flow vectors

(such as those on image edges), yet still fully account for its inaccuracies. We can finally

characterize the expected optical flow as a normally distributed measurement of the form:

fi,j ∼ N (vt−1 − vt,ΣUT + Σg) . (4.13)

See Fig. 4.6 for visual depictions of this distribution.

Optical Flow Partition: Similar to the appearance potential, the optical flow partition

potential is formulated as a function of the likelihood of class assignments (obstacle and prior
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Figure 4.5: This figure demonstrates our method for generating expected optical flow
measurements. Using known egomotion, xe, and scene depth, Ẑt(i, j), we can reproject each
pixel in our current image into the previous image. Further, we use the unscented transform
to transform egomotion uncertainty, Σe, and scene depth uncertainty, σz, to derive optical
flow uncertainty, ΣUT.

map), such that minimization of the potential maximizes the associated likelihood:

φf (si) = − log pf (ui|si) . (4.14)

Following a similar derivation as (4.8), we arrive at the likelihood decomposition,

p (ui|si) =
si∏

j=1

p(fi,j|¬M)
h∏

j=si+1

p(fi,j|M). (4.15)

The prior map likelihood, p(fi,j|M), is computed by evaluating against the Gaussian in (4.13).

However, the term on the left we decompose even further into,

si∏

j=1

p(fi,j|¬M) =

k(si)∏

j=1

p(fi,j|B)
si∏

j=k(si)

p(fi,j|O), (4.16)

to partition the non-map elements into a background set, B, and an obstacle set, O, at k(si).

This split at k(si) is necessary to divide the very dissimilar flow sets generated by B and O;

these 3 disjoint sets are visualized in Fig. 4.6(c).

Given a nominal world-frame height in meters of target obstacles, Hobs, we use known
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(a) (b)

(c)

Figure 4.6: Overview of optical flow likelihood formulation. In (a), we show the optical
flow vectors (green), where the closed tail is the location in the current image, and the
expected optical flow vectors and uncertainties (red). Note the shape of the uncertainty
ellipses following the gradients of the image. We then show the likelihood evaluation overlaid
the camera imagery in (b), along with the output seam. Here, brighter indicates a lower
likelihood and black/transparent indicates a higher likelihood. These likelihoods are then
used in our optical flow partition likelihood; in (c) we show the partitioning into 3 disjoint
sets including the map,M, obstacles, O, and the background,M.

camera geometry and scene depth to derive the height in pixels of the obstacle,

h(si) = f ·Hobs/Ẑt(i, si), (4.17)

where f is the camera focal length. This can then be used to determine the pixel location for

splitting B and O,

k(si) = si − h(si). (4.18)

The nominal obstacle height is a tuning parameter, though we have found the algorithm to
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be insensitive to selection of Hobs and is chosen based on minimum acceptable obstacle height

(Hobs = 1.5 in our experiments).

Within an image column, elements of an obstacle are at a constant depth, resulting in

flow vectors that are quite similar over the column—with noticeable deviation between flow

vectors belonging to O and B. Therefore, we estimate p(fi,j|B) and p(fi,j|O) by fitting a

uniform distribution over the flow vectors within their respective column segment,

p(fi,j|B) = Ufi,1:k(si)(fi,j), (4.19)

p(fi,j|O) = Ufi,k(si):si (fi,j). (4.20)

Given that we have no further information to condition on, fitting a uniform distribution

provides the maximum likelihood estimate of the corresponding flow vectors within each

segment.

We compute this potential over multiple image sequences so that we can capture fast

moving objects, yet still maintain observability for slow moving objects (such as those within

the focus of expansion). We chose to use Farneback’s optical flow algorithm (Farnebäck, 2003)

and perform forward-backward flow to discard inconsistent measurements (these discarded

measurements provide no influence in the likelihood computations). It is important to note

that while stationary, the optical flow potential only provides input to the MRF if something

else is moving (a roughly uniform prior over all partitionings otherwise). This is a byproduct

of the formulation as stationary flow vectors observed from a stationary platform yields near

constant likelihoods derived in (4.15).

4.3.1.3 Additional Potentials

In this section, we highlight three additional potentials that can be included into the MRF

formulation for improved robustness.

Edge Potential: There is typically a strong gradient between obstacles and the road,

thus we introduce an edge potential to bias cutting along spatial image gradients:

φe (si) = −∇It (i, si)
2 . (4.21)

LIDAR Potential: While our primary motivation is an image-only solution, the MRF

provides a convenient method to fuse online LIDAR measurements. Given a LIDAR point

in the camera frame, p = [x, y, z]⊤, we project into the camera frame, [i, j]⊤ (here i and j

are the projected column and row, respectively). Using the expected ground-plane depth

image, Ẑt, we find the expected ground point ŝi by traversing down the image column and
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minimizing,

ŝi = argmin
ŝi

∥
∥
∥Ẑt (i, ŝi)− z

∥
∥
∥ . (4.22)

The resulting potential is a truncated quadratic:

φl (si) = min(|si − ŝi|, Tl)
2, (4.23)

where Tl is a threshold controlling the region of influence of the LIDAR potential. To prune

obstacles that are too small and eliminate spurious returns, this potential is only added for

each LIDAR point that meets a minimum height above ground threshold,

(ŝi − j) · Ẑt(i, si)/f > HLIDAR, (4.24)

where HLIDAR = 0.5 in our experiments. Fusing LIDAR data at this level improves our overall

method because the sparse point returns can heavily dictate the models learned by the dense,

image-based methods.

Recursive Potential: We introduce a recursive potential that propagates the full energy

functional from the previous time step into the current frame, as proposed by Yao et al.

(2015), which acts as a temporal smoothing of potentials. With our known ground-model and

egomotion, we use the homogeneous point transfer (4.11) to propagate the sum over unary

potentials of the previous frame into the current frame, generating φr (si).

4.4 Results

We evaluated our proposed method on our autonomous platform, a TORC ByWire XGV,

that is equipped with Velodyne LIDAR scanners and a Point Grey Flea3 monochrome camera.

The LIDAR scanners, unless otherwise specified, were used only offline for generating prior

maps. Majority of the algorithms presented were implemented in CUDA and all experiments

were run on a laptop equipped with a Core i7-4910MQ and a laptop GPU (NVIDIA Quadro

K4100). The resulting implementation runs at 5–8 Hz.

4.4.1 Quantitative Analysis

Our approach is first evaluated against a hand-labeled dataset in which we have 240 ground-

truth image partitions. In addition to our vision only solution, we also demonstrate the

effectiveness of including a simple 2D LIDAR scanner to our system. Note that while our

platform is not equipped with such a planar scanner, we simulated this with the Velodyne
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scanners by only using point returns within a 40 cm window, 1 m off the ground in the body

frame.

Following the metrics presented by Fritsch, Geiger, and Kühnl (2013), we project our

image partition into the world to create a Bird’s Eye View (BEV) before performing analysis—

results are tabulated in Table 4.1. We see that our proposed method is competitive relative

to prior work (Levi, Garnett, and Fetaya, 2015; Yao et al., 2015) and the addition of the

LIDAR scanner dramatically improves obstacle detection.

Method F1 Precision Recall FPR
Proposed 87.85 % 90.07 % 85.74 % 9.93 %
Proposed+2D LIDAR 93.18 % 94.65 % 91.75 % 5.35 %

Table 4.1: The F1-score, precision, recall, and false positive rate for our proposed method
and our proposed method with the addition of 2D LIDAR measurements.

4.4.2 Qualitative Analysis

To demonstrate the contributions of each unary potential that is a part of the MRF model,

we present several candidate image partitions along with an overlay of each potential, see

Fig. 4.7—in these images, lighter (white) colors indicate a lower energy state. In this figure,

all potentials presented in this chapter were enabled except the LIDAR potential.

In the first row, we see our platform exiting a brightly illuminated region into an area cast

in shadow. Throughout the illuminated region, the appearance models overfit to this bright

distribution and its potential is biased toward shaded/illuminated edges. Despite this, the

image partitioning is still successful because of the optical flow potential. Several frames later,

depicted in row 2, we see the appearance models have quickly adjusted to the new lighting.

The second and third row demonstrates the flexibility of our model to be able to perfectly

follow the sharp contours of a pedestrian and a lightpost, respectively. One significant

drawback of the optical flow potential is the effect of cast shadows from moving platforms, as

shown in the third row—there is a gap of falsely detected obstacles triggered by the moving

shadow to the right of the vehicle.

4.4.3 Obstacle Aware Localization

In our previous chapter (Chapter 3), we made no effort to eliminate non-static elements from

the image, relying on the strong surface reflectivity to predominate the mutual information

score. In many cases, the method was robust to sparse obstacles in view. However, this

relied on the statistical robustness of the underlying mutual information cost metric. As
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Figure 4.7: This figure shows sample results of our probabilistic obstacle partitioning. Left-
to-right, we show the raw camera imagery overlaid with the extracted partition, then three
primary potential functions, and finally the sum of all unary potentials. In each of these,
lighter (white) colors indicate a lower energy state. See the text for a more detailed discussion.

more obstacles overtake the image, the algorithm can be distracted and lead to erroneous

registrations.

In this section, we look at incorporating our image partitions into the localization pipeline.

To do so, we only use pixels below the obstacle partition when computing the joint histogram

tables—all other pixels are discarded. We performed a set of registration experiments similar

to our previous chapter. Every second in our dataset, we attempted several registrations
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from a randomly initialized offsets (within a 3 m window around the ground-truth). From

the same randomly initialized offsets, we attempted a registration without and with the use

of obstacle masks.

A histogram of these errors can be seen in Fig. 4.8, where we see that the obstacle masks

decrease out lateral error. This is frequent in our dataset as there is frequently perceptual

aliasing in our logs over crosswalks—when obstacles partially occlude these crosswalks there

is much lateral ambiguity present. A common improvement that we see is demonstrated in

Fig. 4.9. Overall, we see a modest improvement in median absolute deviation (MAD) from

12.4 cm to 11.6 cm longitudinally, and 14.3 cm to 9.1 cm laterally.

In addition to these benefits, we also see that the cost function is much more peaked

when obstacle masks are used. Even in situations where registrations are successful without

obstacle masks, we notice that the cost surface is significantly improved, see Fig. 4.10 for an

example. In future work, we hope that this distinct improvement can help with gradient-based

localization methods that can improve our image registration efficiency.

4.5 Conclusion

In this chapter, we showed that a monochrome, monocular camera can be used to partition an

image into disjoint sets of obstacles and the ground plane. We utilized a textured prior map to

derive appearance models and optical flow likelihoods that could be integrated into an MRF.

The resulting formulation can be solved at a framerate of 5–8 Hz. We also demonstrated

that the addition of sparse LIDAR returns can improve the entire pipeline. Furthermore, we

integrated this into our visual localization pipeline and demonstrated improved robustness

when obstacle partitions are considered during registration. In the future, we hope to use the

extracted optical flow vectors to segment objects lying above the image partition, which can

further be used to improve the recursive potential with a motion model.
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(a) L2 Errors Without Mask
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(b) L2 Errors With Mask
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(d) Longitudinal Errors Comparison
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(e) Lateral Errors Comparison

Figure 4.8: Example of the improved registration errors when using our proposed obstacle
partitioning to mask out obstacles during registration. In the first row, we show a histogram
of L2 (a) without our obstacle masks, (b) with our obstacle masks, and (c) the two overlaid
to highlight differences. Furthermore, we split (c) into (d) longitudinal and (e) lateral
registration errors, where we see that much improvement comes in our lateral registration—
this is particularly an improvement at intersections with vehicles occluding our field of
view.
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(a) Without obstacle masks

(b) With obstacle masks

Figure 4.9: From left-to-right in (a), we show three images: the source image, the best
predicted synthetic LIDAR image, and an alpha-blending of the source and synthetic image.
In (b), we added the source image with the obstacle partition drawn in green. The normalized
mutual information cost map is also shown, where each tile in the cost map represents a
different heading slice of the 3D cost surface, each pixel then represents an xy translation, and
the maximum found is marked with a green ‘+’. Note, the cost surface should be maximized
at the center pixel of the center tile. As demonstrated in Fig. 3.11(a), the NMI cost surface
can be distracted by obstacles in the field of view, as is similarly shown in (a). However, using
only pixels below the obstacle partition in our NMI evaluation, the cost surface is cleaned up,
allowing the true registration to be the maximum.
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(a) Partitioned Image
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(d) Cost surface slice at long.=0 m

Figure 4.10: Sample of improvement of the NMI cost surface when obstacle masks are used
in the visual localization framework. In (a), we show a sample partitioned image, which we
then explored the cost surface around. We evaluated the NMI at varying longitudinal and
lateral offsets (b) without and (c) with the masks. Further, we extracted the lateral slice at
0 m longitudinal offset, displayed in (d). In these figures, we see that the cost function is more
peaked and pronounced when obstacle masks are used—this increases the signal-to-noise-ratio
by eliminating parts of the image (i.e., obstacles) that do not have a statistical dependence
on the prior map.
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CHAPTER 5

Conclusion

Self-driving cars often rely on precise localization within a prior map for autonomous navi-

gation. These maps are annotated with rules of the road including precise lane markings,

stop sign locations, speed limits, etc. Therefore, accurate localization within these maps

provide the autonomous agent with a wealth of knowledge to influence its decision. The

common approaches to localization often use a three-dimensional (3D) light detection and

ranging (LIDAR) for registration against a LIDAR reflectivity ground-plane map or use

cameras and extracted image features for registration against a dictionary of localized image

features during a previous mapping run.

In this thesis, we looked at both of these sensing modalities and detailed methods for

improving on the state-of-the-art. The fusion of our contributions yield a multi-modal

localization system that is robust through poor weather including heavy snowfall, road

construction overhauls, and even sensor failures given our redundant approach. Furthermore,

our approach throughout this thesis focuses on utilization of raw sensor data as a mechanism

for added robustness, thus avoiding common pitfalls of failed feature extraction.

5.1 Contributions

The specific contributions of this thesis include:

Gaussian Mixture Maps

We proposed Gaussian mixture maps (Chapter 2) as a method for condensing the full

state of the world into a compact distribution of Gaussians characterizing the structure (i.e.,

3D points) and appearance (i.e., reflectivity) of the environment. Using this, we proposed

a multiresultion, branch-and-bound method using rasterized versions of these distributions

to perform accurate and efficient localization into these maps. We demonstrated that our

method that jointly reasons over structure and appearance allows our vehicle to remain

localized under complex scenarios including heavy snowfall and road construction.
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Visual Localization within LIDAR Maps

In Chapter 3, we introduced a visual localization pipeline that generates synthetic views

of our 3D LIDAR map and performs whole image matching against these views. We

demonstrated on a series of datasets that our method is able to achieve a similar order

of magnitude error rate as LIDAR-based methods using a sensor that is several orders of

magnitude cheaper.

Probabilistic Obstacle Partitioning

In Chapter 4, we presented a probabilistic approach to obstacle partitioning that defines a

partition between ground-plane and obstacles in an image frame. We then used this method

to improve the quality of our visual localization by improving registrations when the camera

imagery is dominated by obstacles.

5.2 Future Work

There are many areas for future improvement or alternative use cases for our work. The

remainder of this section discusses these potential areas of interest, split into a discussion

over each technical chapter presented and a general discussion for the future of localization

as a whole.

Gaussian Mixture Maps

Our proposed Gaussian mixture map formulation can provide a wealth of information

for an autonomous car aside from that leveraged for localization. Specifically, as we briefly

discussed in Chapter 2, the Gaussian mixture map provides a mechanism to probabilistically

evaluate obstacle likelihood for a given point cloud point. Future work can consider a joint

evaluation over localization and obstacle detection that can yield a framework for partitioning

and tracking points temporally. Quite like the simultaneous localization and mapping (SLAM)

problem, the reasoning of obstacle points from stationary points used for localization is a

heavily interconnected problem.

Furthermore, our approach always assumed that the registration was between a point

cloud and a well sampled prior map. Future work can consider our approach for scan to scan

registration, quite similar to ordinary scan matching algorithms (Segal, Haehnel, and Thrun,

2009). Moreover, the application of our approach to other domains that are similarly well

structured (such as indoor quadrotor localization) or use a slightly different sensing modality

(such as sweeping, planar LIDAR scanners) provide interesting avenues for continued research.
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Visual Localization within LIDAR Maps

While briefly mentioned in Chapter 3, future work with visual localization in LIDAR maps

can consider alternative, compact map representations that allow for efficient localization in 3D

maps. Our presented approach relies on meshed ground-plane maps as it improved efficiency

of our system. The failure modes faced do seem to be correctable using a higher fidelity map

(such as the issue faced when our platform is only constrained laterally). Furthermore, the

addition of more cameras to our platform from various viewpoints can also be seen as areas

for future work. Finally, we are interested in extending our whole image matching beyond

localization within prior maps, instead looking to use the measurements in a visual odometry

pipeline.

Probabilistic Obstacle Partitioning

Our proposed obstacle partitioning framework can be viewed as a system that can benefit

from more diverse inputs. Introducing various deep learning and regression techniques can

improve measurement likelihoods used in our probabilistic partitioning and can likely improve

the quality of the system.

Furthermore, we see our approach that fuses LIDAR information into the segmentation

problem as an initial step toward a fully joint segmentation process. Future work should

further consider how each modality can be used simultaneously, as opposed to the more

common approach of segmenting them independently and fusing their outputs at the tracking

level.

General Areas for Future Work

Finally, a major area of future work is understanding the gaps and limitations of our

proposed localization system. Throughout our work, we strive for a system that always

maintains centimeter-level localization accuracy. However, transitioning this onto all cars

covering all roads, there are bound to be environments or events that have not been accounted

for. In certain circumstances, having precise localization could be impossible (e.g., a country

road with no 3D structure or lane markings for position estimation), thus understanding how

our work could be used in conjunction with a more rule-based agent (e.g., “drive down the

right lane”) is a large area for future work to improve robustness.
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APPENDIX A

Odometry Model

In this chapter, we detail the vehicle odometry model that is used throughout this thesis. This

odometry model incorporates measurements from an Applanix POS-LV 420 inertial navigation

system (INS) with external wheel encoder and dual global positioning system (GPS) antennas

for estimating incremental vehicle motion.

The vehicle state that we are concerned with estimating, l
µk, is defined by the 6-vector,

l
µk =

[
lt⊤k ,

lΘ⊤
k

]⊤
=
[
lxk,

lyk,
lzk,

lrk,
lpk,

lhk
]⊤
, (A.1)

which is the vehicle pose relative to the local navigation frame, l, at time k. Here, ltk is a

translation 3-vector expressed relative to frame l and lΘk is the corresponding 3-vector of

Euler angles with r representing roll about the x axis, p representing pitch about the y axis,

and h representing heading about the z axis. When the vehicle is powered on, this local

frame is initialized at the origin, l
µ0 = [0, 0, 0, 0, 0, 0]⊤.

The Applanix INS provides state observations at 100 Hz of the form:

luk =
[
lv⊤

k ,
lw⊤

k

]⊤
, (A.2)

where lvk is the measured platform velocities with respect to the local frame and lwk is the

measured Euler angle orientations. We then define a discrete update process for estimating

vehicle odometry in terms of the previous odometry estimate,

l
µk = f

(
l
µk−1,

luk

)
. (A.3)

The function f( · ) integrates the velocity over time while directly using the doubly integrated
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orientation performed internal to the Applanix. Specifically, f( · ) is computed as:

ltk =
ltk−1 +∆t · lv̂k, (A.4)

lΘk =
lŵk. (A.5)

A.1 Uncertainty Estimation

As frequently required in robotics applications, it is also necessary to estimate odometry

uncertainty for the robot. This is especially important when incorporating odometry estimates

in a filtering application, as done in Chapter 2 and Chapter 3. Moreover, characterizing

vehicle odometry allows us to probabilistically evaluate perceptual data as demonstrated in

Chapter 4.

We define our uncertainty estimation using a parametric model for incremental uncertainty

propagation. This is defined using the incremental “delta odometry”,

∆µk−1,k = ⊖µk−1 ⊕ µk, (A.6)

which is the tail-to-tail composition that expresses the current odometry estimate at time

k relative to the belief at time k − 1 (Smith, Self, and Cheeseman, 1990). This allows

us to propagate uncertainty by performing first-order covariance propagation of µk =

µk−1 ⊕∆µk−1,k, arriving at:

Σk =
[

J⊕1 J⊕2

]
[

Σk−1 0

0 ∆Σk−1,k

]
[

J⊕1 J⊕2

]⊤

, (A.7)

where J⊕1 is the partial derivative of µk with respect to µk−1, J⊕2 is the partial derivative of

µk with respect to ∆µk−1,k, and ∆Σk−1,k is the incremental uncertainty accrued from k − 1

to k. This can be familiarly seen in the Kalman prediction step as,

Σk = J⊕1Σk−1J
⊤
⊕1 + J⊕2∆Σk−1,kJ

⊤
⊕2, (A.8)

where J⊕2 transforms the incremental noise, ∆Σk−1,k, into the local frame (i.e., Qk =

J⊕2∆Σk−1,kJ
⊤
⊕2).

In many circumstances, ∆Σk−1,k is set to a fixed covariance. However, we instead fit a

parametric model as the true uncertainty is a function of the control action taken from k − 1

to k (e.g., higher speeds should incur greater magnitude uncertainty in the direction of travel).

Thus, we use an approach similar to that proposed by Hu and Kantor (2015), where we use a
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parametric model that is a function of a set of extracted features from the “delta odometry”,

∆Σk−1,k = G(∆µk−1,k) =
n∑

i=1

gi (∆µk−1,k)
2 ·Σθi , (A.9)

where gi( · ) are a set of n functions that extract features from the “delta odometry” and

apply a weighting of the learned parameterized covariance Σθi . Throughout this thesis we use

two features, though the method could be applied to an arbitrary number of features. The

first feature used is the L2 distance of the odometry step, which captures errors from the

wheel encoder. The second feature is the “delta heading” over the odometry step to account

for errors that are correlated with turning. These are defined as:

g1 (∆µk−1,k) = ‖∆tk−1,k‖, (A.10)

g2 (∆µk−1,k) = ‖∆hk−1,k‖. (A.11)

The corresponding covariances to be learned, Σθ1 and Σθ2 , are decomposed into their Cholesky

factorization to avoid rank deficient covariances:

Σθ1 = Lθ1L
⊤
θ1
, (A.12)

Σθ2 = Lθ2L
⊤
θ2
. (A.13)

Thus, θ1 and θ2 are each a 21-element parameter vector (42 total model parameters):

Lθ1 =














θ1,1 0 0 0 0 0

θ1,7 θ1,2 0 0 0 0

θ1,12 θ1,8 θ1,3 0 0 0

θ1,16 θ1,13 θ1,9 θ1,4 0 0

θ1,19 θ1,17 θ1,14 θ1,10 θ1,5 0

θ1,21 θ1,20 θ1,18 θ1,15 θ1,11 θ1,6














,Lθ2 =














θ2,1 0 0 0 0 0

θ2,7 θ2,2 0 0 0 0

θ2,12 θ2,8 θ2,3 0 0 0

θ2,16 θ2,13 θ2,9 θ2,4 0 0

θ2,19 θ2,17 θ2,14 θ2,10 θ2,5 0

θ2,21 θ2,20 θ2,18 θ2,15 θ2,11 θ2,6














.

These parameters are learned from the maximum likelihood estimate (MLE) of ground-

truth training data. Given a set ofm “delta odometry” samples, {∆µj}
m

j=1, with corresponding

ground-truth, {∆µ̂j}
m

j=1, we are interested in finding the parameters that maximize the log-

likelihood,

θ̂1, θ̂2 = argmax
θ1,θ2

∑

j

−
1

2
logG (∆µj)−

1

2
ǫ⊤j G(∆µj)

−1 ǫj, (A.14)
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where ǫj = ∆µj −∆µ̂j is the error for the jth sample. This likelihood treats each sample

independently and evaluates against the Gaussian density function. Further, we found that

constraining elements along the diagonal (i.e., the first 6 parameters of θ1 and θ2) to be strictly

greater than zero led to faster convergence and more stable parameters. The algorithm was

implemented using GSL’s multimin (Gough, 2009) in which numerical gradients were used.

Moreover, it is important to generate random samples that well explore the feature space so

that the model can generalize over the features.
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APPENDIX B

Offline SLAM Pipeline

In this chapter, we detail the offline simultaneous localization and mapping (SLAM) pipeline

that we use for constructing maps and generating ground-truth for our experiments.

Prior to the offline mapping stage, our robot has no a priori knowledge of the environment,

thus, we must use the light detection and ranging (LIDAR) scanners and inertial sensors to

build a model of the environment while simultaneously localizing within this environment.

We use the state-of-the-art in nonlinear least-squares, pose-graph SLAM to map the three-

dimensional (3D) structure in a globally consistent frame.

We construct a pose-graph to solve the full SLAM problem as shown in Fig. B.1, where

nodes in the graph are poses (X) and edges are either odometry constraints (U) as outlined in

Appendix A, laser scan matching constraints (Z), or GPS prior constraints (G). These con-

straints are modeled as Gaussian random variables; therefore, we model the joint distribution

over poses and constraints as

P (X,U, Z,G) =
M∏

i=1

P (xi|xi−1,ui)
K∏

k=1

P (zk|xik ,xjk)
A∏

a=1

P (ga|xa) (B.1)

∝
M∏

i=1

e−
1
2
‖fi(xi−1,ui)−xi‖

2
Σi

K∏

k=1

e
− 1

2
‖hk(xik

,xjk
)−zk‖

2
Σk

A∏

a=1

e−
1
2
‖ha(xa)−ga‖2Σa , (B.2)

where there are M poses, K loop closures, and A GPS prior constraints. Thus, to solve the

SLAM problem, we seek to find the maximum a posteriori (MAP) estimate over the robot
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Figure B.1: Factor graph of the pose-graph SLAM problem that we solve in the offline
mapping stage. Here, xi represents states of the robot, um represents incremental odom-
etry measurements, zk represents laser scan-matching constraints, and ga are GPS prior
measurements.

poses by minimizing the negative log of the joint probability:

X∗ = argmax
X

P (X,U, Z,G) (B.3)

= argmin
X
− logP (X,U, Z,G) (B.4)

= argmin
X

M∑

i=1

‖fi(xi−1,ui)− xi‖
2
Σi

+
K∑

k=1

‖hk(xik ,xjk)− zk‖
2
Σk

+
A∑

a=1

‖hk(xa)− ga‖
2
Σa
,

(B.5)

where fi( · ) is our process model, hk( · ) is our scan matching measurement model, and ha( · ) is

our GPS measurement model. Each is corrupted by normally distributed noise with covariance

Σi, Σk, and Σa, respectively. This summation equates to solving a nonlinear least-squares

problem. We use incremental smoothing and mapping (iSAM) (Kaess, Ranganathan, and

Dellaert, 2008), which uses incremental QR factorization to solve this nonlinear least-squares

problem.

Since map construction is an offline task, we do not construct our pose-graph and make

loop closures “online”. Instead, we first construct a graph with only odometry and GPS prior

constraints. With this skeleton pose-graph in the near vicinity of the global optimum, we use

Segal, Haehnel, and Thrun (2009)’s generalized iterative closest point (GICP) to establish

6-degree of freedom (DOF) laser scan-matching constraints between poses; adding both

odometry constraints (temporally neighboring poses) and loop closure constraints (spatially

neighboring poses) to our pose-graph. Furthermore, we also include reflectivity-based scan-

matching constraints that only consider the appearance of the point clouds; this is formulated
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as a 3-DOF constraint (i.e., relative x, y, and heading), optimizing a cost function similar to

Levinson, Montemerlo, and Thrun (2007).

B.1 Ground-Truth

We further use this SLAM pipeline to generate ground-truth for evaluation. Given a newly

acquired vehicle trajectory, we are interested in finding its optimal trajectory, Y = {yj}
N
j=1.

Without loss of generality, a pose-graph over the variables in Y can be constructed as those

in X above; however, in this section we are further interested in expressing the location of

poses in Y relative to the poses in X. Thus, we are interested in stitching Y into the mapping

pose-graph over X

This is done by establishing laser scan-matching constraints between poses in X and

poses in Y . Unlike the previous section, we cannot directly add a pairwise factor to our factor

graph because it would cause the underlying map’s pose-graph to change (i.e., estimates of

each xi ∈ X needs to be fixed as maps are constructed once from this data). Instead, we use

pose composition to generate artificial prior factors that can be added to our factor graph.

Given a 6-DOF scan-matching constraint, zk, that measures the position of yjk with

respect to xik , we calculate this artificial prior,

z′k = xik ⊕ zk, (B.6)

where ⊕ is the head-to-tail composition operation (Smith, Self, and Cheeseman, 1990). We

further propagate uncertainty through this transformation to arrive at

Σ′
k =

[

J⊕1 J⊕2

]
[

Σxik
0

0 Σk

]
[

J⊕1 J⊕2

]⊤

, (B.7)

where Σxik
is the marginal covariance from the fixed pose-graph over X and Σk is the

scan-matching uncertainty as above. Further, J⊕1 is the partial derivative of z′k with respect

to xik and J⊕2 is the partial derivative of z′k with respect to zk. The prior factor with mean

z′k and covariance Σ′
k are then added to the pose-graph—this is done similar to the GPS

prior factors.
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