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Abstract

This paper reports on a system for an autonomous underwater vehicle to perform in-situ,
multiple session, hull inspection using long-term simultaneous localization and mapping
(SLAM). Our method assumes very little a-priori knowledge, and does not require the aid
of acoustic beacons for navigation, which is a typical mode of navigation in this type of ap-
plication. Our system combines recent techniques in underwater saliency-informed visual
SLAM and a method for representing the ship hull surface as a collection of many locally
planar surface features. This methodology produces accurate maps that can be constructed
in real-time on consumer-grade computing hardware. A single-session SLAM result is ini-
tially used as a prior map for later sessions, where the robot automatically merges the mul-
tiple surveys into a common hull-relative reference frame. To perform the re-localization
step, we use a particle filter that leverages the locally planar representation of the ship hull
surface, and a fast visual descriptor matching algorithm. Finally, we apply the recently-
developed graph sparsification tool, generic linear constraints (GLC), as a way to manage
the computational complexity of the SLAM system as the robot accumulates information
across multiple sessions. We show results for 20 SLAM sessions for two large vessels over
the course of days, months, and even up to three years, with a total path length of approx-
imately 10.2 km.



1 Introduction

Periodic maintenance, structural defect assessment, and harbor surveillance of large ships is of great im-
portance in the maritime industry because structural wear and defects are a significant source of lost rev-
enue (Boon et al., 2009). Until recently, these tasks were carried out by periodic dry-docking, where a vessel
is removed from the water for easy access to the entire ship hull. This task has recently evolved to include
the deployment of a variety of unmanned underwater robots to map and inspect the hull in-situ. Due
to the periodic nature of the inspection, surveys are often conducted every few months. Having a single
autonomous underwater vehicle (AUV) map an entire vessel within a short time frame may be impossi-
ble. However, using multi-session mapping techniques would parallelize the inspection process, or allow
partial maps to be built as time allows. In addition, the sheer size of the final map would prevent a state-
of-the-art simultaneous localization and mapping (SLAM) system from performing in real-time. Therefore,
a computationally efficient and compact representation of the map is critical to maintain real-time map-
merging performance in the long term.

The goal of this work is to extend our Hovering Autonomous Underwater Vehicle (HAUV) graph-based
visual SLAM system to support automated registration from multiple maps via a method called multi-
session SLAM. To maintain real-time performance, redundant or unnecessary nodes are marginalized from
the factor-graph once the sessions are aligned into a common hull-relative reference frame. An overview of
our multi-session SLAM framework is illustrated in Fig. 1, including a visualization of how the estimated
trajectory would align with a computer aided design (CAD) hull model. This framework is consistent,
computationally efficient, and leverages recent techniques in SLAM research to create an extensive map.
Our method has several advantages over long-baseline (LBL) and global positioning system (GPS) navi-
gation methods. In essence, long-term hull-inspection with an AUV demands a hull-relative method for
navigation because a vessel’s berth may change with time.

We have laid the foundation of this paper in our earlier publications (Ozog and Eustice, 2013b, 2014). Here,
we offer several improvements to our previous methodology, including:

• The use of a constraint between a plane and individual Doppler velocity log (DVL) beams.

• Periscope re-localization with the aid of pose-constrained correspondence search (PCCS).

• Exemplar views to maintain visual diversity in the merged graph.

• A quantitative evaluation of the effect of repeated application of generic linear constraints (GLC)
for our application.

• Significantly more field data used in our evaluation. The surveys now span three years, with a total
path length exceeding 10 km.

We start with a brief overview of relevant literature in Section 2. In Section 3, we summarize our single
session SLAM framework and introduce our planar factor constraint, which substantially improves our
survey results. We describe our overall approach for long-term hull-relative SLAM using the HAUV in Sec-
tion 4. Here, we present how our SLAM system for the HAUV can be adapted for the GLC framework, thus
enabling long-term mapping capabilities. Finally, in Section 5, we experimentally evaluate our approach
using real-world data, and conclude with a discussion in Section 6.

2 Related Work

We cover three broad areas of related work: (i) underwater surveillance using robots and underwater sen-
sors, (ii) managing graph complexity for long-term SLAM, and (iii) merging intermediate SLAM graphs
into a larger map without a fixed absolute reference frame, for example, as provided by a GPS.
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Figure 1: Multi-session SLAM overview. In (a), we show three different sessions aligned to a common frame
using our multi-session SLAM framework, with each color denoting a different session. A surface mission
(‘A’), in blue, uses the periscope camera to capture images of the ship’s above-water superstructure. Two
underwater missions (‘B’ and ‘C’), in red and green, capture underwater images of the ship hull. The gray
patches denote the planar features used in our novel planar constraints framework, described in §3.4. Two
representative images from the periscope and underwater camera are shown. In (b), we manually aligned
a low fidelity CAD model of the ship for the sake of visual clarity, with the corresponding sessions colored
appropriately. Note that this CAD model is not used in our SLAM system.

2.1 Robotic Underwater Surveillance

Early work by Harris and Slate (1999) aimed to assess superficial defects caused by corrosion in large ship
hulls using the Lamp Ray remotely operated vehicle (ROV). A non-contact underwater ultrasonic thick-
ness gauge measured the plate thickness of the outer hull, and an acoustic beacon positioning system was
used for navigation. Since the early 2000’s, some focus has shifted from structural defect detection to the
identification of foreign objects like limpet mines. Sonar imaging sensors, in particular, have been success-
fully deployed to detect foreign objects underwater (Belcher et al., 2001). In work by Trimble and Belcher
(2002), a similar imaging technique was successfully deployed using the free-floating CetusII AUV. Like the
Lamp Ray, this system used a specifically-designed LBL acoustic beacon system for navigation around ship
hulls and similar underwater structure. Additionally, Carvalho et al. (2003) used a probability-of-detection
metric to assess the effectiveness of these sorts of acoustic-based sensors. Regardless of the specific robot
used, the significant amount of infrastructure required for beacon-based navigation (Milne, 1983) hinders
the widespread use of these robotic systems in large shipping ports.



More recently, techniques in computer vision and image processing have been applied to various applica-
tions in underwater inspection. Negahdaripour and Firoozfam (2006) used a stereo vision system to aid in
the navigation of a ROV, and provide coarse disparity maps of underwater structure. Ridao et al. (2010)
used both a camera and sonar to inspect dams using an ROV, and employed bundle-adjustment techniques
and image blending algorithms to create mosaics of wall-like structures of a hydroelectric dam. Some ef-
forts have even attempted to identify physical defects only from a single image. Bonnı́n-Pascual and Ortiz
(2010) applied various image processing techniques to automatically identify the portions of a single image
that appear to contain corrosion.

In addition to free-floating vehicles, there are some approaches that use robots that are physically attached
to the ship hull itself. Menegaldo et al. (2008, 2009) use magnetic tracks to attach the robot to the hull, but
their hardware is limited to above-water portions of the hull. By contrast, Ishizu et al. (2012) developed
a robot that uses underwater, magnetically adhesive spider-like arms to traverse the hull. Like previously
mentioned free-floating vehicles, this robot employs a stereo camera to assess the amount of corrosion. Hull
inspection with high frequency profiling sonar is presented by VanMiddlesworth et al. (2013) where they
build a 3D map and the entire pose-graph is optimized using submaps.

Although the main focus of this paper is on in-water hull inspection, there are other applications for long-
term AUV-based surveillance and mapping in large area underwater environments. Autonomous vehicles
present significant potential for efficient, accurate and quantitative mapping in arctic exploration (Kunz
et al., 2009), Mariana Trench exploration (Bowen et al., 2009), pipeline inspection (Gustafson et al., 2011) and
coral reef habitat characterization (Singh et al., 2004). These studies were presented within the context of
a single-session SLAM application, however, the repeated monitoring and multi-session SLAM framework
we present here could be beneficial in those application domains as well.

2.2 Long-term SLAM for Extensive Mapping

Graph-based SLAM solvers (Dellaert and Kaess, 2006; Grisetti et al., 2007; Kaess et al., 2008; Kummerle
et al., 2011) are popular tools in SLAM, however they are limited by computational complexity in many
long-term applications. As a robot explores an area and localizes within its map, pose nodes are continu-
ally added to the graph. Therefore, optimizing a graph of modest spatial extent becomes intractable if the
duration of the robot’s exploration becomes sufficiently large. A number of proposed methods attempt to
address this problem by removing nodes from the graph, thus reducing the graph’s size. Recent empha-
sis has been placed on measurement composition using full-rank factors, such as laser scan matching or
odometry (Konolige and Bowman, 2009; Eade et al., 2010; Kretzschmar and Stachniss, 2012). Measurement
composition synthesizes virtual constraints by compounding full-rank 6-degree of freedom (DOF) trans-
formations, as shown in Fig. 2(a), however this operation is ill-defined for low-rank measurements, such as
those produced by a monocular camera, shown in Fig. 2(b). This is one of the primary motivations for the
development of the factor-graph marginalization framework described by Carlevaris-Bianco and Eustice
(2013a), called generic linear constraints (GLC), which address the low-rank problem.

The GLC method avoids measurement composition and works equally well using full-rank and low-rank
loop-closing measurements. This is a critical requirement for the HAUV application because low-rank
factors from either a monocular camera or an imaging sonar are the primary means of correcting naviga-
tional error from the DVL. Furthermore, measurement composition tends to re-use measurements when
synthesizing virtual constraints. Doing so double-counts information and does not produce the correct
marginalization in the reduced SLAM graph.

Previous studies of large-scale SLAM suggest solving SLAM using multiple maps to efficiently and consis-
tently optimize very large graphs. The first method for constructing a large-scale map involves the use of
submapping techniques, i.e., building local maps and then stitching the local maps together to build larger
maps. This type of submap technique was originally proposed by Leonard and Feder (1999) to reduce the
computational cost by decoupling the larger maps into submaps. This work was further developed into
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Figure 2: This figure shows that the measurement composition technique, often used in variable marginal-
ization in graph-based SLAM, is undefined for low-rank monocular camera measurements, as used in this
work. For generating the green end-to-end 6-DOF transformation in (a), one simply has to compound the
intermediate 6-DOF relative-pose transformations, in blue. This cannot be done for the intermediate 5-DOF
measurements shown as red arrows in (b). In this case, computing the end-to-end baseline direction of
motion is ill-posed because it depends on the scale at each camera measurement, which is not known.

the Atlas framework by Bosse et al. (2004) where each submap is represented as a coordinate system in a
global graph. For example, Bosse and Zlot (2008) developed a two-level loop-closing algorithm based on
the Atlas framework, while Neira and Tardos (2001) introduced a way to measure joint compatibility, which
resulted in optimal data association. Examples of underwater submap applications include vision (Pizarro
et al., 2009) and bathymetry maps from acoustic sensors (Roman and Singh, 2005). Kim et al. (2010) used a
similar submapping approach, except in the context of a factor-graph representation of cooperative SLAM.
They used so-called anchor nodes, which are variable nodes representing the transformation from a common
reference frame to the reference frame of each vehicle’s SLAM graph. Anchor nodes are nearly identical
to base nodes introduced by Ni et al. (2007). They are a very simple way to extend observation models to
perform submap alignment, which is why our multi-session SLAM approach (discussed in §4) formulates
the session alignment using anchor nodes.

To efficiently perform multi-session SLAM in the absence of a readily-available absolute position reference
requires an initial data-association step. By doing so, each map can be expressed into a common frame
of reference, thus bounding the search space for identifying additional data associations. Recently, visual
information has been exploited in data association by providing an independent loop-closing ability based
upon appearance. Nistér and Stewénius (2006) introduced a framework that used a bag-of-words (BoW)
representation of images to quickly compare the histogram of words between two images using vocabulary
trees. Cummins and Newman (2008) used a generative model to describe the co-occurrence of words in
the training data. They developed the popular Fast Appearance-Based Mapping (FAB-MAP) algorithm,
which frames the problem as a recursive Bayes filter and showed that their system can leverage temporal
information with or without a topological motion prior. Both of these methods have become a common
practice for loop-closure detection in real-time SLAM front-ends.

Our approach also shares some similarity with methods that maintain visual diversity in long-term SLAM
graphs. GraphSLAM by Thrun and Montemerlo (2006) presents some early work on a large urban area
with visual features. The method, however, was an offline approach with conventional optimization meth-
ods. Our work has more connection to recent online approaches such as the one introduced by Konolige
and Bowman (2009). They represent a place in the SLAM graph as a collection of exemplar views. This
encourages visually diverse keyframes in the SLAM graph, thus increasing potential matchability as more
images are collected by the robot. Furthermore, this approach limits the number of views to be less than a
user-defined parameter, which keeps the graph size bounded.
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Figure 3: The Bluefin Robotics HAUV (shown in (a)) is specifically designed for in-situ underwater hull and
harbor inspection and requires no pre-existing infrastructure (e.g., acoustic beacons), to localize. Instead, it
uses a DVL for hull-relative navigation, which differentiates it from other similar inspection robots. In (b),
we show the relative size of the vehicle compared to a typically-sized vessel.

3 Underwater Visual SLAM with Planar Constraints

In our trials, we use the HAUV (Fig. 3) developed by Bluefin Robotics. The HAUV is a free-floating vehicle
that requires no existing LBL infrastructure for localization (Hover et al., 2007). Instead, the HAUV uses a
DVL as its primary navigation sensor, which can operate in a hull-relative or seafloor-relative mode. This
allows the robot to inspect a variety of underwater infrastructure: ship hulls, pilings, or harbor surveillance.
The vehicle is equipped with two monocular cameras so that it can switch between below-water and above-
water images. The periscope camera is fixed with a static angle allowing the robot to capture superstructure
and above-water features. The underwater camera is mounted on a tray along with the imaging sonar and
DVL. During a mission, the tray is servoed such that both the DVL and camera always point nadir to the
hull while the robot keeps a fixed distance.

In this section, we introduce the overall system, including the SLAM back-end, and camera and plane con-
straints. The illustration of the pose-graph framework is given in Fig. 4. The robot is provided with camera,
planar, and odometry measurements together with absolute measurements on depth and attitude. Follow-
ing a brief illustration of each module, we specifically focus on the planar constraints that substantially
improve mapping and localization performance.

3.1 State Representation

For the remainder of this section, let xij = [xij , yij , zij , φij , θij , ψij ]
⊤ be the 6-DOF relative-pose of frame j

as expressed in frame i, where x, y, z are the Cartesian translation components, and φij , θij , and ψij denote
the roll (x-axis), pitch (y-axis), and yaw (z-axis) Euler angles, respectively. Ri

j is the rotation matrix that

rotates a vector in j’s frame to a vector in i’s frame, and t
i
ij is the translation from i to j as expressed in i’s

frame. Finally, g will refer to the global, or common, reference frame.



full-state prior

absolute meas. (depth, pitch, roll)
camera meas.

planar range meas.
pose-to-plane meas.

piecewise-planar meas.
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Figure 4: An illustration of a multi-session factor-graph with camera, planar and other measurements.
Orange, blue, and green variable nodes correspond to planes, vehicle poses, and anchor nodes, respectively.
The top half nodes correspond to a prior session (reference frame a), while the bottom half belong to a
subsequent session (reference frame b). Factor nodes are shown as black circles, along with the type of
observation encoded as a script character. The use of odometry and prior factors is common-practice in
pose-graph SLAM so these are not covered in detail in this paper. The camera and planar measurements
are discussed in more detail in §3.3 and §3.4, respectively.

3.2 SLAM Back-end

The HAUV is equipped with a variety of sensors: a DVL and inertial measurement unit (IMU) for odometry,
a pressure depth sensor, two cameras for 3D bearing measurements, and an imaging sonar. The use of these
sensors for SLAM is described in detail by Johannsson et al. (2010) and Kim and Eustice (2009). SLAM aims
to correct for any accumulated navigational error when the robot senses environmental features it has seen
previously. The DVL measures four beam ranges, along with four body-frame velocities. These range
measurements can also be converted to a sparse 3D point set, which allows us to fit local planar patches to
the DVL data.

The SLAM system used on the HAUV has evolved from an offline filtering-based approach with manual
data association (Walter et al., 2008), to a real-time factor-graph optimization framework that supports both
sonar and monocular camera measurements automatically (Hover et al., 2012). Currently, our SLAM sys-
tem uses the incremental smoothing and mapping (iSAM) algorithm as the optimization back-end (Kaess
et al., 2008; Kaess and Dellaert, 2009; Kaess et al., 2010).

3.3 Camera Constraints

The previously-mentioned underwater and periscope cameras can both be used to derive spatial constraints
from two-view feature correspondence. The underwater environment is particularly challenging because
it does not always contain visually useful features for camera-derived measurements. To alleviate this
issue, Kim and Eustice (2013) allowed for greatly increased computational performance by only considering
visually salient keyframes in the visual SLAM pipeline. They derived a local saliency score using a coarse
BoW representation of each keyframe from speeded-up robust features (SURF) descriptors (Bay et al., 2006).
To derive two-view camera constraints from overlapping images, the system searches for correspondence
between keyframes using the scale-invariant feature transform (SIFT) descriptor (Lowe, 2004). A scene
depth prior based upon the DVL and a relative-pose prior based on the SLAM estimate offer a constrained
putative correspondence search that is faster and more consistent than typical appearance-only random
sample consensus (RANSAC)-based approaches (Eustice et al., 2008; Carlevaris-Bianco and Eustice, 2011).



From two overlapping images taken from our monocular camera, we can derive a spatial constraint, mod-
ulo scale, between the vehicle poses from which those images where taken. This measurement therefore
has five DOFs: three rotations, and a vector representing the direction of translation that is parameterized
by azimuth and elevation angles.

We have found that adding camera measurements with low baseline can potentially produce outlier mea-
surements. These outliers are occasionally not identified with a Mahalanobis distance check prior to their
addition to the SLAM graph. We therefore use the robust back-end method known as Dynamic Covariance
Scaling (DCS) (Agarwal et al., 2013). This method is based on the work by Sunderhauf and Protzel (2012),
which employs switching variables to turn on and off measurements by scaling the information matrix for
loop-closing measurements. DCS does this in closed form, which avoids having to increase the dimension-
ality of the state to estimate the scale variables. Thus, the robust monocular camera factor between poses
xgi and xgj is:

χ2
DCSij

=
∥∥∥z5dofij − h5dof (xgi,xgj)

∥∥∥
2

1

s2
ij

Ξzij

, (1)

where h5dof (xgi,xgj) = [αij , βij , φij , θij , ψij ] is the predicted baseline direction of motion azimuth αij , ele-
vation βij , and the relative Euler angles φij , θij , ψij , and 1

s2
ij

Ξzij
is the DCS scaled measurement covariance

matrix. Agarwal et al. (2013) show that the covariance scale variable, sij , is given by

sij = min

(
1,

2Φ

Φ + χ2
l

)
,

where χ2
l is the unscaled chi-squared error, computed from (1) using the unscaled measurement covariance,

Ξzij
. Higher values of the parameter Φ make it more likely to accept loop closures. For our field trials, we

choose Φ = 5; however, values between 1 and 10 produce nearly identical results.

3.4 SLAM with Planar Segments

To further constrain the vehicle’s trajectory, we use planar patches as nodes in the SLAM graph using a
piecewise-planar model (Ozog and Eustice, 2013b), which is summarized in Fig. 5. This method provides
an explicit representation of the ship hull surface in the factor graph, and produces accurate and efficient
maps using only a sparse 3D point cloud (such as one produced by the underwater DVL navigation sensor).
Furthermore, this method preserves the overall curvature of the ship’s exterior hull, assuming that the robot
has coarse prior knowledge on the side-to-side and top-to-bottom characteristic curvature of the surface.
This distinguishes our work from other planar SLAM approaches (Weingarten and Siegwart, 2006; Trevor
et al., 2012) in two ways. First, other methods make use of a much more data-rich 3D laser scanners or
depth cameras. Second, these other approaches are experimentally evaluated in structured environments,
like office buildings, that contain many planar walls at sharp angles to each other. Unfortunately, these
approaches require that the planes be directly observed from two or more views. However, this is often
not achievable in ship hull inspection because (i) the hull is smoothly curved, and (ii) the DVL’s field of
view is both more narrow and more sparse than a typical laser scanner or depth camera. In this section, we
explain the plane constraints from a single session point of view, but another significant strength of these
constraints are in robust registration that allows for multi-session SLAM, which will be discussed in §4.

3.4.1 Plane Composition Operators

The planar observation models used in this paper involve expressing planes in multiple frames of reference.
In this section, we describe these operations in detail. Let πik be the plane indexed by k, expressed with
respect to frame i. When i is the global frame, g, this plane corresponds to a variable node in our factor-
graph. We parametrize the plane πgk = [nx

gk, n
y
gk, n

z
gk]

⊤ using three numbers, where nxgk, ny
gk, and nz

gk
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Figure 5: The method in this paper represents the ship hull surface as a collection of locally planar fea-
ture patches (gray), with a simple assumed prior on the characteristic curvature model. The residual error
of two co-registered planes are weighted in such a way so that only errors that extend outside of the de-
viation explained by the characteristic curvature are significant. The method relies on two characteristic
radii parameters: one for the azimuth (side-to-side variation, shown in (a)), and one for elevation (top-
down variation, shown in (b)). Ozog and Eustice (2013b) show that the performance of this approach is not
overly sensitive to these user-defined parameters.

are the x, y, and z components of the (non-unit) normal vector to the plane k, expressed in the global-
frame, g. We do not use the popular Hessian normal form simply because it is parameterized by four
numbers, despite having only three degrees of freedom. This over-parameterization would therefore result
in a singular covariance matrix. The Hessian normal form is given by: n̂

⊤
x = −p for any point x that

lies on the plane, where n̂ is the unit normal of the plane, and p is the distance of the plane to the origin.
Conversely, our parameterization uses only three numbers. We simply scale the unit-normal by the distance
to the origin, yielding what we denote as the π symbol. With our parameterization, we have π

⊤
x = −‖π‖2

for any point x on the plane.

The frame of reference of the plane is denoted with a subscript whereby the plane indexed by k as expressed
with respect to some frame i is denoted πik. If one wishes to express a plane in a different frame of reference,
one simply applies the ⊟ and ⊞ operators, which take as input a 6-DOF pose and 3-DOF plane. Let xij ⊟

πik = πjk, where

πjk = xij ⊟ πik =

(
t
i⊤
ij πik + ‖πik‖

2
)
Rj

iπik

‖πik‖2
.



The ⊟ operator is commonly used to evaluate factor potentials, discussed in the next section. We also define
the ⊞ operator, where xij ⊞ πjk = πik. This can be expressed in terms of the ⊟ operator by

xij ⊞ πjk = ⊖xij ⊟ πjk,

where ⊖ is the pose-inversion operation (Smith et al., 1986). The ⊞ operator is commonly used to transform
plane measurements from the vehicle frame to the global, but not to evaluate factor potentials.

3.4.2 Planar Constraints between Poses and other Planes

In this section we describe observation models used to add measurements to our SLAM graph. A binary
factor potential of the form

Ψ(xgi,πgl; zπil
,Σzπil

) = ‖zπil
− (xgi ⊟ πgl) ‖

2
Σzπil

(2)

is used when the DVL sensor determines a good planar fit of a sliding time-window of 3D points. The
covariance matrix, Σzπil

, is determined by first-order approximation of a function that fits a plane from the
3D points, which are assumed to be corrupted by Gaussian noise.

A piecewise-planar factor potential is similarly used to constrain the surface normals of two plane nodes
with respect to a common pose node. It is given by the expression

Ω(xgi,πgk,πgl;Wijkl) =

‖ (xgi ⊟ πgk)− (xgi ⊟ πgl) ‖Wijkl
. (3)

A weight matrix, Wijkl, is based on the characteristic curvature of the ship hull. It is a function of two
vehicle poses from which the planes k and l were observed (that is, i and j, respectively):

Wijkl = diag
(
∆2

x,∆
2
y,∆

2
z

)
+CΣijC

⊤,

where Σij is the joint covariance between poses i and j. C is the Jacobian of the function c ( · ) that is a
simple curvature model of the surface being observed. Since the two measured planes will not be perfectly
coplanar due to surface curvature, it is a simple way to take this into account when computing error from
the ⊟ operator described in §3.4. This approach is illustrated in Fig. 5, and the mathematical formulation of
the curvature model is



∆x

∆y

∆z


 = c (xgi,xgj ;πik,πjl, ra, re) = πjl −


xij ⊟ trans


dir (πik) +



tiijy/ra
tiijz/re

0






 ,

where dir( · ) converts a 3-dimensional Cartesian vector to one expressed in 3-dimensional spherical coor-
dinates: azimuth, elevation, and distance to the origin. Conversely, trans( · ) converts spherical coordinates
to Cartesian. See §A.1 for the full definition of these functions. The user-defined characteristic radii for
azimuth and elevation are denoted ra and re, respectively. For the experimental results in this paper, we
use ra = 322 m and re = 7 m. Similar to what is described in Ozog and Eustice (2013b), the results pre-
sented in this paper are almost identical so long as ra and re are within the same order of magnitude as
these provided values.

3.4.3 Range Constraints between Planes and Poses

In the event that fitting a plane to a point cloud is ill-conditioned, as is the case when all points are colinear,
or when there is only a single point, we use a simple ray-tracing method to constrain a plane with these
ill-conditioned DVL beams. This is illustrated in Fig. 6.



Figure 6: Given plane k and DVL pose d in the global frame, the points of intersection for each ray can
be computed so long as the ray origin and direction are known using (4). We can compare the predicted
range to the DVL-measured range, and use this as a spatial constraint between the pose and plane. This
is particularly useful when the points detected by the plane are ill-conditioned for fitting a plane (such as
only two DVL beams that will always lie on a line, as in this figure).

(a) With range constraints (b) Without range constraints

Figure 7: In practice, we find the HAUV may only successfully measure the top two DVL returns — espe-
cially when surfaced. Here, we show the benefits of leveraging this information in the context of SLAM. In
each figure, the viewpoint is from stern-to-bow, and green lines encode the invocation of a range constraint.
In (a), two surface missions are well-aligned, whereas in (b), there is some noticeable drift, highlighted in
red. In each figure, black dots denote pose nodes in a sparsified graph using the GLC method discussed
in §4.1.

Let rin be the n-th unit-norm ray expressed in pose frame i. If rin is known to intersect with plane πik, then

we can compute the predicted ray length, l̂
r
i
n

, by tracing the ray until it intersects with the surface. Because
the surface is planar, we can derive a closed-form expression for the length:

l̂
r
i
n

(
xij ,πik; r

i
n

)
=

‖xij ⊟ πik‖

ri⊤n (xij⊟πik)
. (4)

The resulting factor potential between pose j and plane k is computed by weighting the difference between
the observed beam range, zl

r
i
n

, and the predicted range from above:

Φ

(
xij ,πik; zl

r
i
n

, σzl
r
i
n

, rin

)
=



zl

r
i
n

− l̂
r
i
n

(
xij ,πik; r

i
n

)

σzl
r
i
n




2

, (5)

where σzl
r
i
n

is the standard deviation of the range measurement noise from the nth beam.



Intuitively, this factor potential is less informative than the piecewise planar factor defined in (3). However,
in the event that a plane is not observable from the DVL’s point cloud, it still provides a useful constraint
for the SLAM trajectory if a local planar patch has been previously established. In practice, we use this
constraint in the event that the incident angle for the bottom two DVL beams is too large, which we find
can happen when the HAUV is at the surface. An example of the benefit of this information is shown
in Fig. 7.

4 Multi-session SLAM for Long-term Hull Inspection

The typical use case for the SLAM system discussed above is for single-session surveys. When the robot
begins a new survey minutes or days after the previous survey, the navigation is reset and all the infor-
mation from the previous map is no longer used in navigation correction. For long-term or multi-robot
applications, this is detrimental for two reasons. First, there is less information for the robot to correct its
navigation. Second, each session has a different local reference frame. If a particular area for one of these
surveys demands attention, it requires a human-in-the-loop to identify where the area of interest lies in
a hull-relative reference frame. It is therefore beneficial, though challenging, to have the surveying robot
build each map with respect to the same reference frame. In this section, we present: (i) an accurate and
efficient global localization system to make the initial alignment, (ii) surface-based SLAM techniques to
make the real-time alignment robust and accurate, and (iii) managing the computational complexity of
optimizing long-term SLAM graphs.

To illustrate how these techniques are used in practice during real-world operations, the following is a high-
level outline of our multi-session SLAM system: (i) load past sessions as a SLAM graph, (ii) sparsify the
graph with GLC, (iii) deploy the HAUV and start building a separate, unaligned pose-graph, (iv) localize
to the past session with an initial guess of the alignment, and (v) refine alignment using monocular camera
measurements and piecewise-planar constraints on anchor nodes. These steps are illustrated in Fig. 8.

GLC has been thoroughly-evaluated on standard SLAM graphs containing pose nodes and landmark
nodes. However, the graphs used in this work are significantly more nonstandard because they contain
anchor nodes, planar nodes, and planar observation models. This section will also describe how GLC can
be used with these aspects of our SLAM system.

4.1 GLC-based Approximate Node Removal

A detailed derivation and computational performance analysis of GLC node marginalization and removal
can be found in Carlevaris-Bianco and Eustice (2013a,b). GLC-based graph sparsification starts with an n-
ary factor that captures the information within the elimination clique following marginalization. In short,
this n-ary factor is computed by considering all the measurements contained in the Markov blanket of the
node that is to be marginalized. To handle low-rank measurements, this method computes eigenvalue-
decomposition of the induced target information, Λt, and forms a generic linear observation model for the
n-ary factor:

zglc = Gxc +w
′, (6)

where w
′ ∼ N (0, Iq×q), G = D1/2U⊤, Λt = UDU⊤, q is the rank of Λt, and xc is the current linearization

of nodes contained in the elimination clique. UDU⊤ is the Eigendecomposition of Λt, where U is a p × q
matrix of Eigenvectors and D is a q × q diagonal matrix of Eigenvalues. To preserve sparsity in the graph,
the target information Λt is approximated using a Chow-Liu Tree (CLT) structure, where the CLT’s unary
and binary potentials are represented as GLC factors. These resulting unary and binary factors replace the
node’s original surrounding factors.



Load a graph Start a new
mission

Make an
initial alignment Refine alignment

(a) Multi-session SLAM diagram

(b) Sparse graph loaded (factors not rendered)

(c) Unaligned pose-graph

(d) Initial alignment to sparse graph

(e) Refine alignment and complete survey

Figure 8: Depiction of multi-session SLAM using the techniques provided in §4. The red region in (d)
denotes the point of map reacquisition, where the robot determines a rough initial alignment to the graph
from (b). We refine this alignment in real-time using the same techniques as our single-session system from
previous work. Once the session from (e) is complete, we sparsify and repeat the process with additional
sessions.

GLC optionally supports node reparameterization into a local reference frame around xc when evaluating
the observation model from (6). This avoids committing to a world-frame linearization if the nodes are
not well-optimized. Instead, nodes are linearized about a local relative-frame transformation. This relative
transformation arbitrarily picks a single pose node in the elimination clique as the common frame. For
planar nodes, we use the ⊟ operator to express planes with respect to a root node. In the next section, we
describe how to support anchor nodes in GLC’s reparameterization step.



(a) Factor-graph with anchor nodes (b) Factor-graph with global reference frame, g

Figure 9: A factor-graph topology for a simple SLAM example involving two sessions, A (left side) and
B (right side). In (a), the graph encodes the distribution from (7), where each session has an associated
anchor node. This graph can be converted to a global representation in (b) without any loss of information
using (9). The only discarded factors are the full-state prior factors in session B and on the anchor node
xga. These prior factors have little probabilistic importance and function primarily to keep the SLAM
information matrix non-singular.

4.2 Global Multi-session SLAM from Anchor Nodes

For a robot or multiple robots performing multi-session SLAM, a pose-graph containing anchor nodes is a
popular method to align multiple relative graphs (Kim et al., 2010). In this approach, each robot session has
an associated anchor node. An anchor node is a node containing the transformation from a global reference
frame to the corresponding session’s reference frame. The important advantages of anchor nodes over
global multi-session SLAM, where all sessions are expressed in a common frame, are (i) faster convergence
of the nonlinear least-squares solver, and (ii) individual sessions can optimize their pose graphs before any
constraints between them are observed.

For a two-session case consisting of sessions A and B, the factor-graph containing anchor nodes,
from Fig. 9(a), encodes a probability distribution of the form

p(X | ZA, ZB, ZAB, PA, PB, Pga) =

p(xga,xa1A ,xa2A , . . . ,xaNA
,

xgb,xb1B ,xb2B , . . . ,xbMB
| ZA, ZB, ZAB, PA, PB, Pga), (7)

where xga is an anchor node representing the 6-DOF transformation from the global-frame, g, to the refer-
ence frame a of session A. xaiA is the 6-DOF relative-pose from frame a to frame i of session A. X denotes
the set of variable nodes in the factor graph (i.e., the unknowns). ZA and ZB denote the sensor and odom-
etry measurements contained in sessions A and B, respectively, and ZAB denotes the sensor measurements
between nodes in sessions A and B. PA and PB denote full-state priors in sessions A and B, and Pga denotes
the full-state prior on the anchor node, xga. Finally, N and M are the number of nodes in sessions A and B,
respectively, not including the anchor node (Fig. 9).



The parameterization from (7) is somewhat inconvenient because in order to place the nodes into a common
frame (when visualizing the distribution, for instance, or when computing the expected information gain
of a measurement between two nodes), a sparse nonlinear function, f , must be applied to the distribution:

µf(X) =




xga ⊕ xa1A
...

xga ⊕ xaNA

xgb ⊕ xb1B
...

xgb ⊕ xaMB




, (8)

where ⊕ is defined in Smith et al. (1986) as the compounding operation. The covariance of the resulting
distribution is computed to first order as

Σf(X) = JfΣXJ
⊤
f ,

where Jf is the Jacobian of µf(X).

Extending this analysis to more than two sessions is trivial. It is also straightforward when X contains
plane nodes. In this case, the sparse nonlinear function f contains the ⊞ operator discussed in §3.4.

For convenience, we alter the distribution so that all nodes are in a common frame. Along with simplify-
ing path planning, visualization, and hypothesizing informative measurements, doing so allows for trivial
application of the GLC reparameterization suggested by Carlevaris-Bianco and Eustice (2013b). This alter-
ation is illustrated in Fig. 9. First, we reduce the state variables using (8), effectively removing the anchor
nodes from the factor-graph. Next, we remove the full-state priors for nodes in session B and the anchor
node in session A, leaving us with the distribution

p(X ′ | ZA, ZB, ZAB, PA) =

p(xg1A ,xg2A . . . ,xgNA
,

xg1B ,xg2B . . . ,xgMB
| ZA, ZB, ZAB, PA), (9)

In this way, none of the sensor measurements are discarded when converting the relative pose-graphs to
the global-frame. In practice, we perform this operation immediately after the robot completes a survey,
and before performing offline GLC-sparsification.

4.3 Reacquisition to Sparsified Graph by Particle Filtering

This section describes how we accomplish the initial alignment step illustrated in Fig. 8(d). Once a graph
has been sparsified using GLC, we use a particle filter to estimate a distribution of likely poses in the refer-
ence frame of the past session. Our particle filter is based on a classic Monte-Carlo localization framework.
We use odometry, depth, pitch, and roll measurements derived from sensors to propagate particles to their
next state. Our particle filter approach is summarized in Fig. 10.

4.3.1 Weighting particles from planar measurements

To weight the particles as new plane measurements are observed, we use a method similar to the computa-
tion of potentials used in our factor-graph, described in §3.4. When a plane-fitting measurement, zπik

from
(2), is received by the particle filter, it finds the nearest neighboring pose node i according to

i = argmin
i∈IΠ

‖tggpi
− t

g
gi‖,



(a) Unoccupied free space around outer hull (b) Initial particle distribution

(c) Particle distribution at start of first trackline (d) Particle distribution at end of first trackline

Figure 10: Particle filter reacquisition into a previous session SLAM graph. We improve the efficiency of
our particle filter by computing a simple occupancy grid, shown in (a), based upon the planar features of
the sparsified graph. Only the grid cells that lie less than 3 m from of surface of the nearest plane may
contain particles from the initial distribution. We uniformly distribute particles, shown as red dots in (b),
over the cells from (a). When the new survey begins, the particles are weighted based on their compatibility
with planar measurements. In (c) and (d), particles are overlaid on the pose-graph where the black dots are
graph nodes. Over time, the distribution of particles will tend toward a smaller set of candidate keyframes
to search.

where IΠ is the set of pose indices in the GLC-sparsified graph that have a corresponding plane. Finding the
minimum over all IΠ is quite slow for large graphs, so this operation is approximated using a k-dimensional
(KD)-tree from the FLANN library (Muja and Lowe, 2009).

Next, we take i′ to be the index of the plane that is observed from pose i. Finally, we set the weight, wpi
, by

computing the Mahalanobis distance between the observed and expected planar measurement:

wpi
= ‖zπpik

− (xgi ⊟ xgi′) ‖
2
Σii′

.

To get the initial distribution of particles, we compute a simple binary 3D occupancy grid from the GLC-
sparsified graph, and remove any particles that are assigned to occupied cells. For each cell, if it lies outside
the nearest pose-plane pair, that cell is marked as “not occupied.” Otherwise, the cell is marked as “occu-
pied.”

The particle filtering approach is summarized in Fig. 10. We find that the particle distribution tends toward
a narrow band at the proper depth. With the addition of planar measurements, this distribution can cull
out ends of the ship that do not agree with the structural information observed by the robot. This behavior
is shown in Fig. 10(c) and Fig. 10(d).



Algorithm 1 Match current keyframe to candidate keyframes based on particle distribution

1: Input: Particles p1 . . . pN , current keyframe k, set of all pose indices in GLC-sparsified graph with corresponding
keyframe IK

2: S← ∅

3: for pi ∈ {p1 . . . pN} do
4: S← S ∪ NEIGHESTNEIGHBOR(pi, IK ) ⊲ Uses kd-tree
5: end for
6: Output: FINDBESTMATCH(k, S) ⊲ Uses GPU

(a) Planar scene and relative-
pose prior for upward-looking
periscope

(b) 3-σ confidence regions for 2D point transfer from the past keyframe (left) to
the candidate keyframe (right).

Figure 11: When searching for putative correspondence, the geometry of the periscope images can be ex-
ploited since the variation within relative-poses from the same place is mostly in the y-axis (“side-to-side”).
First, we can back-project the points from the past camera pose assuming a planar scene, as shown in (a).
Second, we model the relative-pose uncertainty as a Gaussian ellipsoid and project this uncertainty as 2D
ellipses in the candidate keyframe’s image plane, shown in (b). We can search for putative SIFT correspon-
dences within these ellipses, rather than searching the entire image.

4.3.2 Planar Scene Prior for Putative Correspondence in Periscope Images

The uncertainty between two matching poses in the initial alignment step can be modeled as a covariance
ellipsoid with high variation in the side-to-side axis. The other dimensions are well-instrumented with
depth and IMU sensors. This can be probabalistically modeled by assuming a zero-mean transformation
between the two candidate poses with an appropriately-constructed transformation covariance matrix.

If we further approximate the periscope scene as purely planar, we can back-project points from the first
candidate camera pose onto a known plane in 3D space. We can then re-project these points into the im-
age of the second candidate camera, and propagate the covariance terms using an Unscented Transform
(UT) (Julier, 2002; Ozog and Eustice, 2013a). This process is illustrated in Fig. 11, and is a special case of the
PCCS described by Eustice et al. (2008). Note that this technique is only useful for the periscope images,
where the scene is large as compared to the underwater images. Effectively, this constrains corresponding
features in periscope images to share similar pixel row indices. By contrast, correspondences in underwa-
ter images could have very different row indices. Therefore, for the underwater case, we revert to a purely
putative correspondence search because it runs faster on a graphics processing unit (GPU).

4.3.3 Keyframe Matching with SIFT and RANSAC

After resampling, if the distribution of particles is sufficiently small in the x, y plane, we find the set of
all images contained in the particle distribution. For our experiments, we build this set when the square-
root of the determinant of the marginal x, y covariance is less than 250 m. This threshold tends to pro-
duce a keyframe set that contains about 100 images and takes roughly three to four seconds to perform a



Algorithm 2 Sparsification algorithm

Input: Alignment of two SLAM sessions, A+B. A is the pre-sparsified prior session and B is the current session.
Output: Set of all nodes to maginalize, S. Updates exemplar views.

1: N = SPATIALLYREDUNDANTNODES(B)
2: for node in B and not in N do
3: views← NEARESTEXEMPLARCLUSTERORNEW(A, node)
4: if ANYVIEWCLOSEINTIME(views, node) or not VISUALLYSALIENT(node) then
5: S← S ∪ node
6: else
7: S← S ∪ PUSH(views, node) ⊲ “views” is fixed-size FIFO. If views is full, PUSH returns popped node.
8: end if
9: end for

10: GLCREMOVE(A+B, S ∪ N)

brute-force search. This step, denoted as FINDBESTMATCH in Algorithm 1, uses a GPU for SIFT descriptor
extraction and matching, and finally rejects outliers by using an eight-point RANSAC algorithm to fit a fun-
damental matrix between the current keyframe and a candidate image extracted from the set. The keyframe
with the most inliers above a threshold is selected to be the best match. For our experiments, we choose
a threshold of 12 inliers to avoid false positives. If no matches are found, the search is repeated when the
robot moves approximately one meter from the point at which the previous search was attempted. Doing
so prevents redundant searching.

4.3.4 Maintaining Keyframe Diversity in Merged Graph

Maintaining diversity in the keyframes associated with vehicle pose nodes in the SLAM graph is critically
important for the particle filter to successfully localize. To maintain diversity of the images associated with
nodes in our merged SLAM graph, we use a simple algorithm that is inspired from the work by Konolige
and Bowman (2009). In their approach, a robot maintains a maximum number of recent exemplar views
using a simple image closeness measure and a least-recently used cache algorithm. By contrast, our al-
gorithm only adds additional exemplar images if the keyframe is visually salient and sufficiently distant
in time to all others from the same neighborhood (lines 3 and 4 in Algorithm 2). This approach produces
graphs whose sizes are closely bound to the size of the ship hull and maintains nodes with high utility for
multi-session SLAM.

In practice, Algorithm 2 tends to preserves nodes that are both visually salient (for potential camera mea-
surements), and useful for their locally planar structure (for piecewise planar or planar range measure-
ments). Intuitively, this algorithm simply keeps the most recently-used views in a fixed-size neighborhood.
An example of the how we maintain image diversity for the graphs used in the experimental results section
is shown in Fig. 12.

This algorithm has various user-defined parameters. For the HAUV datasets, we chose a threshold of 1.5 m
to decide if a node is spatially redundant (line 1 in Algorithm 2), and the maximum number of views per
neighborhood as three (line 7 in Algorithm 2). We used the local saliency metric described by Kim and
Eustice (2013) as the method for determining if an image is visually salient.

5 Experimental Trials

This section describes experimental trials with the HAUV performing automated inspections on the
USS Saratoga and SS Curtiss vessels depicted in Fig. 13. We present an extensive multi-session SLAM graph
merged on these two vessels over three years. Further analysis on the proposed method is followed in terms
of complexity, comparison to other vision-based loop-closure methods, and map accuracy in sparsification.



Figure 12: Illustration of exemplar views for the GLC SS Curtiss graphs. Two example view neighborhoods
are circled in blue. Exemplar views within these neighborhoods (shown above), are noticeably different
between 2011 and 2014. We manually outlined common regions in white for illustration. In the left example,
different bio-foul patterns are growing on the same circular structure on the hull bottom. In the right
example, SIFT features are detected on the pitting from the 2014 data, however, this pitting is not present
in the 2011 data.

(a) USS Saratoga

Dim [m]

Length 324

Beam (waterline) 39.6
(extreme) 76.8

Draft 11.3

(b) General characteristics

(c) SS Curtiss

Dim [m]

Length 183

Beam 27

Draft 9.1

(d) General characteristics

Figure 13: The two vessels reported in this work are (a) the USS Saratoga and (c) the SS Curtiss. General
characteristics of the vessels are given in the respective tables.



(a) Sunlight reflections from water (b) Changes in illumination

(c) Low overlap (d) Sunlight reflections and shadows on hull, 2011 to 2014

Figure 14: These examples show our hull-relative place recognition system correctly localizing in challeng-
ing conditions. The scenarios in (b), (c), and (d) are especially difficult for a human to identify from a set
of candidate keyframes. The feature correspondences shown are taken directly from RANSAC. Because
purely epipolar-based feature matching across two views is prone to outliers (even with RANSAC), we
manually annotated each figure with true inliers (solid red lines) and false inliers (dotted yellow lines).
Common regions are denoted with dotted white boxes.

(a)

(b) (c) (d)

Figure 15: Example of a matching keyframe that our place recognition system fails to detect. We manually
colored boxes around key areas to emphasize that the pixel intensity gradients in each patch are very dif-
ferent. The local features within these patches do not match because the SIFT descriptor is not invariant to
strong changes in pixel gradient.



Table 1: Summary of HAUV field trials

Session ID Date Cameras Used Survey Type Trajectory Length (m)

USS Saratoga

1 May 21, 2013 Periscope Surface 239
2 May 21, 2013 Periscope Surface 136
3 May 21, 2013 Periscope + Underwater Underwater + Surface 334
4 May 22, 2013 Periscope + Underwater Underwater + Surface 490
5 May 22, 2013 Periscope + Underwater Underwater + Surface 528
6 May 23, 2013 Periscope + Underwater Underwater + Surface 493
7 May 23, 2013 Periscope + Underwater Underwater + Surface 256
8 Aug. 08, 2013 Periscope + Underwater Underwater + Surface 143

2619 Total

SS Curtiss

1 Mar. 08, 2014 Periscope Surface 341
2 Mar. 08, 2014 Periscope + Underwater Underwater + Surface 367
3 Mar. 08, 2014 Periscope + Underwater Underwater + Surface 768
4 Mar. 08, 2014 Periscope + Underwater Underwater + Surface 719
5 Mar. 08, 2014 Periscope + Underwater Underwater + Surface 497
6 Mar. 09, 2014 Periscope + Underwater Underwater + Surface 587
7 Mar. 10, 2014 Periscope + Underwater Underwater + Surface 449
8 Mar. 11, 2014 Periscope + Underwater Underwater + Surface 934
9 Feb. 09, 2011 Periscope Surface 148
10 Feb. 09, 2011 Periscope Underwater + Surface 1125
11 Feb. 05, 2011 Underwater Underwater 426
12 Feb. 05, 2011 Underwater Underwater 1179

7540 Total

5.1 Experimental Setup

The vehicle has two cameras: an underwater camera, which is actuated to always point nadir to the ship
hull, and the periscope camera, which is rigidly attached to the top of the vehicle so as to capture images of
the ship superstructure when the vehicle is at the surface. Table 1 gives an overview of how these cameras
were used in each dataset, along with the survey date. Note that our system does not require that the
time sequence of surveys be causal. For instance, we can build a map of the ship hull from 2014 before
co-registering surveys from 2011.

The HAUV executes a survey using one or both of the underwater and periscope cameras. When both are
used, the vehicle switches between the two as the vehicle approaches the surface, and as it submerges again
for an additional trackline.

5.2 Multi-session SLAM Results

We performed the proposed multi-session SLAM on two vessels, USS Saratoga and SS Curtiss. In particular,
the SS Curtiss was surveyed over a three year period as shown in Table 1. While the current mission exe-
cutes, it is localized to a GLC-sparsified graph using Algorithm 1. Examples of matches using this approach
are shown in Fig. 14. Though the algorithm shows some resilience to lighting, sunlight, and shadows, this
is not always the case (see Fig. 15 for one such example). In total, eight missions on USS Saratoga and
twelve missions on SS Curtiss are merged as in Fig. 16. These missions are accumulated into a common
hull-relative reference frame, and sparsified after each session. The end result is a far more extensive map
of each ship hull, as compared to the single session case.



USS Curtiss

(a) Merged underwater survey (b) Overlayed with visual saliency

(c) Preserved nodes after sparsification (d) Final sparsified graph

USS Saratoga

(e) Merged underwater survey (f) Overlayed with visual saliency

(g) Preserved nodes after sparsification (h) Final sparsified graph

Figure 16: Example of underwater surveys that are automatically aligned with a GLC-sparsified graph.
The top and bottom halves show examples from the SS Curtiss and the USS Saratoga, respectively. In these
figures, we disable rendering the planar patches and factors for the sake of visual clarity. In (b) and (f), we
overlay the nodes with their local saliency score to show that low scores (in blue) will be marginalized while
nodes with high scores (shown in yellow), will be kept so as to provide a more visually informative set of
nodes for future localization (see Algorithm 2). Despite the increased spatial extent of the green GLCs, the
graphs in (d) and (h) have significantly fewer edges than the graphs in (a) and (e), as also shown in Fig. 17.

5.3 Graph Complexity Over Time

For our evaluation, we take the graph complexity to be the total number of variable nodes and factor nodes
in the SLAM graph. The graph complexities over time using our framework for each vessel are shown
in Fig. 17 over each successive session. By the end of the third session for each vessel, we lose the ability
for real-time performance unless we apply GLC between sessions. Conversely, the use of our method for
graph sparsification preserves real-time performance over the course of many more sessions.
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(b) SS Curtiss

Figure 17: Graph complexity over multiple sessions for the USS Saratoga, in (a), and the SS Curtiss, in (b).
Without managing the graph complexity, the number of nodes and factors grows unbounded with time.
However, the size of the graph using the GLC framework is much more closely bounded to the size of the
ship hull. For the USS Saratoga, sessions 1 through 7 occur within a week of each other, but session 8 occurs
four months later. For the SS Curtiss, sessions 5 through 12 occur approximately three years after sessions
1 through 4.

Algorithm 3 Match current keyframe to feasible keyframes from visual place-recognition system

1: Input: Set of all keyframes, K, in GLC-sparsified graph, current keyframe k, belief threshold τ , ship-specific
vocabulary, V

2: S← FAB-MAPV2(k, K, V, τ )
3: Output: FINDBESTMATCH(k, S) ⊲ Uses GPU

5.4 Comparison to Bag-of-Words Place Recognition

To baseline the performance of our particle filter, we use an open-source implementation of FAB-MAP
version 2.0 (Glover et al., 2012) as an appearance-only method for place recognition, which represents
each keyframe as a visual BoW using a vocabulary that is learned offline. This algorithm is summarized
in Algorithm 3, and can be used in place of Algorithm 1 for initial alignment. FAB-MAP provides the belief
that the live image is taken from the same location as a place in a prior map. If a match is detected with
significant probability, a threshold is used to determine if the SLAM front-end should accept the match.
This threshold is typically set very high to avoid false-positives, but we use a very low threshold of 0.0001
for our application to ensure that FAB-MAP returns as many candidates as possible. These candidates are
geometrically verified using RANSAC in the final step to reject outliers.

For FAB-MAP, we learn a separate SIFT vocabulary and CLT over the distribution of codewords for each
vessel. In practice, this is impractical because it requires a training stage before multi-session SLAM can
be attempted. Even so, based upon our experiments, FAB-MAP’s performance is acceptable when match-
ing images of the ship’s above-water superstructure, like the ones shown in Fig. 14(a) or Fig. 18, top row.
However, for the underwater images, FAB-MAP performs poorly, and we were not able to successfully
identify an underwater loop-closure in any of our experiments, even with a very low loop-closure prob-
ability threshold. For underwater images, FAB-MAP consistently identifies the live underwater image as
being taken from an unseen place. Two typical cases for the periscope and underwater cameras are shown
visually in Fig. 18.



Figure 18: Two representative attempts at aligning the current survey into past sessions using FAB-MAP
and our particle filter. Corresponding image regions, where identified, are highlighted. We allow FAB-MAP
to return as many candidates as possible by setting the loop-closure probability threshold low. By contrast,
the number of candidate matches identified by our particle filter depends on how discriminative the planar
measurements are. Because the image matching algorithm is done on the GPU, each candidate match takes
roughly 70 ms when using a consumer-grade GPU. FAB-MAP performs adequately for surveys consisting
of periscope images (top row) but fails using underwater images (bottom row), where it consistently assigns
the “new place” label.

Table 2: Time to localize to past GLC graph

Time until alignment (sec)

Session FAB-MAP Particle Filter Search

USS Saratoga 2013 Session 7, starting from surface 7.1 5.2
USS Saratoga 2013 Session 7, starting underwater 143.2 20.6
SS Curtiss 2011 Session 12, underwater-only N/A 15.3

Where our method excels over FAB-MAP is the ability re-localize into a previous session while underwater.
We consider three scenarios: i) starting the survey with the robot at the surface, ii) starting submerged,
and iii) a survey conducted entirely underwater. The results summarized in Table 2 are as follows: both
methods are comparable when at the surface (first row), but FAB-MAP is unable to re-localize while starting
underwater, and only when the robot surfaces can it find a good match (second row). For an entirely
underwater survey (third row), FAB-MAP is unable to localize. As a whole, our system, which is tailored
for the sensor payload of the HAUV, can more quickly and reliably localize to our long-term SLAM graphs.

Using either the particle filter or FAB-MAP, we strive to keep the recall of candidate images as high as
possible. Reasonably low precision is not a primary concern because we can geometrically verify candi-
date matches relatively quickly. If we compute the precision and recall of the set S from particle filtering
(Algorithm 1) and FAB-MAP (Algorithm 3), we find that the particle filter produces a set of candidate im-
ages with a lower average precision of 3.0%, but high average recall of 100.0%. FAB-MAP, on the other
hand, produces a higher average precision of 12.1%, but a much lower average recall of only 27.7%. In
other words, the particle filter always contains the correct place within the candidate set, but requires ge-
ometrically verifying more keyframes. With FAB-MAP, the candidate set is smaller and therefore faster to
process, however, localization will often fail because a true match is not contained in the set of candidate
images.



5.5 Comparison to Full Graph

To assess the accuracy of the GLC-based marginalization tool, we tracked the graph produced by the re-
peated application of sparse-approximate GLC after each session is completed. This graph was directly
compared to a synthetically-created full graph, with no marginalized nodes, that contains the exact set of
measurements that the HAUV accumulated over the course of each session. For the SS Curtiss, we show
the full graph over all twelve sessions reported in this paper in Fig. 19.

These comparisons are shown in Fig. 20 for the USS Saratoga and in Fig. 21 for the SS Curtiss. Each measure
is computed only for the vehicle pose nodes for sake of clarity. For each session, we compute the following:
(i) marginal Kullback-Leibler Divergence (KLD) over each node (a measure of the similarity between two
probability distributions), (ii) absolute positional distance between each corresponding node, (iii) absolute
attitude difference between each node, defined as the l2-norm of the difference of the poses’ Euler angles,
and (iv) ratio of the determinants of marginal covariances of each node. For the KLD calculation, we use
the well-known closed-form expression for KLD between two Gaussian distributions (Kullback and Leibler,
1951).

As a whole, the accuracy of our system is quite comparable to the full graph, showing typical errors well
within a meter despite a total path length of multiple kilometers. These errors are absolute, however,
and they do not take into account the strong correlations between neighborhoods of nodes. In addition, as
shown in Fig. 22, the marginal ellipses of the approximated poses are consistent with the full graph. Though
repeated sparsification may eventually result in inconsistent estimates, recent works include Carlevaris-
Bianco and Eustice (2013b, 2014), which can guarantee that the GLC approximation is conservative to
counter these inconsistencies. Seeing how these methods affect the success rate of data association is an
interesting topic that remains to be explored. For the long-term datasets covered here, inconsistent approx-
imations were not an issue; we were able to successfully establish camera measurements across multiple
sessions throughout the field trials.

5.6 Importance of Planar Constraints and Comparison to CAD Model

We provide some qualitative results in Fig. 23 to show that the effectiveness of the method depends strongly
on the use of planar constraints. In this figure, we disabled both the piecewise-planar factor potential
from (3) and the planar range factors from (4). To keep the comparison fair, we provided the same particle
filter localizations used in Fig. 19.

Additionally, we used the ground truth CAD model to assess the quality of the SLAM trajectory, with and
without planar constraints. We converted the DVL range returns into a global-frame point cloud using
the estimated SLAM poses and down-sampled them with voxel grid filter. Then, we rigidly aligned these
points to the CAD mesh with generalized iterative closest point (GICP) (Segal et al., 2009). Finally, for each
point in the DVL point cloud we found the nearest vertex in the CAD mesh and computed the Euclidean
distance.

This method serves as a sufficient proxy for the structural consistency of the SLAM estimate as compared
to ground truth. The results of this comparison are shown in Fig. 24. For the SLAM estimate with no planar
constraints, the error distribution had a mean of 1.31 m and standard deviation of 1.38 m. Furthermore,
20% of the DVL points had an error of more than 1.5 m.

Conversely, the use of planar constraints brought the mean and standard deviation to 0.45 m and 0.19 m,
respectfully. In addition, there were no points that had an error of more than 1.5 m. With these results, we
conclude that camera constraints alone are not sufficient for long-term hull inspection, and we have shown
that the results are greatly improved if the ship hull surface itself is included in the SLAM pipeline.



(a) Full graph, side (b) Full graph, bottom

(c) GLC graph, side (d) GLC graph, bottom

Figure 19: The full, unsparsified graph of the SS Curtiss after twelve automatically-aligned sessions that
spans from February, 2011 to March, 2014. The CAD model is aligned to provide visual clarity and size
reference — it is not used in the SLAM system. The non-sparsified factor graphs in (a) and (b) consist of
odometry factors (blue), camera links (red), piecewise-planar factors from (3) (yellow), and planar range
factors from (5) (lime green). The sparsified graphs in (c) and (d) consist mostly of GLC factors (green).
These graphs serve as the comparison for the results in Fig. 21 for SessionID = 12.

6 Conclusion

We provided an overview of how to adapt our visual SLAM algorithm for long-term use on large ship
hulls. We use the GLC framework to remove redundant or unneeded nodes from a factor graph. Doing so
involves supporting a node reparameterization (root-shift) operation to avoid unnecessary error induced
by world-frame linearization. Furthermore, we described a particle filtering algorithm that can use planar
surface measurements to narrow a search space over past images that match the current image.

We showed results from our localization algorithm automatically aligning SLAM sessions separated in
time by days, months, and years. Once sessions were aligned to a past graph, the result was sparsified and
the process was repeated. Using simple sparsification criteria, we show that the complexity of our factor
graphs remain more closely bounded to the ship hull area, rather than growing unbounded with time.
Furthermore, despite the repeated applications of graph sparsification with GLC, the errors between the
sparsified and non-sparsified graphs are reasonably small.
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Figure 20: Positional error and trajectory length (a), attitude error (b), average KLD (c), and log-ratio of
marginal covariances (d) as a timeseries for the 2014 USS Saratoga datasets. The average value is shown as
solid blue line. Percentile bounds are shown in the shaded region, from 5% to 95%.
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Figure 21: Comparisons to the full graph for each session for the SS Curtiss datasets. We show positional
error (a), attitude error (b), average KLD (c), and log-ratio of marginal covariances (d) as a timeseries. The
average value is shown as solid blue line. Percentile bounds are shown in the shaded region, from 5% to
95%.
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Figure 22: Visualizations of 3-σ positional covariances for the full graph are shown in red, and the cor-
responding ellipses from the GLC-sparsified graph are shown in blue. Our system marginalizes approx-
imately 95% of nodes from each session so that the system can perform in real-time, yet the probabilistic
deviation from the full graph is small. The results for the USS Saratoga and SS Curtiss are shown in (a)
and (b), respectively.
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(a) Full graph, side (b) Full graph,
bottom

Figure 23: The quality of the SLAM estimate suffers significantly if the planar-based constraints from §3.4.2
and §3.4.3 are left out of the factor graph. These constraints are encoded as yellow and green lines
in Fig. 19(a). The CAD model is once again provided for visual reference, and to show that there are obvious
discrepancies between it and the SLAM estimate. These discrepancies are quantified in Fig. 24.

(a) DVL alignment with planar constraints (b) DVL alignment without planar constraints
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Figure 24: For the SS Curtiss, we were able to quantify the error with respect to the ground truth CAD model
by registering the DVL returns (red and blue point clouds) to the CAD mesh vertices (gray point cloud).
The DVL point cloud in (a) was derived from the SLAM estimate in Fig. 19 (with planar constraints), while
the point cloud in (b) was derived from Fig. 23 (without planar constraints). The Euclidean error between
corresponding vertices in the CAD model mesh is summarized in (c), where the planar constraints provide
a much tighter distribution of error.



A Appendix

A.1 Spherical to Cartesian Coordinates

The characteristic curvature model used in this paper lends itself to surface normals expressed in spherical
coordinates. To convert the xyz normal vector to a stacked vector of normal azimuth, a, elevation, e, and
magnitude, m, we use the dir( · ) function:

dir





x
y
z




 =




atan2(y, x)

atan2
(
z,
√
x2 + y2

)
√
x2 + y2 + z2


 .

Similarly, to convert from spherical coordinates back to Cartesian, we use the trans( · ) function, defined as:

trans





a
e
m




 = m



cos(e) cos(a)
cos(e) sin(a)

sin(e)


 .
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