
Place Recognition and Localization for Multi-Modal
Underwater Navigation with Vision and Acoustic Sensors

by

Jie Li

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Electrical Engineering: Systems)

in the University of Michigan

2017

Doctoral Committee:

Assistant Professor Matthew Johnson-Roberson, Co-Chair

Associate Professor Ryan M. Eustice, Co-Chair

Associate Professor Jason J. Corso

Professor Jeffrey A. Fessler

Assistant Professor Michael Kaess



©Jie Li

2017

ljlijie@umich.edu

ORCID: 0000-0003-0812-780X



ACKNOWLEDGMENTS

I would like to express my special appreciation and thanks to my advisors Dr. Matthew

Johnson-Roberson and Dr. Ryan Eustice. You two have been a tremendous combination of

mentors for me. I would like to thank you all for encouraging my research and for allowing

me to grow as a research scientist. Your advice on both research as well as on my career

have been priceless.

I would also like to thank Professor Jeffrey Fessler, Professor Jason Corso and Professor

Michael Kaess for serving as my committee members. I appreciate your patience and

suggestions for improvement to my dissertation.

I would especially like to thank all the folks in both PeRL and DROP (in the order

I met them): Ayoung, Paul, Steve, Gaurav, Nick, Jeff, Ryan, Vittorio, GT, Enric, Alex,

Arash, Katie, Steven, Josh, Edurado, Derrick, Wonhui, Gideon, Corina. Thank you all for

making my whole PhD journey such an enjoyable one. I will always remember our shared

happiness in the lab and places of the field trials, e.g. a hotel near nowhere in Jamaica with

no chicken, no beef, no drink or bottled water.

I would like to thank Prof. Savarese, everyone in the Vision Lab and all my friends in

EE:System. You helped me go through the hardness of my first year in Michigan and led

me into the door of Computer Vision.

Special thanks to my family. Words cannot express how grateful I am to my husband,

my parents and Batman. You are always my support in the hard moments. To dear Zhiyuan:

It is never easier for a couple to pursue Ph.D. degrees in the same period. All the tough

times double. But it is so lucky that we can go through this together. Now we are bound

not only by love’s blind chance, but also our shared research spirit, our shared taste on fast

food and our similar Dota2 rank. To my Batman: You are the best companion when I need

to work late. Maybe try not to delete or mess up all my codes when jumping on my laptop

in the future.

ii



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Chapter

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Importance and Challenges of underwater robot localization . . . 1

1.1.2 Autonomous Ship Hull Inspection with the HAUV . . . . . . . . 4

1.2 A Review of Visual-SLAM . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Appearance-based Place Recognition . . . . . . . . . . . . . . . 9

1.3 A Review of Forward-looking Sonar (FLS) in Underwater Robotics . . . 11

1.3.1 FLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.2 Challenges in FLS processing . . . . . . . . . . . . . . . . . . . 12

1.3.3 Imaging Sonar in Navigation Systems . . . . . . . . . . . . . . . 13

1.3.4 Scene Reconstruction Using FLS Imagery . . . . . . . . . . . . . 14

1.4 A Review of Convolutional Neural Networks . . . . . . . . . . . . . . . 16

1.4.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . 17

1.4.2 Application in Mobile Robotics . . . . . . . . . . . . . . . . . . 19

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5.1 Thesis Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5.2 Document Road-map . . . . . . . . . . . . . . . . . . . . . . . . 21

2 High-level Feature Place Recognition . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Visual feature matching . . . . . . . . . . . . . . . . . . . . . . 26

2.2.2 Visual-based navigation . . . . . . . . . . . . . . . . . . . . . . 27

iii



2.3 High-level feature matching . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.2 Salient Patch Proposal . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.3 Patch Pooling in Neighboring Image Set . . . . . . . . . . . . . . 32

2.3.4 Image Feature Matching with Geometry Model Selection . . . . . 33

2.4 Multi-session SLAM Graph Merging for Long-term Hull Inspection . . . 36

2.4.1 Particle Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.2 Particle Weighting Using Visual Matching . . . . . . . . . . . . 38

2.5 Experimental Results and Discussion . . . . . . . . . . . . . . . . . . . . 39

2.5.1 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5.2 Image Matching using High-level Feature . . . . . . . . . . . . . 40

2.5.3 Relocalization using Particle Filtering . . . . . . . . . . . . . . . 47

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Imaging Sonar Feature Learning . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.1 Visual Place Recognition . . . . . . . . . . . . . . . . . . . . . . 52

3.2.2 Imaging Sonar . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.1 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.2 Non-Saliency Score . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Dataset and Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.1 Label Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.2 Dataset Composition . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.3 Training and Validation . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Experiment and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5.1 Naive Place Recognition . . . . . . . . . . . . . . . . . . . . . . 61

3.5.2 Global Localization . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.3 Real-world Multi-session SLAM Registration . . . . . . . . . . . 68

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Utilizing High-dimensional Features in Real-time Bayesian Filtering . . . . . 70

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.1 Restriction on Observations Used in Bayesian Filtering . . . . . . 73

4.2.2 Uncertainty Measurement in CNN . . . . . . . . . . . . . . . . . 74

4.2.3 Data Perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Observation Pre-linearization . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.1 Problem Statement for General Bayes filter . . . . . . . . . . . . 75

4.3.2 Pre-linearization . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3.3 Uncertainty Measurement . . . . . . . . . . . . . . . . . . . . . 80

iv



4.4 Real-time Sonar-based Underwater Localization Using CNN Learned Fea-

tures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Experiment on FLS Images . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6 Experiments on Other Modalities . . . . . . . . . . . . . . . . . . . . . . 88

4.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Forward-looking Sonar Pose-graph SLAM . . . . . . . . . . . . . . . . . . . 91

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.1 Sonar Frame Geometry . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.2 FLS Structure from Motion . . . . . . . . . . . . . . . . . . . . 96

5.3.3 Saliency Aware Loop-closure proposal . . . . . . . . . . . . . . 97

5.3.4 Sonar Feature Matching Using Pose Constraint . . . . . . . . . . 100

5.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

v



LIST OF TABLES

1.1 Payload characteristics of the HAUV . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Data Arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 Computational Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1 Trajectory Statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 SLAM estimation accuracy with respect to camera-image-based offline bundle

adjustment for each mission. In this table we compare the localization accu-

racy of our proposed algorithm (Prop.) and the dead reckoning (DR). For the

proposed method, the means (µ) and standard deviations (σ) of absolute error

over 20 runs for each mission are given (µ[σ]). The smallest error for each

mission in each axis is in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . 105

vi



LIST OF FIGURES

1.1 Examples of optical images and sonar images taken from ship hull inspection

applications. The images are taken with a vehicle stand-off of 1.5 m from

the ship hull. The sensor footprints with respect to the ship hull are given

in Fig. 1.3. The image in (a) captures an area with biofouling with clear vis-

ibility. However, in (b) the camera captures an area with little recognizable

texture or features, while the image quality is also decreased by back scat-

tering. Sonar image in (c) contains relatively rich visual features that can be

extracted as low level image information, while in (d) the image contains little

texture and is mostly covered by noise. With imagery like (b) or (d), it is un-

likely that useful information can be extracted for a simultaneous localization

and mapping (SLAM) system. . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Sensor configuration of the HAUV. . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Perceptual sensor footprint with respect to a ship hull. . . . . . . . . . . . . . 4

1.4 Lawn-mowing trajectory pattern during inspection. . . . . . . . . . . . . . . . 5

1.5 Dense full coverage of the planar area. . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Example of reconstructed high-fidelity model using inspection data of the

hovering autonomous underwater vehicle (HAUV). . . . . . . . . . . . . . . . 7

1.7 SS Curtiss. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.8 Graphical model of Full-SLAM formulation . . . . . . . . . . . . . . . . . . . 8

1.9 Graphical model of Pose-SLAM formulation . . . . . . . . . . . . . . . . . . 9

1.10 Loop-closure in SLAM. Blue line is the ground truth trajectory. Orange line

is the estimated trajectory. When the robot is able to recognize a previously

visited position, a loop-closure constraint can be generated and used to correct

the drifting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.11 Place recognition for multi-session SLAM. . . . . . . . . . . . . . . . . . . . 9

1.12 General flowchart of appearance-based place recognition algorithms. . . . . . 10

1.13 FLS Sensor Measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.14 An illustration of FLS Field of View. . . . . . . . . . . . . . . . . . . . . . . 12

1.15 Depiction of FLS-aided pose-graph SLAM system . . . . . . . . . . . . . . . 13

1.16 Illustration of the approximation in orthogonal projection. . . . . . . . . . . . 14

1.17 Example of sonar mosaicing results. . . . . . . . . . . . . . . . . . . . . . . . 15

1.18 Example of basic neural network model. . . . . . . . . . . . . . . . . . . . . . 16

1.19 Illustration of basic CNN architecture. . . . . . . . . . . . . . . . . . . . . . . 18

vii



2.1 Depiction of the proposed high-level feature matching method with real data.

The two images are corresponding images collected from the years 2013 and

2014. Obvious texture-fading can be seen, which limits the performance of

point-based features. The proposed method, on the other hand, is able to select

a salient patch that contains high-level information that tends to last longer,

resulting in higher robustness against appearance changes. . . . . . . . . . . . 25

2.2 Flowchart of our high-level feature image matching approach. First, a neigh-

boring image set is gathered for a current image. A set of patch features is

detected and described with a set of SVM classifiers based on HOG feature.

Patch feature matching is then carried out on the dataset followed by a geo-

metric validation method to reject outliers. . . . . . . . . . . . . . . . . . . . 29

2.3 The intermediate steps in salient patch proposal where a pool of candidate

patches are extracted. (a) Original current image. (b) Segmentation results of

the current image. (c) Patch proposal of single current image without saliency

judgment. (d) Patch pool from all neighboring images projected onto current

image frame. (e) Selected salient patches after saliency judgment. . . . . . . . 31

2.4 Training samples are generated in current image and the neighboring images.

Red: positive samples; Green: positive samples generated by shifting; Blue:

negative samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 This figure illustrates how the fundamental matrix is estimated and tested in

multiple positive responses returned by SVM classifiers. (a) Left: Patch 1.

Right: SVM positive responses. (b) Left: Patch 2. Right: SVM positive

responses. (c) Fundamental candidate F is estimated by the best match of

Patch 1. (d) The Candidate fundamental matrix estimated from Patch 1 is

tested on Patch 2 by searching for the best response of Patch that satisfied F . . 33

2.6 HOG Structure: A patch is divided into a set of blocks by a sliding window.

a block is divided by 4 cells. Within each cell, a 9-bin histogram of oriented

gradient is accumulated. The block feature is a vector of 4 9-bins histograms.

The HOG feature is a vector of all the block features. . . . . . . . . . . . . . 34

2.7 Multi-session graph merging overview. Here we show two graph SLAM graphs

merged in a common frame using our graph merging algorithm. A graph from

inspection conducted in 2013 is depicted in blue, while a new mission graph

from 2014 is colored red. The task of merging is to determine the 6 DOF rigid

body transformation between the two graphs through all the sensor measure-

ments onboard an HAUV, which can be used by the SLAM back-end to merge

the two graphs as a single optimization problem. An example of matched im-

ages between the two graphs found by our approach is shown in the image

block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.8 System Flowchart. A particle filter is initialized on a previous SLAM graph

that we will localize against. Onboard sensors including depth and IMU are

used to update the particles when the vehicle is moving. Planar features es-

timated from Doppler velocity log (DVL) as well as high-level features ex-

tracted from visual images are used to make measurement corrections by up-

dating the importance weight of each particle. . . . . . . . . . . . . . . . . . . 37

viii



2.9 This figure gives an example when a set of particles (orange dot) is associated

with a single image node in a previous graph (blue dot). The transform vector

T from the old graph node to the new one (green dot) is estimated in image

matching. The transform vector T ′ from old graph node to particles are com-

pared with T . The line weights of T ′ in the figure indicate the relative value of

sg in this example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.10 Examples of manually labeled corresponding images from 7 places on the

SS Curtiss across different years. The images in the first row come from the

dataset we are searching in. The images in the second row are current images.

It can be seen that the data is quite challenging, due to the dramatic decay of

patterns and changing light conditions. . . . . . . . . . . . . . . . . . . . . . 40

2.11 Results from our proposed technique and from point-based approaches from

the literature, presented as confusion matrices where the rows and columns

refer to places or clusters of co-located images of which samples are shown in

Fig. 2.10. Column 8 represents the set of noise images added to the dataset to

make the task more challenging. The red font indicates the accuracy rate of

the matching result for each place, while the rest of the row indicates how the

false matching is distributed in the query dataset. . . . . . . . . . . . . . . . . 42

2.12 Examples of successfully matched pairs. The system is able to make valid

correspondences between images with dramatic appearance changes. . . . . . 43

2.13 Example of false positive and false negative matches using the proposed system. 44

2.14 Examples of image matching using the proposed method in above-water images. 45

2.15 System component analysis. Identification of the contribution of each sys-

tem component by comparison experiment without certain components or with

those components replaced by other simpler alternatives. Results presented as

confusion matrices where rows and columns refer to places or clusters of co-

located images of which samples are shown in Fig. 2.10. Note the last column

has no matched row as it refers to non-labeled random images introduced to

the dataset to make matching more challenging/realistic. . . . . . . . . . . . . 46

2.16 Typical particle filter converging procedure. . . . . . . . . . . . . . . . . . . . 48

2.17 The best matched pair at the convergence location. Left: current image. Right:

the best matched candidate image in the previous graph. . . . . . . . . . . . . 49

3.1 This work proposes to learn descriptive sonar image features using CNNs for

underwater place recognition and localization. The learned feature space pro-

vides a similarity metric for sonar images that enables real-time place recog-

nition. For sonar images collected within a short time period, the features can

be directly used for global localization with respect to a known map. The

data used in the experiment comes from a hovering autonomous underwater

vehicle (HAUV) operating in a ship hull inspection application. . . . . . . . . 51

3.2 Inception Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Network architecture used for feature learning. A sonar image down-sampled

to 195×220 is the input of the network. The second top layer of the network is

the learned descriptive feature. The top layer is a 3-element position estimator

(i.e., x, y, z). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

ix



3.4 Simple neural network for uncertainty score learning. . . . . . . . . . . . . . . 55

3.5 Sample sonar image with different non-saliency scores. . . . . . . . . . . . . . 57

3.6 Spatial distribution of data used in the experiment: testing samples (green),

training samples (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 Convergence trend on dataset of 2014-03. . . . . . . . . . . . . . . . . . . . . 60

3.8 Field of view in sonar images during ship hull inspection missions. . . . . . . 61

3.9 Error distribution in network validation. . . . . . . . . . . . . . . . . . . . . . 62

3.10 Visualization of validation result in dataset 2014-03. This figure gives a visu-

alization of the validation result corresponding to Fig. 3.9(a). Both the ground

truth positions and estimation positions in the testing set are shown. For the

estimated positions, estimated error is color coded according to the color map. 63

3.11 PR curves for place recognition testing. Models are trained on the 2014-03

training samples, and tested on (a) the 2014-03 testing samples and (b) the

2015-06 testing samples. ‘Dim’ is the dimension of the feature trained in the

network. ‘AP’ is the average matching precision. . . . . . . . . . . . . . . . . 64

3.12 Examples of image matching results in the dataset of 2015-06. Pairs of cor-

responding sonar images are detected using feature similarity. One reference

image from the testing set is matched against all images in the training set. . . 65

3.13 Average precision for different cut-off thresholds of non-saliency score. The

model is trained on training sets 2014-03 and 2015-06. . . . . . . . . . . . . . 66

3.14 PR curve for place recognition as compared across different network architec-

tures. The networks are trained on the training data 2014-03 and tested on the

data 2015-06. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.15 Global localization Accuracy: The colors of the dots indicate the final local-

ization accuracy of the global localization mission in 10 steps of Particle Fil-

tering (PF). The locations of the dots indicate the locations where a mission

starts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.16 Real-world example of sonar feature prone to suppress false registration due

to visual aliasing in optical image using multi-session SLAM registration in

HAUV navigation system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 Observation pre-linearization. xt is the estimation state and zt is the original

observation. The knowledge of the original observation model zt = h(xt) is

limited to evaluation at certain points. We estimate the local inverse function

of h(), resulting in a new observation ẑt with an approximately direct linear
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ABSTRACT

Place recognition and localization are important topics in both robotic navigation and

computer vision. They are a key prerequisite for simultaneous localization and mapping

(SLAM) systems, and also important for long-term robot operation when registering maps

generated at different times. The place recognition and relocalization problem is more

challenging in the underwater environment because of four main factors: 1) changes in

illumination; 2) long-term changes in the physical appearance of features in the aqueous

environment attributable to biofouling and the natural growth, death, and movement of

living organisms; 3) low density of reliable visual features; and 4) low visibility in a turbid

environment. There is no one perceptual modality for underwater vehicles that can single-

handedly address all the challenges of underwater place recognition and localization.

This thesis proposes novel research in place recognition methods for underwater robotic

navigation using both acoustic and optical imaging modalities. We develop robust place

recognition algorithms using both optical cameras and a Forward-looking Sonar (FLS) for

an active visual SLAM system that addresses the challenges mentioned above.

We first design an optical image matching algorithm using high-level features to eval-

uate image similarity against dramatic appearance changes and low image feature density.

A localization algorithm is then built upon this method combining both image similarity

and measurements from other navigation sensors, which enables a vehicle to localize itself

to maps temporally separated over the span of years.

Next, we explore the potential of FLS in the place recognition task. The weak feature

texture and high noise level in sonar images increase the difficulty in making correspon-

dences among them. We learn descriptive image-level features using a convolutional neural

network (CNN) with the data collected for our ship hull inspection mission. These features

present outstanding performance in sonar image matching, which can be used for effective

loop-closure proposal for SLAM as well as multi-session SLAM registration. Building

upon this, we propose a pre-linearization approach to leverage this type of general high-

dimensional abstracted feature in a real-time recursive Bayesian filtering framework, which

results in the first real-time recursive localization framework using this modality.

Finally, we propose a novel pose-graph SLAM algorithm leveraging FLS as the per-

xvi



ceptual sensors providing constraints for drift correction. In this algorithm, we address

practical problems that arise when using an FLS for SLAM, including feature sparsity,

low reliability in data association and geometry estimation. More specifically, we propose

a novel approach to pruning out less-informative sonar frames that improves system effi-

ciency and reliability. We also employ local bundle adjustment to optimize the geometric

constraints between sonar frames and use the mechanism to avoid degenerate motion pat-

terns.

All the proposed contributions are evaluated with real-data collected for ship hull in-

spection. The experimental results outperform existent benchmarks. The culmination of

these contributions is a system capable of performing underwater SLAM with both optical

and acoustic imagery gathered across years under challenging imaging conditions.

xvii



CHAPTER 1

Introduction

1.1 Motivation

1.1.1 Importance and Challenges of underwater robot localization

Mobile robots have found great success in a variety of tasks in human inaccessible envi-

ronments. Autonomous mobile robots operating in real-world environments must fulfill

three core tasks: localization, mapping and planning. Popular techniques for addressing the

first task, including localization frameworks based on recursive Bayesian filtering [64, 93]

and simultaneous localization and mapping (SLAM) [12, 29], have been proposed and

have served as the core component in a wide range of autonomous navigation systems.

Representative examples include small-sized unmanned aerial vehicles (UAVs) [10, 20],

advanced self-driving cars [100], and autonomous underwater vehicles (AUVs) [8, 67, 82].

Despite the great success of these frameworks, certain applications remain challenging

due to the limitations posed by the environment. Among the different research areas and

directions in mobile robotics, underwater autonomous navigation is of great importance

as the oceans cover 71 percent of the Earth’s surface and contain 97 percent of the Earth’s

water. AUVs provide great potential to revolutionize our access to the oceans, addressing a

variety of critical problems such as underwater search and rescue [6, 103], climate change

assessment [76], marine habitat monitoring [99] and underwater structure inspection [8, 66].

However, AUV navigation systems face challenges not found in terrestrial or indoor robotic

environments. Limited underwater communication prevents the usage of the global position-

ing system (GPS), which is one of the most popular and powerful sensors for terrestrial robot

localization. In addition, other available modalities are also limited due to the difficulties in

signal communication underwater.

Both optical cameras and acoustic imaging sonar are important and efficient perceptual

modalities for underwater navigation. But neither modality can consistently provide the

level of observation needed to support navigation systems. Optical signals can suffer from
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(a) Optical images with rich visual features (b) Optical images with little information

(c) Acoustic images with rich visual features (d) Acoustic images with little information

Figure 1.1: Examples of optical images and sonar images taken from ship hull inspection

applications. The images are taken with a vehicle stand-off of 1.5 m from the ship hull.

The sensor footprints with respect to the ship hull are given in Fig. 1.3. The image in (a)

captures an area with biofouling with clear visibility. However, in (b) the camera captures

an area with little recognizable texture or features, while the image quality is also decreased

by back scattering. Sonar image in (c) contains relatively rich visual features that can be

extracted as low level image information, while in (d) the image contains little texture and is

mostly covered by noise. With imagery like (b) or (d), it is unlikely that useful information

can be extracted for a SLAM system.
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Figure 1.2: Sensor configuration of the HAUV. Figure courtesy of Ozog, Johnson-Roberson,

and Eustice [85]

strong back scattering and low visibility due to the turbidity of the underwater environment.

Acoustic signals, on the other hand, suffer from low Signal-Noise-Ratio (SNR) due to

speckle noise. The low texture detail and ambiguities of the sensor also make it challenging

to extract useful information from sonar images. On top of that, the sparse distribution

of useful visual features in the environment can limit the information provided by both of

these modalities. Thus, real-world underwater robotic systems demand a comprehensive

navigation system that could jointly employ different sensor modalities to increase system

reliability and robustness.

In this thesis, we propose place recognition and localization approaches for underwater

navigation systems and address the challenges present in extreme underwater environments

when using both optical and acoustic modalities. In particular, we report on a place recogni-

tion approach that leverages optical cameras in the presence of dramatic appearance changes,

a real-time localization technique using sonar imagery, and a novel approach to explicitly

modeling Forward-looking Sonar (FLS) image features in a SLAM systems with other

sensor modalities.
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Figure 1.3: Perceptual sensor footprint with respect to a ship hull.

1.1.2 Autonomous Ship Hull Inspection with the HAUV

The main motivation for our work is the application of autonomous ship hull inspections

using a hovering autonomous underwater vehicle (HAUV). This is a joint research project

between the University of Michigan, Massachusetts Institute of Technology, Carnegie

Mellon University, and Bluefin Robotics. The goal of the inspection is to map and virtually

reconstruct the below-water portion of a ship hull, in order to detect structural damage

or suspicious objects. These tasks are traditionally performed by human divers in a time-

consuming and dangerous manner.

The HAUV is a free-floating vehicle developed for underwater, man-made structure

inspection. The main feature that sets it apart from other AUVs is its hovering functionality

with respect to the targeted structure, which is enabled by its main proprioceptive sensor, the

Doppler velocity log (DVL). The DVL is servoed to point orthogonal to the ship hull, which

allows the robot to navigate in a hull-relative reference frame. The HAUV also features a

bottom-referenced mode with the DVL downward-looking to the sea floor. Fig. 1.2 shows

the sensor configuration of the HAUV platform used in the project. A DVL, an inertial

measurement unit (IMU), and an on-board depth sensor serve as the main navigation sensors

for dead-reckoning (DR). A stereo camera rig for underwater images, a periscope camera

for above-water images, and a DIDSON [90] forward-looking imaging sonar are perceptual

modalities on the vehicle used to examine the ship hull appearance and structure. The
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Table 1.1: Payload characteristics of the HAUV

Prosilica GC1380 12-bit digital stills, fixed-focus, monochrome, 1 Megapixel

Periscope Camera Monocular Prosilica GC1380 in water-proof housing

Underwater Camera

(monocular, pre-2013)
Monocular Prosilica GC1380 in water-proof housing

Underwater Camera

(stereo, post-2013)

Two Prosilica GC1380s in separate water-proof bottles, linked

via Fast Ethernet

Lighting 520 nm (green) light-emitting diode (LED)

IMU Honeywell HG1700

Depth Keller pressure, 1-σ noise at 10 cm

Imaging Sonar Sound Metrics 1.8 MHz DIDSON

DVL RDI 1200 kHz Workhorse; also provides four range beams

Thrusting Five rotor-wound thrusters

Battery 1.5 kWh lithium-ion

Dry Weight 79 kg

Dimensions 1 m× 1 m× 0.45 m

Figure 1.4: Lawn-mowing trajectory pattern during inspection.

specifics of the vehicle payload are given in Table 1.1 as reported by Hover et al. [45].

Although the project targets the inspection and virtual reconstruction of the whole ship

hull, in this thesis we primarily focus on the planar portion of the ship hull. In the survey

of non-complex areas of the ship-hull, the HAUV follows a default trajectory pattern, as

depicted in Fig. 1.4. A real-time visual-based SLAM framework [8] has been proposed

in previous work to prevent the localization drift due to accumulated error in DR. Due to

the limited operation time of the vehicle, which is constrained by its battery capacity, a

single mission is not able to survey the whole non-complex area of a ship hull. Multiple

mission sessions at different locations are merged together using perceptual observations to

achieve full coverage of the area, as depicted in Fig. 1.5. The main goal of this thesis lies

in enhancing the capability of the HAUV localization system against extreme environment

conditions, using advanced recognition algorithms in both optical and acoustic sensors.

Given the full coverage of the area with accurate navigation and localization during the
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Figure 1.5: Dense full coverage of the planar area.

mission, the observation data can be used to provide high-fidelity models of the ship hull

for periodic ship hull condition evaluation and foreign object detection. Fig. 1.6 gives an

example of the offline reconstruction.

As depicted in Fig. 1.1, the challenges of the underwater environment still limit the

robustness and application scenarios of the navigation system. The primary purpose of the

proposed work is to improve robustness of the navigation system under extreme environment

conditions by leveraging multiple modalities.

The method proposed in this thesis is evaluated using data collected during the multi-

inspection on a Wright-class Aviation Logistics Support Container Ship, as depicted in

Fig. 1.7. The total length of this vessel is 183 m.
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Figure 1.6: Reconstructed high-fidelity model using inspection data of the HAUV. Fine

scale structure stands out and the original CAD model of the ship hull can be detected from

a model-assisted bundle adjustment reconstruction framework. Figure courtesy of Ozog,

Johnson-Roberson, and Eustice [85].

Figure 1.7: SS Curtiss.
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Figure 1.8: Graphical model of Full-SLAM formulation

1.2 A Review of Visual-SLAM

A simultaneous localization and mapping (SLAM) system addresses a fundamental problem

in mobile robotics where a robot travels through an unknown environment and uses its

sensors to collect observations of its surroundings to simultaneously estimate a map of its

environment and localize itself within the map. Researchers in robotics have been studying

SLAM for decades. This work has established the theory that models the noisy sensor

measurements and robot state estimate jointly in a probabilistic framework [12, 29]. A

SLAM system normally consists of two main components: (i) a front-end component that

parses sensor measurements and formalizes them as random variables with a well defined

noise model, and (ii) a back-end solver that optimizes over robot poses and map features

given the measurements from the front-end.

For a Full-SLAM problem, the solver estimates the maximum a posteriori (MAP) robot

states and landmarks in the environment:

X∗,L∗ = argmax
X,L

p(X,L|U,Z), (1.1)

where X represents the robot states along the trajectory and L are landmark states observed

in the environment. U represents control information or odometry measurements between

poses depending on the actual robot platform and Z are other direct measurements of the

environment, such as laser scans or feature point measurements from camera images. The

graph model of the problem formulation is depicted in Fig. 1.8.

In some application scenarios in which real-time maps are not a target product, Pose-

SLAM is often employed to decrease the optimization complexity by marginalizing the

landmarks. The corresponding graph model is given in Fig. 1.9. This formulation is also

very useful when sensor measurements cannot be easily modeled as a landmark, such as laser

scans. In this document, we employ Pose-SLAM formulation in most of the applications.
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Figure 1.9: Graphical model of Pose-SLAM formulation

Figure 1.10: Loop-closure in SLAM. Blue line is the ground truth trajectory. Orange line is

the estimated trajectory. When the robot is able to recognize a previously visited position, a

loop-closure constraint can be generated and used to correct the drifting.

1.2.1 Appearance-based Place Recognition

The problem of recognizing locations based on scene appearance using perceptual sensors

is of great importance for mobile robotics in the context of loop-closure detection within

SLAM and global localization across multiple SLAM sessions.

Loop closing is the task of deciding whether or not a vehicle has, after an excursion of

arbitrary length, returned to a previously visited area, as depicted in Fig. 1.10. A successful

detection of loop closure could help correct the drift error in robot pose estimation accumu-

lated along the trajectory and decrease the estimation uncertainty. However, loop closure

detection is very difficult because the uncertainty in the robot trajectory increases overtime

and results in a large range of possible locations to be tested.

Place recognition in a global localization context poses a more challenging problem

o1 x11 x12 x13

x21 x22 x23 o2

(a) Two SLAM sessions are independent without

any prior information or constraint on their rela-

tive positions.

o1 x11 x12 x13

x21 x22 x23

(b) Two SLAM sessions can be

merged into one with an alignment

constraint induced by place recogni-

tion (green line).

Figure 1.11: Place recognition for multi-session SLAM.
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Figure 1.12: General flowchart of appearance-based place recognition algorithms.

where no prior information is available. Typical application scenarios include multi-session

SLAM, when multiple robots cooperatively explore a common area or a single robot surveys

an area with multiple deployments. An illustration of global place recognition is given

in Fig. 1.11.

Appearance-based information is one of the most commonly used cues for place recog-

nition of mobile robot platforms. As the appearance of a scene is independent of the pose

and error estimate, these methods can potentially provide a solution which allows loop

closures to be quickly and robustly detected. Sensors commonly used in this work include

monocular and stereo camera systems and imaging sonar in some underwater vehicles. In

general, approaches addressing the place recognition problem describe the scene using

descriptive models computed over visual features and judge the scene similarity based on

metrics that suit the scene descriptor. We give a general flowchart of key steps in place

recognition in Fig. 1.12. One of the most representative algorithms is the Fast Appearance-

based Mapping algorithm (FAB-MAP) [24], which describes the environment through a

bag-of-words (BoW) model built upon scale-invariant feature transform (SIFT) features.

Other approaches can vary in the type of visual features extracted or in the descriptive

models used to represent the features in a concise manner. Commonly-used visual features

include SIFT, speeded up robust features (SURF), edges, and histogram of oriented gradi-

ents (HOG). More recent work has explored the potential of using mid-level features from a

pre-trained convolutional neural network (CNN) as visual features in the system [22].

On top of the scene modeling, systematic methods that combine multiple images or

pieces of scenes for place recognition are also conducted to provide more robust detection.

SeqSLAM [75], proposed by Milford and Wyeth, estimates the topological location of

the vehicle by matching two segments of the robot’s trajectory instead of matching two

individual images. This approach is based on the fact that ground vehicles or self-driving

cars will repeat the trajectory at the same location while following the route. Naseer et

al. [77] proposed a framework that builds upon SeqSLAM, which used the Flow Network

technique that relaxes the shared-route assumption to a partial shared-route assumption.
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Figure 1.13: FLS Sensor Measurement.

1.3 A Review of Forward-looking Sonar (FLS) in Under-

water Robotics

In this section, we review the use of FLS in underwater robotics. We first describe the basic

operation principles and image formation of FLS devices. Then we provide a discussion on

the challenges of using FLS as a perceptual modality. Finally, we review the applications of

FLS for underwater navigation and scene reconstruction.

1.3.1 FLS

FLS, also referred to as forward-scan sonar or an acoustic camera, is a new generation of

sonar that provides high-definition acoustic imagery at a fast rate. FLS sends out acous-

tic waves spanning the field-of-view (FOV), as depicted in Fig. 1.14. Then an array of

transducers observes the reflected signals from the scene as returns in the form of range

and bearing (r, θ). A FLS is not able to disambiguate the elevation angle of the acoustic

return originating at a particular range and bearing. Thus, a measurement point (r, θ) can

originate anywhere from an arc defined by (r, θ) in the Spherical coordinate system centered

at the projection center of the sonar head, as depicted in Fig. 1.13. This representation is

then converted to the final 2D image in Cartesian coordinates for an easier interpretation.

Resulting image examples are shown in Fig. 1.1.

Based on this operation principle, different types of FLS vary in operating characteristics.

A review of FLS system design and feature comparison is given by Loggins [70].
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Figure 1.14: An illustration of FLS Field of View.

1.3.2 Challenges in FLS processing

As discussed in Section 1.1, FLS provides more stable signals compared to optical sensors

in turbid water. However, challenges exist for this type of imagery. We provide a discussion

of the significant challenges that impact most FLS applications:

1. Low Signal-Noise-Ratio (SNR): The FLS images suffer from a very low SNR. The

main noise source for the FLS images is the speckle noise induced by the mutual

interference of return acoustic signals [41]. The same phenomenon also degrades

imagery from other coherent imaging systems, such as synthetic aperture radar or

medical ultrasound [87].

2. Sensitive to View Point Changes: Appearance variations in imagery due to a change in

the sonar’s viewpoint are inherent in the image formation process and more significant

compared to optical sensors. Imaging the scene or object from two different view

points can dramatically change the visual appearance. Unlike optical images, where

corner points and edges can be preserved if the scene appearance is consistent, low

level features in sonar images are jointly affected by scene structure and relative

position to the sonar head. Thus, powerful hand-crafted features developed for optical

images will lose their feature invariant properties and may perform poorly on sonar

frames.

3. Low Resolution: Although FLS is considered high resolution among sonars, as a

perceptual sensor, the image resolution is still low compared to optical camera images.
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Figure 1.15: Depiction of FLS-aided pose-graph SLAM system

The angular resolution is limited by the number of transducers physically held by

the device. In addition, the resolution with respect to the physical space will further

decrease as the range increases.

1.3.3 Imaging Sonar in Navigation Systems

The geometry system of FLS imaging described in the last section defines the relationship

between the 6 degree-of-freedom (DOF) position of the sonar and the 3D structure. Given

sufficient data association on image features, constraints on sonar motions across different

frames can be recovered. Pose-graph SLAM is a popular way to include these measurements

in the vehicle state estimation for underwater navigation systems. As depicted in Fig. 1.15,

relative-motion constraints derived from sonar data association are added to the SLAM

graph that only estimates vehicle poses without explicitly modeling landmarks in the

environment [45, 53, 96].

However, 6 DOF relative motion estimation from feature point correspondents in sonar

frames formulates an under-constraint estimation problem to deal with the loss of information

in the dimension of elevation in sonar measurements. Additional assumptions are often

made, adding extra constraints to the problem. A representative assumption is the planar

assumption of the observation scene, which is feasible to some extent in the survey of large

open areas of underwater structures or sea floor. Johannsson et al. [53] make an orthographic

projection approximation on the sonar geometry based on the planar scene assumption with

the fact of narrow elevation in a ship hull inspection application. The actual approximation

made within the image frame is depicted in Fig. 1.16. Under this assumption, the ambiguity

in elevation is transferred to the ambiguity in axis z. A 2D motion of (x, y, θ) can be

recovered from a fully constrained estimation problem following the equation below:

p̂j = Hij · p̂i =

[

cos θij − sin θij xij

sin θij cos θij yij

]

· p̂i, (1.2)
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Figure 1.16: Illustration of the approximation in orthogonal projection.

where p̂j and p̂i are corresponding feature points in sonar frame j and i under orthogonal

projection approximation, and (xij, yij, θij) is motion transformation from frame i to frame

j in 2D.

Other literature shares similar ideas of assumptions with different formulations of the

model. Aykin and Negahdaripour relax the whole scene planar assumption in their work

in two-view scan matching [9], but make the local planar surface assumption in image

patches to enable the use of shadow information for feature detection and registration. Shin

et al. [89] relax the assumption of narrow elevation by modeling the normal vector of the

scene surface in a bundle adjustment framework.

Huang and Kaess [46] introduced Acoustic Structure From Motion (ASFM), which

used multiple sonar frames from different viewpoints to reconstruct 3D structure as well as

sonar motions jointly with no specific assumption to the scene. ASFM shows promise in

providing sonar-based geometry estimation without further scene assumptions. However,

the existing work was mainly evaluated on simulation data or ideal experimental setting.

There are still great challenges towards a deployable system, which include but are not

limited to robust data association and efficient key frame selection for real-time performance

as well as singular motion pattern avoidance.

1.3.4 Scene Reconstruction Using FLS Imagery

In addition to recovering vehicle movement, reconstruction of the scene is another important

direction of FLS application in underwater robotics. Given relatively reliable motion prior

between sonar frames, image registration is conducted in a global optimization manner

across the whole image. The majority of literature on FLS scene reconstruction addresses the

problem by solving 2D mosaicing, where the planar assumption and orthogonal projection

approximation are used, as discussed in Section 1.3.3. A typical example of resulting 2D

mosaicing is given in Fig. 1.17(a). More recent work starts to look at the possibility of 3D

mosaicing based on dense 3D structure prior of the scene [84], as shown in Fig. 1.17(b).
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(a) Sample results from 2D mosaicing.

(b) Sample results from 3D mosaicing.

Figure 1.17: Example results from state-of-art sonar mosaicing literature. Fig. 1.17(a)

depicts a large scale 2D mosacing result of seafoor area at the new Marciana Marina Harbor.

Orthophotomap of the Marciana Marina environment is also given for reference. Figure

courtesy Hurts et al. [49]. Fig. 1.17(b) depicts a 3D mosaicing result aligned to a ship hull

CAD model. Figure courtesy Ozog et al. [84].
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Figure 1.18: Example of basic neural network model.

1.4 A Review of Convolutional Neural Networks

In this section, we give a brief review of CNNs. We start with an introduction of the basic

idea of a neural network as a regression method, then focus on convolutional neural networks

which are widely used in the context of computer vision. Finally, we discuss literature

leveraging CNN techniques in mobile robotics applications.

Neural networks, also known as artificial neural networks, comprise a variety of regres-

sion models where layers of parametric basis functions are stacked with parameters adapted

during training. The term ‘neural network‘ has its origins in attempts to find mathematical

representation of information processing in biological systems. In this document, we only

consider neural networks as efficient models for statistical pattern recognition. Although

neural network models in practice can be complex and large, it is easy to capture the gen-

eral idea following a simple and basic network example. The system shown in Fig. 1.18

constructs M linear combination of the input variables x1, x2, ..., xN :

aj = ΣN
i=1w

(1)
ij xi + w

(1)
j0 , j ∈ {1, ...,M}. (1.3)

The superscript of w indicates the index of ’layers’ of the network. Each of these linear

combinations is then transformed using a differentiable, nonlinear activation function h1( · )

to generate the output variables zj of the first layers:

zj = h1(aj). (1.4)

These variables are often referred to as hidden units or hidden variables as they are not

directly targeted outputs of the system. Hidden variables z1, ..., zM are then passed into the
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second layer in a similar way.:

bk = ΣK
j=1w

(2)
ik zj + w

(2)
k0 , k ∈ {1, ..., K}. (1.5)

Similarly, each output variable is transformed using an activation function h2( · ).

yk = h2(bk). (1.6)

The activation functions used in the network vary based on the expected properties of both

input and output variables. In the case of multiple binary classification problems, logistic

sigmoid functions are often used to provide a differentiable activation function while keeping

the output value between [0, 1].

σ(b) =
1

1 + e−a
(1.7)

By substituting zj with {xi}, it is easy to combine the systems to see what model is actually

used to model {yk} from {xi}:

yk(x,w) = σ(ΣM
j=1w

(2)
kj ·h1(Σ

N
i=1w

(1)
ij xi + w

(1)
j0 ) + w

(2)
k0 ), (1.8)

where all the parameters in the basic functions are grouped into a vector w. From Eg. 1.8

we can tell this network model is a simple nonlinear function from a set of input variables

x, controlled by the parameter w. This simple architecture given in Fig. 1.18 is the most

commonly used basic component in larger networks, where more layers with variations are

stacked to model the system with high complexity and nonlinearity.

1.4.1 Convolutional Neural Networks

In this document, we mostly consider the most commonly used type of neural network

models in the context of computer vision and robotics: convolutional feed-forward neural

networks, also referred to as CNNs. Convolutional neural networks share the basic idea

of ordinary neural networks as they consist of a hierarchy structure of base functions with

adaptable parameters. The main difference lies in the fact that CNNs make the explicit

assumption that the inputs are images, which allows us to encode certain properties into the

architecture. These then make the forward function more efficient to implement and vastly

reduce the amount of parameters in the network.

As depicted in Fig. 1.19(a), variables in CNN models are often arranged in 3 dimensions:

width, height and depth. This arrangement follows the assumption of an image input, which

can also be generalized to other similar data types such as RGB-D images or point clouds.
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(a) Simple example of data arrangement in CNN. (b) Illustration of convolutional

layer.

Figure 1.19: Illustration of basic CNN architecture. Fig. 1.19(a) depicts the data arrangement

in a typical CNN architecture. Fig. 1.19(b) depicts how the convolutional layer is constructed

and the effect on the output volume. Figure courtesy Stanford online class CS231n [1].

Based on this volume type of data arrangement, a CNN architecture is formed by a stack of

distinct layers that transform the input volume into an output volume. The convolutional

layer is the core building block of a CNN. The layer’s parameters consist of a set of filters

(or kernels), which have a small receptive field, but extend through the full depth of the

input volume, as depicted in Fig. 1.19(b). The output volume are given by:

z(i)(u, v) = x̂ ∗ wi, (1.9)

where superscript i denotes the index of layer, wi refers to the kernel weight shared by

the whole layer i, and x̂ refers to the corresponding receptive field of z(i)(u, v) in the input

volume. By parameter sharing within the whole layer, the network architecture is able to

keep a reasonable parameter size despite the high dimensionality of variables in each layer.

CNNs have been applied extensively to computer vision problems for quite a long

time. Prior work on the CNN architecture can be traced back to [63] by Lecun et al. on

handwritten digit recognition. More recently, with the performance increase in graphical

processing units (GPUs), more sophisticated network structures have been proposed and

demonstrated with great success in many traditional computer vision tasks, such as object

recognition and image classification. Best performance on benchmark datasets has been

continually improved by CNN-based methods, including ImageNet [27] and MNIST [62].

Representative networks include AlexNet [61] and GoogLeNet [92]. More recently, well-

developed open source libraries, such as Caffe [51], Theano [15] and TensorFlow [2], also

help to generalize CNNs into powerful and adaptable tools in many different applications.
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1.4.2 Application in Mobile Robotics

The interest in CNNs is not limited to the field of computer vision, but encompasses almost

all AI-related areas, including natural language processing (NLP) [23] and information

retrieval [98].

Mobile robotics is definitely one of the areas in which CNNs can achieve great success.

The utilization of CNNs in mobile robotic applications can be roughly categorized into three

main directions: i) Semantic understanding of the scene that provides information for motion

planners; ii) Non-semantic information extraction for robot navigation systems; iii) End-to-

end model learning that provides direct control output from input image sequences.

The majority of current CNN utilization in mobile robotics lies in the application of real-

time semantic understanding of the scene from perceptual modalities including camera and

depth sensors. Extracting semantic information from the scene is intrinsically very similar to

some of the classic computer vision tasks such as object detection and recognition and scene

segmentation. A lot of architectures have been adapted to solve these types of problems

specifically for mobile robotics. Hadsell et al. [37] leverages a CNN model to predict

traversable areas from videos using unsupervised data. The KITTI dataset [35] provides

sufficient sensor data collected by autonomous driving platforms in urban areas, which

has enabled a set of state-of-the-art semantic understanding algorithms to be developed

for self-driving vehicles [11, 44, 101, 105]. Johnson-Roberson et al. [54] propose to use

photo-realistic computer images from a simulation engine to rapidly generate annotated data

with variation in illumination and weather in the application of urban scene understanding

for self-driving vehicles.

Non-semantic understanding of perceptual sensor measurements using CNNs focuses

on metrical or topological understandings of the scene or vehicle motion that provides

information for improving navigation accuracy. Kendall, Grimes, and Cipolla propose to

train CNNs that directly estimate 6 DOF camera position from input images. Luo, Schwing,

and Urtasun [73] developed a stereo image matching algorithm using CNNs by modeling

the disparity estimation as a classification problem. Chen et al. [22] propose the first place

recognition based on the mid-layer features of a pre-trained model.

In more recent literature, end-to-end model learning has attracted a lot of attention with

a brave attempt to leverage the CNN architecture as a complete system that provides direct

output to some higher level and more complex tasks such as control and planning. Bojarski

et al. [17] propose to use CNNs to provide steering wheel angles in real-time to allow for

lane keeping from input stereo image sequences. Although the algorithm has only been

evaluated on simulation tasks and limited on-road tests, the promising result empirically

demonstrates that CNNs are able to learn the entire task of lane and road following without
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manual decomposition into road or lane marking detection, semantic abstraction, or path

planning and control.

1.5 Thesis Outline

1.5.1 Thesis Goals

The problems we consider in this thesis are as follows:

i Registration among optical observation of the scene across time is a key pre-requisite for

underwater navigation systems. Changes in illumination, water condition and physical

appearance in the underwater environment make this task extremely challenging. In

this thesis, we explore registration and comparison between optical observations against

dramatic changes happening in underwater environments across long periods, given

periodic observation measurement of an underwater scene or structure.

ii The capability of optical sensors in underwater navigation systems is limited by their

signal sensitivity to water conditions and limited FOV. In this thesis, we improve percep-

tion and navigation capabilities of an underwater autonomous vehicle by incorporating

FLS imaging measurement at different scales. As an extra perceptual modality to the

environment alongside optical cameras, imaging sonar will improve system robustness

towards turbid environment and increase the perceptual footprint of the vehicle with

larger FOV.

To address the problem above, we present the following contributions to the development

of a multi-modality SLAM system for underwater autonomous vehicles:

1 A high-level feature detection and description approach that enables a robust registration

between optical images despite dramatic appearance changes. We show that the proposed

feature combined with sample-based localization frameworks could achieve promising

performance against low feature density and appearance changes.

2 An image-level descriptive feature leveraging CNN techniques for forward-scan imaging

sonar. The learned features provide a robust and efficient similarity measurement in high-

noise-level and weak-feature-texture images. The place recognition performance using

these features achieves promising accuracy compared to that achieved using traditional

hand-crafted features.
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3 A general pre-processing procedure to utilize high-dimensional features in real-time

Bayesian filtering frameworks. We reduce the curse of dimensionality of observations in

recursive Bayesian filtering and provide noise modeling to black-box features using data

perturbation techniques. We show that the proposed approach can be used in a real-time

localization framework using the proposed sonar image features.

4 An imaging sonar SLAM front-end for a pose-graph SLAM system which provides

vehicle pose constraints from local bundle adjustment among a clique of neighboring

sonar images. We provide robust solutions to practical problems including sparse feature

distribution and unreliable data association to guarantee a deployable approach for real-

world systems. We show that the proposed method improves the vehicle state estimation

to the SLAM system by providing robust navigation information through acoustic signals.

The work introduced in this thesis has been published in the following venues:

J. Li, R. M. Eustice, and M. Johnson-Roberson. High-level visual features for underwater

place recognition. In Proc. IEEE Int. Conf. Robot. and Automation, pages 3652–3659,

May 2015. doi: 10.1109/ICRA.2015.7139706

J. Li, R. M. Eustice, and M. Johnson-Roberson. Underwater robot visual place recognition

in the presence of dramatic appearance change. In Proc. IEEE/MTS OCEANS Conf.

Exhib., pages 1–6, Oct 2015. doi: 10.23919/OCEANS.2015.7404369

J. Li, P. Ozog, J. Abernethy, R. M. Eustice, and M. Johnson-Roberson. Utilizing high-

dimensional features for real-time robotic applications: Reducing the curse of dimen-

sionality for recursive bayesian estimation. In Proc. IEEE/RSJ Int. Conf. Intell. Robots

and Syst., pages 1230–1237, Oct 2016. doi: 10.1109/IROS.2016.7759205

J. Li, M. Kaess, R. M. Eustice, and M. Johnson-Roberson. Forward-looking sonar pose-

graph SLAM. In Proc. Int. Symp. Robot. Res., 2017. Submitted

1.5.2 Document Road-map

Each contribution discussed above is described in detail in the following chapters:

Chapter 2 describes a high-level feature detector and corresponding description approach

of optical images, which enables image registration against strong appearance changes.

Chapter 3 describes an image-level descriptive feature of FLS images extracted by CNNs.
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Chapter 4 describes a general approach to utilize abstracted high-dimensional features in

Bayesian filtering frameworks. An evaluation of the efficiency of this method on the

sonar image features proposed in Chapter 3 is provided.

Chapter 5 describes a geometry estimation algorithm from a neighboring clique of sonar

frames, which can serve as the front-end of a pose-graph SLAM system.

Chapter 6 offers a summary of our contributions described in this document and provides

a discussion on potential directions for future work.
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CHAPTER 2

High-level Feature Place Recognition

2.1 Introduction

Recognizing a place that has been previously viewed is an important challenge in both

robotic navigation and computer vision. It is a prerequisite for visual-based navigation

systems, and also important for long-term robot operation using perception. Several robust

approaches have been proposed in the last decade for terrestrial place recognition. However,

place recognition in the underwater environment is a more challenging problem. Dramatic

changes in scene appearance occur due to viewpoint dependent illumination (underwater

robots often carry their own light source) or biofouling, both of which can cause poor

performance when executing point-based feature matching. The low density of salient visual

features is another factor that also increases the difficulty of underwater image matching.

In this chapter, we introduce our work addressing the problem of underwater visual

place recognition across years by leveraging high-level information that persists longer in

the underwater environment across time, such as structure or shape. Built upon this idea, we

provide answers to three main questions embedded in the problem: feature detection (or

feature proposal), feature description and feature-based image matching.

The proposed algorithm first conducts feature patch region proposal using image seg-

mentation techniques. A classifier trained on-line is then used to provide similarity metrics

for each feature region based on high-level information. Finally, a geometric model selected

from all the feature patch matching results provides a reliable image-level similarity mea-

surement. Additionally, since individual image matching can sometimes be unreliable due

to insufficient features, neighboring images are also considered in the proposed method to

provide more visual evidence to improve robustness.

The proposed solution has applications for temporally periodic underwater structure

inspection and long term monitoring of benthic marine habitats. We evaluate the proposed

method on a labeled dataset from a periodic ship hull inspection application. To provide
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a realistic example of application of our algorithm, we also embed it into an application

scenario of multi-session graph merging for underwater long-term navigation. The experi-

mental results indicate that the proposed method outperforms most of the classic features

dealing with dramatic scenes changes and is able to provide robust place recognition results

for graph merging across years.

This chapter represents the culmination of several of our publications [65, 66]. In the

sections that follow, we discuss several contributions that arose from our work:

• A visually-salient patch-based feature proposal method that enables us to localize the

salient regions in underwater images;

• A patch-feature description that is robust to dramatic changes in appearance;

• A robust outlier rejection for patch matching using a geometric constraint; and

• An online relocalization framework for multi-SLAM session registration against

dramatic environment changes.

While the proposed approach can be generalized to many different applications, we evaluate

the proposed approach in the relocalization task of underwater ship hull inspection across

years.

2.1.1 Outline

The rest of this chapter is arranged as follows: (i) Section 2.2 will give a brief introduction

about related works of visual-based navigation and visual feature matching; (ii) Section 2.3

presents the key steps in the algorithm of high-level feature matching; (iii) Section 2.4

introduces how the proposed high-level visual feature matching approach can be adapted into

multi-session merging tasks for long-term SLAM; (iv) Section 2.5 evaluates the approach

through the use of ship hull inspection data and compares the approach with some state-of-art

algorithms; and (v) Section 2.6 concludes the work of this chapter.

2.2 Background

In this section, we cover two broad areas of related work: (i) visual features used in the

context of place recognition; and (ii) visual-based navigation systems.
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(a) Using standard point-based features, we are not able to make a valid

match between two correspondent images collected from different years

(b) Using the proposed method, we are able to match two correspondent

images collected from different years

Figure 2.1: Depiction of the proposed high-level feature matching method with real data.

The two images are corresponding images collected from the years 2013 and 2014. Obvious

texture-fading can be seen, which limits the performance of point-based features. The

proposed method, on the other hand, is able to select a salient patch that contains high-level

information that tends to last longer, resulting in higher robustness against appearance

changes.
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2.2.1 Visual feature matching

Visual feature matching is the key prerequisite of visual-based place recognition. For

decades, fundamental work has been done to select signature features and describe them in a

unique way for image matching or image classification. An important domain has been point-

based features that provide feature correspondences invariant to view point changes, such as

Scale-Invariant Feature Transform (SIFT) [71], Speeded Up Robust Features (SURF) [13]

and Binary Robust Independent Elementary Features (BRIEF) [18]. SIFT is proposed

by Lowe for object recognition [71]. He proposed to detect key points from maxima or

minima of Difference of Gaussian (DoG) filters, and to describe the feature point with

an oriented and normalized descriptor based on the surrounding image patch of the key

point. Currently, SIFT is one of the most popular features used in object recognition and

classification due to its robustness to scale and local affine distortions. However, these

features are mainly detected and described based on the gradients of a small neighboring

patch in the image. When illumination conditions change drastically, or any decay occurs to

the scene, details of image appearance will change, resulting in large differences in small

patches. Additionally, extracting a sufficient number of features is important to guarantee

the matching performance, which is hard to achieve in the underwater environment.

Higher level features are also used elsewhere in the computer vision community. Such

features capture more structural information and are more tolerant to changes or differences

in appearance in small areas of the image. Representative works include GIST [81] designed

for building recognition, and HoG [25] that is mainly used for specific object type recog-

nition. GIST proposed to interpret an image by its principle components in spectrograms.

Natural images can be easily distinguished from images of man-made objects since they

often contain different components in the frequency domain. HoG describes a bounding box

with a vector containing the histogram of gradients for different parts of the bounding box.

It captures the shape information of a image patch. However, these features are seldom used

in place recognition frameworks, since a large amount of labeled training data is needed for

each single inquiry object or bounding box. Additionally, they are not distinct enough to

provide registration between two areas or two images. The output of these approaches is

often a set of candidate matches or a set of positive responses in object recognition.

Recent work, inspired by the success of Artificial Neural Networks, proposes to go

beyond handcrafted features and explore new possibilities by treating feature extraction

and representation as a machine learning problem. Hinton et al. [42] make a breakthrough

improvement in the MNIST digit image classification problem using deep belief networks.

A similar idea is used by Krizhevsky et al. [61], who broke the record on ImageNet, a natural

image classification challenge dataset. Subsequently, Sermanet et al. [88] proposed to use
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the high level features trained from ImageNet to solve more pattern recognition problems

in computer vision, such as object detection and object classification. Current competition

records for many prominent classification datasets are held by learning-based methods.

Feature learning frameworks are able to learn complex and high level representations of a

patch or the whole image, which enables them to distinguish one type of image from another.

However, since the features learned from the network are high dimensional, a huge amount

of training data is needed to guaranteed a robust and general output.

2.2.2 Visual-based navigation

Most current mobile robotic navigation systems are formulated as a Simultaneous Local-

ization and Mapping (SLAM) problem, in which a robot is tasked with navigating through

an a priori unknown environment using a combination of odometry and perceptual sensors.

Refer to [29] for a comprehensive survey of solutions to SLAM problem. Cameras have

commonly been used as the primary sensor modality for mobile robots, and the ability for

visual place recognition has been improved dramatically in recent years. Representative

works in visual-based place recognition include Fast Appearance-based Mapping algorithms

( FAB-MAP) [24], MonoSLAM [26], and FrameSLAM [60]. However, these benchmark

systems are focused more on searching for a location with the largest probability given

matching results from standard point-based features. Less work has been done on operation

under dramatic appearance changes of the scene.

More recently, some representative work that focuses on the dramatic scene changes in

place recognition problems has been developed. SeqSLAM [75], proposed by Milford

et al., estimates the topological location of the vehicle by matching two segments of

the robot’s trajectory instead of matching two individual images. The robustness of the

system is improved when neighboring images are involved in the final matching results.

However, a strict assumption is made that the two matching segments share the same

route. This assumption holds for ground robots like autonomous cars, which drive on the

road. For underwater robots, on the other hand, it’s almost impossible for two individual

segments of the path to share a same trajectory, since the vehicle can move freely in space.

Naseer et al. [77] proposed a framework that builds upon SeqSLAM, which used a Flow

Network technique that loosens the shared-route assumption to allow for partial matching.

Additionally, they also propose to use grid HOG as the descriptor of an image, and match

two images based on the dot product of two HOG vectors. Though the HOG representation

dramatically improves the performance of image matching in the dataset taken over multiple

seasons, it relies on the orientation of the vehicle relative to the scene, which is almost static
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for autonomous cars. McManus and his colleagues also explore the possibility of matching

through high level features, which is similar to our method. They proposed to train Support

Vector Machine (SVM) classifiers of signature HOG patch features for a set of neighboring

images using an unsupervised method. However, the restriction of small or no pose change

relative to the scene limits their approach. Their unsupervised signature patch searching

depends on the fact that the image is feature-rich. Neither of these two basic assumptions

hold in the underwater environment.

Some effort has gone into addressing the image registration problem for underwater

images. Eustice et al. propose to use pose-constraints from SLAM graphs to pre-constrain

the searching area of point-based feature matching within one SLAM graph [32]. Carlevaris-

Bianco et al. propose to do place recognition by matching a set of neighboring images which

provide a larger field of view in matching and more visual features [19]. Both approaches

assume SLAM prior is available to provide a constraint in feature matching. However, no

prior information is available between images from two independent SLAM missions. Ozog

et al. propose a registration between different SLAM graphs that selects candidate images

before visual matching by comparing the vehicle poses with respect to the ship’s hull using

planar features estimated from data of the Doppler Velocity Log(DVL) [82]. However, this

work focuses on data collected within a small time interval–a week at most.

2.3 High-level feature matching

2.3.1 System Overview

An outline of the proposed image matching method with high-level features is shown in

Fig. 2.2. Given a current image in the SLAM graph of a new mission, the goal of our system

is to find the image taken at the nearest location from a set of images collected in previous

missions. Given a current image, a set of neighboring images is collected and salient patch

features are proposed in this image set. For each patch, a binary Support Vector Machine

(SVM) classifier is trained to detect similar patches in the dataset. Finally, all possible

matching features are fed into a geometry verification method to reject outliers and achieve

a robust matching result.

2.3.2 Salient Patch Proposal

As shown in Fig. 2.1, most images in the underwater environment, especially those involved

in ship hull inspection, are of low feature density. To address this problem, we propose the
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Figure 2.2: Flowchart of our high-level feature image matching approach. First, a neigh-

boring image set is gathered for a current image. A set of patch features is detected and

described with a set of SVM classifiers based on HOG feature. Patch feature matching is

then carried out on the dataset followed by a geometric validation method to reject outliers.

use of segmentation techniques to select visually salient regions for feature matching, and

make use of neighboring image sets to provide more visual evidence to achieve a robust

matching result.

2.3.2.1 Single Image Patch Proposal

Based on human perception principles, two main characteristics are shared by visually

salient regions: i. obvious and complete boundaries; and ii. unique color compared to the

surrounding area. These principles are widely used in most state-of-the-art salient object

extraction algorithms such as [52] [5].

Based upon these characteristics, a salient patch selection algorithm is proposed as out-

lined in Algorithm 1. First, a graph-based segmentation method [33] is used to decompose

the image into a set of components with strong boundaries between them. The approach

makes use of a graph-based representation of an image: G = (V,E), where each pixel is a

vertex, and each vertex is connected to its 8-neighbors. The edges are undirected and come

with a weight according to pixel intensity similarity w(e). The segmentation is initialized

as a set of single pixel components S0 = (Ci, ..., CN). Then, neighboring components are

merged by comparing the minimum weight connecting them and a measure of internal

consistency which is defined as:

Int(Ci) = max
e∈MST (Ci,E)

w(e)

MST (Ci, E) is the minimum span tree of Ci constructed upon the edge set E. A minimum
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Algorithm 1 Salient Patch Proposal

Initialization: a graph of the image G = (V,E); Initial segments S0 = (C0
1 , ..., C

0
N).

Int(C0
i ) = ∞.

return Final segments S∗ = (C1, ..., Cr)

1: Sort E into E = (e1, ..., eM) by non-decreasing edge weight.

2: for i = 1 to M do

3: Si = Si − 1
4: Consider ei = (vj, vk) with weight w(ei), vj ∈ C i

vj
, vk ∈ C i

vk

5: if C i
vj
! = C i

vk
andw(ei) < MInt(C i

vj
, Ci

vk
) then

6: merge C i
vj

and C i
vk

.

7: end if

8: end for

9: S∗ = SM

10: for i = 1 to |S∗| do

11: Sal(C∗
i ) = ΣBj∈B|Mean(C∗

i )−Mean(Bj/C
∗
i )|)

12: if Sal(C∗
i ) < β then

13: remove C∗
i

14: end if

15: end for

internal difference is also defined between neighboring components as a merging threshold.

MInt(C1, C2) = min (Int(C1) + τ(C1), Int(C2) + τ(C2))

The threshold function τ controls the tolerance level, which is a function of component

size. τ(Ci) = k/|Ci|, where k is a manually selected parameter. For a smaller component,

merging is encouraged, while for larger components it becomes more difficult. The threshold

function also ensures that a larger weight is needed to indicate the existence of a true

boundary.

After the segmentation stage, a saliency evaluation is carried out on each component,

resulting in candidate patches. The saliency score is based on local contrast and is defined

as:

Sal(Cj) = ΣBi∈B|Mean(Cj)−Mean(Bi/Cj)|

where Mean(Cj) is the mean pixel value in component Cj , and B is a set of bounding boxes

containing Cj in different scales. Mean(Bi/Cj) refers to the mean value of pixels in Bi but

not belonging to Cj . Under this definition, a component is compared to its surrounding area

at different scales to determine its contrast level. A similar saliency score is defined in some

recent salient region/object detection algorithms [3, 39, 86]. The patches are dropped if the

saliency score is lower than a manually set threshold β.
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(a) (b) (c)

(d) (e)

Figure 2.3: The intermediate steps in salient patch proposal where a pool of candidate

patches are extracted. (a) Original current image. (b) Segmentation results of the current

image. (c) Patch proposal of single current image without saliency judgment. (d) Patch

pool from all neighboring images projected onto current image frame. (e) Selected salient

patches after saliency judgment.
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Figure 2.4: Training samples are generated in current image and the neighboring images.

Red: positive samples; Green: positive samples generated by shifting; Blue: negative

samples

2.3.3 Patch Pooling in Neighboring Image Set

Given an current image I , a set of neighboring images R, including I , is considered. Salient

patch proposal is performed on each image in R. All of the proposed patches are included

in a patch pool P and considered in the next stage. As shown in Fig. 2.3(d), the neighboring

image helps to propose more combinations of patches. For this step, SIFT matching is used

since the neighboring images are collected during the same mission.

2.3.3.1 SVM Classifier for Patch Features

Given the location and scale of a salient patch, a description of the patch and a distance

metric is used for patch feature matching. A binary classifier is trained to discriminate

matches.

As shown in Fig. 2.4, HOG features [25] are used to provide a description for the patch,

capturing the outline and shape information of a patch. A linear SVM classifier is then

trained to detect corresponding patches in a current image. The whole procedure can be

summarized in the following steps:

1. For each patch feature pi, search for corresponding patches in the neighboring images

using the propagation method mentioned in Section 2.3.2. Extract HOG features for

all these correspondent patches as positive samples for SVM training.

2. In every neighboring image, generate motion compensated positive samples by slightly

shifting the corresponding patches, as shown in the green boxes in Fig. 2.4.

3. In every neighboring image, randomly sample N patches that are off the location of
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(a) (b)

(c) (d)

Figure 2.5: This figure illustrates how the fundamental matrix is estimated and tested in

multiple positive responses returned by SVM classifiers. (a) Left: Patch 1. Right: SVM

positive responses. (b) Left: Patch 2. Right: SVM positive responses. (c) Fundamental

candidate F is estimated by the best match of Patch 1. (d) The Candidate fundamental

matrix estimated from Patch 1 is tested on Patch 2 by searching for the best response of

Patch that satisfied F .

positive patches and treat them as negative samples, as shown in the blue boxes in

Fig. 2.4.

4. Train an SVM for the patch feature given all positive and negative samples. Discard

the patch features whose samples cannot be separated successfully by linear SVM,

which means they are not salient enough to be distinguished from other neighboring

patches.

The output of SVM training is a set of salient image segments S = {Ci} and their corre-

sponding SVM classifiers over histogram of oriented gradients (HOG) features D = {di}.

In the image matching procedure, di is used as feature descriptors to search for features

similar to pi.

2.3.4 Image Feature Matching with Geometry Model Selection

We measure the similarity between two images through a similarity quantification of cor-

responding proposed patch features. For each patch feature Ci, the corresponding SVM

classifier di can be used to search for similar patches in the matching image. The downside

of the SVM classifier is false alarms, as shown in Fig. 2.5(a) and Fig. 2.5(b). In order to
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Figure 2.6: HOG Structure: A patch is divided into a set of blocks by a sliding window.

a block is divided by 4 cells. Within each cell, a 9-bin histogram of oriented gradient is

accumulated. The block feature is a vector of 4 9-bins histograms. The HOG feature is a

vector of all the block features.

reject false positive SVM matches and achieve a more reliable result, a model selection

strategy is employed based on a geometry model.

The relationship between two image points looking into a same scene point is constrained

by the underlying geometry relationship. One of the most popular definitions for this

constraint is the fundamental matrix F [40], which is widely used for point-based feature

matching and structure estimation in two-view or multi-view systems. It defines this

relationship as follows:

xT1 Fx2 = 0 (2.1)

where x1 and x2 are homogeneous coordinates of corresponding image points. F is defined

up to scale with one free dimension, so at least 8 pairs of points are needed for estimating F

using the standard linear algorithm. However, 8 pairs of patch correspondences are hard to

satisfy given the low density of features in underwater images. To deal with this problem,

the sub structure of HOG features are used. As depicted in Fig. 2.6, the HOG feature is

constructed from a set of sub-regions (blocks) in a larger bounding box. Each block in

the bounding box contains four cells. A 9-dimension gradient histogram will be extracted

for each cell. The block itself is a more localized feature describing a small area relative

to the whole HOG feature. By matching block features between two matched patches, a

fundamental matrix that is consistent with the matched pair can be estimated.

An outline of our proposed image matching algorithm using the patch features is given

in Algorithm 2. Each pair of potential matched image patches (Ci,M
u
i ) will be used to
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propose a hypothetical fundamental matrix Fj . For all proposed hypothetical Fj , the test of

all the matching patches is done following the relationship defined in Equation 2.1. The F ∗

that achieves the maximum number of supporting patch pairs is the winner of the model

selection and its supporting image patch S∗ = {C∗
i } is the successfully matched patch in

the image matching. The final matching score is given by :

Sm = Σ
|S∗|
j=1Area(C

∗
j )/Area(Img1) (2.2)

where |S∗| is the number of successfully matched patches.

Algorithm 2 Image matching using geometry model selection

input

img1, img2: Matching images.

S: Salient segments in img1.

D : SVM classifiers corresponding to S.

initialization

F = φ: the set of geometry models between two images

1: for i = 1 to |D| do

2: Mi := SVMTest(di, img2)
3: for u = 1 to |Mi| do

4: F = F ∪ModelExtract(Ci,M
u
i ))

5: end for

6: end for

7: Best F := φ
8: Max Num Support := 0
9: for j = 1 to |F | do

10: Num Support = ModelTest(S, {Mi};Fj)
11: if Num Support > Max Num Support then

12: F ∗ = Fj

13: end if

14: end for

return F ∗

As shown in Fig. 2.5, the model selection based on geometric constraint is able to

improve the system by filtering out false alarms in the SVM response. A verification

of the effectiveness of the geometry constraint is provided in Section 2.5 by comparing

performance of the system with and without it.
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Figure 2.7: Multi-session graph merging overview. Here we show two graph SLAM graphs

merged in a common frame using our graph merging algorithm. A graph from inspection

conducted in 2013 is depicted in blue, while a new mission graph from 2014 is colored red.

The task of merging is to determine the 6 DOF rigid body transformation between the two

graphs through all the sensor measurements onboard an HAUV, which can be used by the

SLAM back-end to merge the two graphs as a single optimization problem. An example

of matched images between the two graphs found by our approach is shown in the image

block.

2.4 Multi-session SLAM Graph Merging for Long-term

Hull Inspection

Periodic inspection and structural defect assessment of large ships is an essential but

expensive and time-consuming task in vessel maintenance, which is most often done by

dry-docking the vessel. Recently, the task has evolved to include the deployment of a

variety of remote-controlled or unmanned underwater robots to inspect and reconstruct the

underwater portion of the ship hull in situ [59, 74, 82]. A consistent task includes periodic

inspection conducted every few months or once a year. Being able to register inspection

results across the inspection circle is of great importance to evaluate the structural changes

and prioritize inspection plans.

In this section, we adapt the proposed high-level feature matching approach in a practical

underwater localization task that enables graph merging across years in a Multi-session

SLAM pipeline. A illustration of the expected scenario is depicted in Fig. 2.7.

The task is fulfilled using a Particle Filtering (PF) framework taking all the measurements

onboard an HAUV. This work extends the previous work of Ozog and Eustice [82], which

uses PF before the visual evidence being considered, then conducts a best-of-all image

matching strategy to identify the best estimated geometry relationship. In our work, we

explicitly model high-level image feature similarity matching within the PF framework to

include more pairs of visual evidence to make a robust decision.

A flowchart of the proposed algorithm is given in Fig. 2.8. An on-line PF estimates the
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Figure 2.8: System Flowchart. A particle filter is initialized on a previous SLAM graph

that we will localize against. Onboard sensors including depth and IMU are used to update

the particles when the vehicle is moving. Planar features estimated from DVL as well as

high-level features extracted from visual images are used to make measurement corrections

by updating the importance weight of each particle.

6 DOF current position of the robot with respect to a previous graph as the robot moves. All

sensor measurements on an HAUV are used, including an onboard depth sensor, an inertial

measurement unit (IMU), a Doppler velocity log (DVL) and visual features from camera

images. In the following section, we describe in detail how we model these measurements

in the PF system.

2.4.1 Particle Filtering

In the proposed method, we use a particle filter to provide an estimate of the vehicle’s pose

distribution, which enables us to incorporate measurements from different modalities and

control inputs from other onboard sensors:

p(xt|Z1:t, U1:t) ∝

p(Zt|xt)p(xt|xt−1, Ut)p(xt−1|U1:t−1, Z1:t−1).

Vehicle pose consists of position and orientation, xt = x, y, z, roll, pitch, yaw. U is the

set of control inputs used to propagate particles and Z is the set of observations (i.e.,

measurements).

1. Updating: We incorporate two different control inputs for particle propagation. An
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onboard depth sensor and IMU provide direct measurement of depth, roll and pitch.

The odometry input estimated from DVL provides a standard odometry update:

p(xt|u
odom
t , xt−1) ∼ N(xt−1 ⊕ uodomt ,ΣUodom

z
).

2. Weighting: Two measurements are considered in the system: planar measurements

(zdvlt ) and visual measurements (zcamt ); Zt = {zdvlt , zcamt } are assumed to be indepen-

dent given a vehicle pose. We use the planar feature proposed in [82] to evaluate

DVL measurements. Given the planar-like shape of the ship hull in the camera field

of view, [82] estimates a planar feature zπt using Principal Component Analysis

(PCA) on DVL point-based outputs. We set up the measurement model as follows:

wf
p = p(zdvlt |xpt ) ∼ ||zπt − ẑxp

||, where ẑxp
is the expected planar factor estimated

from planar features in the old graph nearest to the particle xp. For visual measure-

ments, wdvl
p = p(zdvlt |xp) is assigned according to the high-level feature matching

result between the current observed image and the nearest image in the old graph

corresponding to state xp. More details of visual feature weighting will be discussed

in 2.4.2.

2.4.2 Particle Weighting Using Visual Matching

When an image with its high-level feature descriptors is passed into the particle filter, the

image will be matched against all the images in the previous dataset corresponding to all

the particle positions. A matching score sm is calculated following Equation 2.2 for each

particle.

To maintain the diversity in the particle filter representation, the number of particles

is often larger than the number of nodes in the old graph. Thus, multiple particles are

associated with the same candidate image from the old graph. In other words, they share the

same sm as visual measurement confidence.

Given the geometric relationship we estimated from the image matching procedure, a

particle weight is calculated based on the image matching score as well as the geometric

consistency: wcam
p = spg · spm, where spg is the geometric consistency score of the current

particle position given the estimated position from the epipolar constraint in image matching:

spg =
TT ′

|T ′|
. T is the estimated transformation from the position of the current image to the

candidate image position, and T ′ is the putative position calculated between the particle

position and the candidate image position. This step also increases the convergence speed of

the particle filter in that it utilizes the output information of image matching and penalizes

particles that are inconsistent with the underlying image geometry.
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Figure 2.9: This figure gives an example when a set of particles (orange dot) is associated

with a single image node in a previous graph (blue dot). The transform vector T from the

old graph node to the new one (green dot) is estimated in image matching. The transform

vector T ′ from old graph node to particles are compared with T . The line weights of T ′ in

the figure indicate the relative value of sg in this example.

2.5 Experimental Results and Discussion

To evaluate the robustness of the proposed image matching algorithm for place recognition,

a set of experiments and analyses were performed using real-data collected in a multi-year

underwater ship hull inspection task. We first introduce the data and ground truth used

in the experiments in Section 2.5.1. Experimental results of image matching compared

to other state-of-the-art algorithms are given in Section 2.5.2. Detailed analysis of the

image matching performance of the intermediate steps of the framework are discussed in

Section 2.5.2. Qualitative analysis of multi-session graph merging in the HAUV navigation

system is given in Section 2.5.3.

2.5.1 Experimental Setting

Experiments are performed on data collected by a Hovering Autonomous Underwater

Vehicle (HAUV) over three years (2011, 2013, 2014) on the SS Curtiss [59, 82]. External

ground truth for underwater data is extremely challenging to gather, so we elected to use

hand-labeled data for place recognition ground-truth.

Seven places, which included 358 images, were manually labeled from the dataset,
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Figure 2.10: Examples of manually labeled corresponding images from 7 places on the SS

Curtiss across different years. The images in the first row come from the dataset we are

searching in. The images in the second row are current images. It can be seen that the data

is quite challenging, due to the dramatic decay of patterns and changing light conditions.

where correspondences could be identified by a human. We used the data from the year 2013

(118 images) as the query dataset, and the data from the years 2011 and 2014 (240 in total)

for matching (what we will refer to as the set of current images). One hundred unlabeled

images from the mission data in 2013 were randomly sampled (images in unknown places)

to be included as noise images to ensure the matching is robust enough to distinguish true

matches from non-salient noise. Some examples of correspondences in the manually labeled

dataset are shown in Fig. 2.10. It can be seen that the dataset is quite challenging with

dramatic changes in the scene due to decay and biofouling across the years.

2.5.2 Image Matching using High-level Feature

2.5.2.1 Comparing to Standard Place Recognition Methods

In this experiment, we compare the image matching performance of our proposed algorithm

with the performance of two widely-used representative point-feature based place recognition

methods. The scale-invariant feature transform (SIFT) feature matching with random sample

consensus (RANSAC) for geometric model estimation and outliers rejection is included

as a benchmark approach for image matching. A bag-of-words (BoW) model on SIFT is

also compared in the experiment. BoW trains a vocabulary of SIFT features from the query

dataset and describes images using the BoW vocabulary. For each image in the testing set,

all the SIFT features detected are converted into a single description vector based on the

vocabulary. Image matching is then done based on L2 distance between description vectors

between images.

The confusion matrix of matching results for different places in the manual labeled

dataset is shown in Fig. 2.11. The result shows that the proposed method is able to provide

reasonable matching results in a challenging dataset, while the other two standard methods
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underperform. The benchmark methods mostly get distracted by the noise image set

included in the comparison. This is mainly attributable to the fact that these images capture

some biofouling that is more rich in feature points leading to false positive matching.

This comparison is expected since point-based features are often unable to generate any

meaningful correspondences between images with dramatic appearance changes.

It is also clear in the confusion matrix that the proposed method can perform quite

differently in different places. For some places, the proposed method is able to provide

almost 80% accuracy given the dramatic appearance changes, while the performance is less

ideal for other locations. To discuss the experiment result in a more thorough manner and

understand what makes this difference, we show some representative examples of both true

positive and false positive matches in Fig. 2.12 and Fig. 2.13. From Fig. 2.12 we can tell

that reliable matching is often made when multiple pairs of salient features can be found,

in which case the model selection step in the pipeline can take place and reject the outliers

from weak SVM . In Fig. 2.13, false positive matches defeat the correct ones when the true

matching is only supported by a single pair of features. The system is not able to properly

determine which matches are of greater importance within one image in these cases. This

indicates that a frame-related patch importance weight is needed to improve the robustness

of our proposed algorithm. In some other extreme cases, the decay is just too advanced for

our image segmentation approach to extract a meaningful patch, and the proposed method

fails to provide a robust match.

However, these results are from single image matching, and can be improved within a

complete system. By incorporating the proposed matching algorithm in a recursive filtering

framework, the final localization performance will increase when more matching results are

accumulated, as shown in Section 2.5.3.

Although the approach is proposed for underwater imagery addressing feature sparsity

and appearance changes, it can also be used in other domains. Some matching examples of

the proposed method used in above-water ship hull inspection images are also provided in

Fig. 2.14 to show that the approach is able to be generalized to non-underwater images.

2.5.2.2 Self-comparison for System Component Analysis

To get a better idea of how the proposed approach is able to make reasonable correspondences

between images across different years, we also analyzed the performance with and without

certain components of the framework. The results are shown in Fig. 2.15.

We replaced the SVM classifier of HOG descriptors with Normalized Cross Correlation

(NCC) in searching for matched patches. The result is displayed in Fig. 2.15(a). Comparing

that to the original proposed method (Fig. 2.11), it can be seen that SVM with HOG features
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(c) Bag-of-Words

Figure 2.11: Results from our proposed technique and from point-based approaches from

the literature, presented as confusion matrices where the rows and columns refer to places or

clusters of co-located images of which samples are shown in Fig. 2.10. Column 8 represents

the set of noise images added to the dataset to make the task more challenging. The red font

indicates the accuracy rate of the matching result for each place, while the rest of the row

indicates how the false matching is distributed in the query dataset.
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Figure 2.12: Examples of successfully matched pairs. The system is able to make valid

correspondences between images with dramatic appearance changes.

has greater robustness with respect to providing valid matches, compared to NCC. This is

because HOG features have a higher tolerance for small rotation and illumination changes

than the image patch intensity comparison.

The contribution of geometric validation on false positive rejection is also demonstrated

by the comparison experiment with and without it, as shown in Fig. 2.11 and Fig. 2.15(b)

respectively. It can be seen that the geometric constraint improves the system’s robustness

significantly by rejecting false positive responses returned by the SVM classifiers. Without

the geometric constraint, matches tend to happen between two images with several salient

regions, in which case many false positive matches are returned and are included in the final

matching score.

To evaluate how the use of neighboring images is contributing to the algorithm, we

conduct the comparison experiment without the use of neighboring images. The result is

shown in Fig. 2.15(c). The proposed method supports the use of a default maximum number

of neighboring images (N = 4), which improves the final performance of the proposed

method. The importance of neighboring image sets is not obvious in this specific dataset,

since the light conditions are quite consistent between neighboring images. However, it is

still an important part of the system in other scenarios when light conditions have a greater

impact on image view point or when neighboring images taken from different periods can

be considered.
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(a) False negative: Although the structure of the round areas are matched, it’s considered weak evidence

since no other matching proposal supports this underlying geometry model.

(b) False positive: Many small areas are matched, and the system determines it is a stronger overall match.

Figure 2.13: Example of false positive and false negative matches using the proposed system.
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Figure 2.14: Examples of image matching using the proposed method in above-water

images.
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(c) Without neighboring image information

Figure 2.15: System component analysis. Identification of the contribution of each system

component by comparison experiment without certain components or with those components

replaced by other simpler alternatives. Results presented as confusion matrices where rows

and columns refer to places or clusters of co-located images of which samples are shown

in Fig. 2.10. Note the last column has no matched row as it refers to non-labeled random

images introduced to the dataset to make matching more challenging/realistic.
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2.5.3 Relocalization using Particle Filtering

In this section, we evaluate the performance of the proposed PF-based localization frame-

work by localizing the vehicle to a SLAM graph collected years ago. The proposed method

is able to localize the vehicle in a previously-built SLAM graph given dramatic appearance

changes.

One localization mission that is illustrative of the system is shown in Fig. 2.16. As can

be seen in Fig. 2.16(a), the particles are initialized with uniform distribution and updated

using estimates from the depth sensor. When a salient image is observed, but the system is

unable to find a viable match, the score reflects this and the distribution remains unaffected

(see Fig. 2.16(d)). When a salient image produces a viable match, the particles start to

converge to the locations where the matching scores are high, as shown in Fig. 2.16(e).

However, the visual evidence provided by a single salient image is insufficient for local-

ization. The particles converge to some candidate regions where the matching scores are

much higher than the rest. As the mission continues, more salient images are used to correct

the particle distribution and particles converge to the correct localization solution. When

the determinant of the covariance passes a threshold, the system considers itself localized.

Fig. 2.17 displays the matching pair with the highest score one time-step before the system

converges. The highly structured visual features are identified in the boxes and correctly

matched across years despite the significant ship hull biofouling.

2.6 Conclusion

A high-level visual feature image matching approach is presented to address the challenge

of underwater image matching under dramatic appearance changes. A salient region identi-

fication method is proposed to locate visually salient regions and find high-level features.

SVM classifiers based on HOG features are used for feature description and matching.

Geometric constraints are employed to reject false positive matches provided by SVM. The

approach is evaluated on real data collected in multi-year ship hull inspection missions and

the performance is compared with other standard place recognition methods. The proposed

method strongly outperforms traditional point-based feature matching techniques. To further

illustrate the practical value of the proposed method, we incorporate it in a PF-based local-

ization framework and the result indicates that the localization accuracy can be improved

through a real-world system.
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(a) Initial distribution (b) Planar feature: Particle distribution after re-

sampling with the importance weights provided by

planar features.

(c) Depth update: When the vehicle is moving,

the depth is updated by the depth sensor

(d) Non-distinguishable match: A salient image is

observed and matched against the previous images,

but no viable matches are found. The distribution

will not change significantly because all the Sm

are evenly low

(e) Distinguishable match: A salient image is

observed and matched against the previous im-

age corresponding to particle positions. However,

when more than one previous image is similar to

the current observation, the particles converge to

multiple candidate regions

(f) Particles converge: For the particles in the cor-

rect region, the highly salient images upweight the

particles causing the distribution to converge to a

small area

Figure 2.16: Typical particle filter converging procedure.
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Figure 2.17: The best matched pair at the convergence location. Left: current image. Right:

the best matched candidate image in the previous graph.
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CHAPTER 3

Imaging Sonar Feature Learning

3.1 Introduction

In Chapter 2, we develop an advanced high-level feature detection and matching approach

for optical images that increases the robustness and reliability of optical image-based

place recognition systems for underwater navigation. However, optical sensors suffer from

many range-limited effects in turbid water. In these conditions, acoustic sensors are most

commonly employed over optical sensing due to issues of visibility, attenuation, and range. A

new generation of high-definition Forward-looking Sonar (FLS) providing acoustic imagery

with a wide field-of-view (FOV) [90] has recently introduced a promising alternative to

optical cameras for underwater visually-based navigation. However, information extraction

from sonar images suffers from unique challenges: i) the projection geometry for imaging

sonar necessitates a departure from the standard optical pinhole camera models; ii) sonar-

derived images have weak feature textures; and iii) despite their large field-of-view, sonar-

derived images have high amounts of noise. These problems make it hard to directly

harness well-established optical-based place recognition algorithms for sonar images, in

the sense that traditional computer vision feature descriptors are typically not able to make

correspondences between sonar frames [8, 47].

In this work, we address the sonar-based place recognition problem by using learned

feature descriptors instead of traditional hand-crafted ones. We propose explicitly training

sonar image descriptors that capture the image similarity by training a convolutional neural

network (CNN) that maps sonar images onto Euclidean poses, as shown in Fig. 3.1. The

proposed network architecture is built upon a network designed for image classification

tasks (GoogLeNet [92]) and adjusted according to the training objective and sonar image

properties. The proposed method is able to obtain strong performance in place recognition

and global localization on real-world data. In addition to the proposed feature learning

approach, we also propose an uncertainty score that estimates the saliency of a sonar image
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Figure 3.1: This work proposes to learn descriptive sonar image features using CNNs

for underwater place recognition and localization. The learned feature space provides a

similarity metric for sonar images that enables real-time place recognition. For sonar images

collected within a short time period, the features can be directly used for global localization

with respect to a known map. The data used in the experiment comes from a hovering

autonomous underwater vehicle (HAUV) operating in a ship hull inspection application.

with respect to the localization task. In practice this can be used to rule out non-salient

images to increase robustness and real-time system efficiency.

The contributions of this chapter are represented in our publication [67], which include:

1. A CNN architecture based on GoogLeNet [92] for general descriptive sonar image

feature learning, which we apply for global localization.

2. A learning framework for estimating a sonar image saliency level for the task of place

recognition.

3. A thorough set of experimental evaluations on real sonar images under varied feature

dimensions and network architectures.

3.1.1 Outline

The rest of this chapter is laid out as follows: Section 3.2 gives a brief introduction of

related work in visual-based place recognition and forward-scan sonar mapping. Section 3.3

presents the architecture of the proposed networks used to learn descriptive sonar image

features and sonar image non-saliency scores. Section 3.4 introduces the multi-year ship

hull inspection problem and associated dataset including the methodology for training label
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generation. In Section 3.5, we evaluate the proposed framework for the task of global

localization as well as place recognition. Section 3.6 summarizes this chapter.

3.2 Background

3.2.1 Visual Place Recognition

For mobile ground robots, cameras have commonly been used as the primary perceptual

sensor modalities. A great deal of work employing these sensors for visual place recognition

has been discussed in recent years. Benchmark systems include fast appearance-based

matching (FAB-MAP) [24], MonoSLAM [26], and FrameSLAM [60]. Most of these prior

approaches are dominated by hand-crafted features such as scale-invariant feature transform

(SIFT) [72] or speeded up robust features (SURF) [13]. More recently, the literature has

focused on robustness against dramatic appearance changes for long-term simultaneous

localization and mapping (SLAM) applications. Several new strategies have been introduced

for this objective, such as matching sequences of images [75], predicting appearance change

trends over time [80], and using higher-level features such as the histogram of oriented

gradients (HOG) [65, 77]. All of the features used in the aforementioned approaches

were designed for optical camera systems and as such have met with limited success in

the acoustic domain [53, 78]. As forward-looking sonar has an imaging geometry that is

different from optical cameras, most invariance properties of classical visual features are

lost.

Only very recently have CNNs been considered in the field of place recognition. Chen

et al. [22] proposed the first place recognition based on the mid-layer feature of a pre-trained

model. Sünderhauf et al. [91] provide an extensive evaluation on the usage of mid-layers

of pre-trained models for the task of visual place recognition. In that work they proposed

using landmark features extracted from the mid-level layers of traditional pre-trained models.

However, in contrast to the work presented here, the features used in those approaches

are extracted from generalized networks not trained explicitly for the purpose of place

recognition. We build on the work of Gomez-Ojeda et al. [36] and Kendall, Grimes, and

Cipolla [58], who proposed the training of a network using a loss function in the Euclidean

space specifically for place-recognition.
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3.2.2 Imaging Sonar

Recent work in FLS imaging mostly focuses on image registration between two sonar images.

Hurtos et al. [48] provide a thorough review on recent registration methods of sonar images.

Popular approaches span from spectral methods [47] to feature-based methods [8, 53].

These approaches have shown promising results in pairwise motion estimation under certain

assumptions about platform motion and scene geometry. These approaches are inapplicable

for the general place recognition tasks as they assume a high degree of overlap and high

frame rates. In fact, our proposed real-time sonar image place recognition method is

complementary to such techniques and could be used as a pre-processing step for such

registration methods in online navigation systems.

3.3 Methodology

3.3.1 Network Architecture

To explicitly train sonar image descriptors that provide an image similarity metric, we

express network loss over the Euclidean distance of the sonar’s position from ground-truth

locations derived from a traditional SLAM system on a HAUV with odometry sensors.

We build up the network structure based on a state-of-the-art CNN architecture originally

proposed for object classification tasks, GoogLeNet [92]. In [92], the authors proposed a

promising network architecture basic module called an ‘inception module’, which is shown

in Fig. 3.2. In this module, three stacks of convolution layers with different kernel sizes are

considered, capturing feature information at several different scales. Following each stack

of convolution layers, a rectified linear unit (ReLu) layer is employed. We use this module

and build up the proposed network, as depicted in Fig. 3.3. The input sonar images are fed

into an initial convolution layer followed by 9 inception modules. Down-sampling pooling

layers are used after the inception 2, inception 4 and inception 7 modules to compress the

dimensionality of the feature space. The output of module inception 9 is passed to a fully

connected layer, which generates the image feature vector. Finally, the feature vector goes

through another fully connected layer that estimates the corresponding sonar position for

the input image.

The loss function is defined as the L2 distance between the estimated position and the

ground-truth position, which is labeled in the training data:

loss(I) = ||p̃(I)− pgt(I)||2,
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Figure 3.2: Inception Module: We use the inception module proposed by Szegedy et al. [92]

as the basic module in our network architecture.

Figure 3.3: Network architecture used for feature learning. A sonar image down-sampled

to 195×220 is the input of the network. The second top layer of the network is the learned

descriptive feature. The top layer is a 3-element position estimator (i.e., x, y, z).
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Figure 3.4: Simple neural network for uncertainty score learning.

where p̃(I) = [x, y, z]⊤ is the final 3-vector output of the proposed network, and pgt(I) is the

ground-truth position. For underwater navigation, where global positioning system (GPS)

position is not available, it is not trivially possible to obtain precise ground-truth. Instead,

we use the output an off-line bundle adjustment as an alternative ground-truth for training

and evaluation. More detail is given in Section 3.4 on how this ground-truth is estimated.

The major changes in our proposed network with respect to the original GoogLeNet

are as follows. We propose: i) a different loss function; ii) a new feature layer; and iii) a

different arrangement for dimensional compression. Compared to camera images, on which

GoogLeNet is designed and tested, sonar images contain fewer structural features. To capture

the low level information of sonar images, we increase the number of layers where input

data is evaluated without dimension compression and apply the dimensionality reduction in

later stages of the network. It is shown in Section 3.5 that our modified network achieves a

better learning rate and is more robust to long-term appearance changes in the data.

3.3.2 Non-Saliency Score

In underwater applications such as ship hull inspection or seafloor survey, sonar images

contain very low feature density. In some extreme cases, the images contain so little salient

information that they cannot achieve meaningful place recognition. For real applications,

the capability to evaluate the saliency of a sonar image prior to attempting localization is

useful in increasing system efficiency and reliability.

We evaluate the saliency of a sonar image by learning a model between the image space

and the localization uncertainty in the place recognition task. To achieve this we apply a

supervised-learning approach to the features extracted from the third layer from the top in

the proposed network. The network structure used is depicted in Fig. 3.4. The labels for the

training stage are produced as follows:
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1. For each image in the training set {Ii}train, extract the learned feature vector fi.

2. For each fi, search for its nearest neighboring set in feature space:

NNi = {j | ||fi − fj||2 ≤ (1 + λ)min ||fi − fk||2},

where λ is a tolerance parameter controlling the size of neighboring set considered. In

our experiments, λ = 0.3 was used.

3. Compute the positional standard deviation of the resulting neighboring set:

σIi = std({pj | j ∈ NNi}),

where pj is the 3D position of sample j. The larger the positional standard deviation, the

more uncertain the image location is, hence the less salient the image must be for place

recognition.

If the sonar image is salient and feature matching result is sensitive, then the NNi is very

small, resulting in a small uncertainty score; if the feature matching is not sensitive, NNj

might be large or contain features from an incorrectly associated position, resulting in a high

uncertainty and consequently a low effective saliency for the image. Sample sonar images

with different non-saliency scores are shown in Fig. 3.5. It can be seen that the images with

high non-saliency scores contain fewer features or distinct information than the low score

ones.

3.4 Dataset and Training

3.4.1 Label Generation

We trained the proposed CNN and evaluated its performance using data from a multi-

year ship hull inspection application introduced in Section 1.1.2. The datasets used in

the experiment were collected on a 183 m vessel, the SS Curtiss (Fig. 1.7). Two sets

of data collected at different times are considered: March 2014 and June 2015. During

the inspection mission, an online real-time visual SLAM system [82] provided vehicle

navigation. An onboard depth sensor and an inertial measurement unit (IMU) were used

to provide odometry. The optical cameras provided a visual constraint that corrects drift

while the Doppler velocity log (DVL) range beams were used to estimate planar features

to provide an additional drift correction constraint as described in [82]. The estimated
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(a) non-saliency score: 0.051 (b) non-saliency score: 0.112

(c) non-saliency score: 18.875 (d) non-saliency score: 28.287

Figure 3.5: Sample sonar image with different non-saliency scores.
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Table 3.1: Data Arrangement

Dataset 2014-03 2015-06

Training frames 25 191 35 751
Testing frames 2799 3972

trajectory of the online SLAM system was then used to provide an initial guess of sonar

pose in an off-line bundle adjustment (BA) step that optimized all vehicle positions using all

measurements. This served as our ground-truth estimate of vehicle position, which was then

used to train the network.

3.4.2 Dataset Composition

To train the proposed network, we randomly separate the data into a training set and a testing

set for each year. The statistics about each dataset are given in Table 3.1. Fig. 3.6 displays

the spatial distribution of the dataset in the three collected missions. Different combinations

of training and testing samples are used in different experiments to evaluate the system

characteristics. The details specific to each experiment are described in §3.5.

3.4.3 Training and Validation

We carry out the network training and testing on a desktop computer with 3.07GHz CPU

and a Nvidia GTX Titan X. All the networks are defined and trained through Caffe [51],

with 0.9 momentum, batch size 270 frames and a fixed learning rate of 10−4.

The convergence trend during the training is given in Fig. 3.7. Since we include both the

original GoogLeNet and AlexNet in the experiment in Section 3.5, the convergence trend of

these two architectures on our dataset is also given in Fig. 3.7.

To validate the network, we test the complete network on the testing dataset of each year.

The testing accuracy in network validation is shown in Fig. 3.9. The validation indicates

that the network is not over-fitting to the training data. It can be seen that the test error is

relatively low with respect to the sonar FOV size, as shown in Fig. 3.8.

It is important to note that this validation accuracy is not the performance of the proposed

approach. We propose to use the second top layer as the feature output from this network

instead of the final network output. The final output of the network is highly related to

the underlying global frame of the ground truth labels, while the feature layer provides

more information that can be used in a wider range of conditions. More discussion will be

provided in the following section. However, the low validation error with respect to the FOV
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(a) Data distribution of the dataset in 2014-03

(b) Data distribution of the dataset in 2015-06

Figure 3.6: Spatial distribution of data used in the experiment: testing samples (green),

training samples (red).
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Figure 3.7: Convergence trend on dataset of 2014-03. Training convergence trend of three

network architectures considered in the experiment. The original GoogLeNet and the

modified version (proposed) converge to similar error as they are similar in structure. Note

AlexNet which has a simpler architecture converges to a relatively higher error.

of sonar frames indicates that the feature layer contains sufficient information for vehicle

position inference.

3.5 Experiment and Discussion

In this section, we analyze the proposed method as applied to two tasks: place recogni-

tion and global localization. Section 3.5.1 presents evaluation and discussion of single

image-based place recognition using the proposed learned features and non-saliency score.

Section 3.5.2 presents experimental results of global localization using the proposed fea-

tures in a particle filtering framework. Finally, Section 3.5.3 gives test results in real-world

applications, in which the trained sonar features serve as an environment observation used

in the on-line multi-session SLAM registration task.
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Figure 3.8: Field of view in sonar images during ship hull inspection missions.

3.5.1 Naive Place Recognition

To evaluate the performance of place recognition using the learned features, we match the

features of the testing samples against the features of training samples. L2 distance is used

for similarity matching. In the following experiments, an image matching is treated as

correct if the overlap between the fields of view of the two sonar frames is greater than 50%.

This overlap is sufficient for most sonar image registration methods to provide a reasonable

relative pose estimation. Different experimental settings are evaluated to intensively evaluate

the properties of the learned feature.

First, we evaluate how the dimensions of the learned feature will affect the matching

accuracy. We train the models with different numbers of feature dimensions on the training

samples in 2014-03, then test the feature on the testing set of 2014-03. The precision-recall

for this evaluation is shown in Fig. 3.11(a). The graph shows that when testing images and

training images are close temporally, the learned feature is able to provide a very precise

place recognition match. The trend shows the higher the feature dimension the higher the

recognition accuracy. However, it should be noted that higher dimensional features result in

higher computational costs for feature matching. So there is a trade-off between matching

accuracy and computational expense when choosing a dimension for the learned feature

space.

To evaluate whether the learned features can be generalized to a dataset that is dra-

matically different from the training samples, we use the model trained on 2014-03 and

test it on the data of 2015-06. The result of this experiment is shown in Fig. 3.11(b). It

can be seen that the feature is still able to provide a high matching accuracy. The trend
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(a) 2014-Mar.: Mean Error 2.0 m; Median Error 1.33 m

(b) 2015-Jun.: Mean Error 3.12 m; Median Error 2.26 m

Figure 3.9: Error distribution in network validation.
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Figure 3.10: Visualization of validation result in dataset 2014-03. This figure gives a

visualization of the validation result corresponding to Fig. 3.9(a). Both the ground truth

positions and estimation positions in the testing set are shown. For the estimated positions,

estimated error is color coded according to the color map.

between the accuracy and the feature dimension is similar to the results on dataset 2014-03.

In Fig. 3.12, we depict some examples of the matched images in this experiment with the

feature dimension of 3000. It can be seen that the data set is very challenging with low

texture levels in the image frames. But the trained feature is able to provide promising

matching results in the dataset.

To explore the possibility of improving the feature matching accuracy by ruling out

non-salient images using our learned non-saliency score, we calculate the average precision

of place recognition where images with high non-saliency scores are discarded. The results

are shown in Fig. 3.13. The model used in this experiment is trained on both of the training

sets of 2014-03 and 2015-06. The average precision for testing sets matching against

corresponding training is given. Since the average precision under the original criterion

is too high to see any difference, we increase the required overlap to accept a match to

70% as compared to 50% in the other experiments. The trend in three different datasets

indicates that the non-saliency score could increase the matching accuracy by filtering out

images with little information. In real applications, such filtering can also help to increase

computational efficiency by decreasing the number of processed images.

To evaluate how the network architecture would affect place-recognition performance,

we compare the proposed network with the original GoogLeNet [92] and another state-of-

the-art architecture called AlexNet [5]. We replace the output layer of these two networks

with a feature layer and a final output layer to meet the objective. In this comparison

experiment, the networks are trained on the training data 2014-03 and tested on the data
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(a) 2014-2014

(b) 2014-2015

Figure 3.11: PR curves for place recognition testing. Models are trained on the 2014-03

training samples, and tested on (a) the 2014-03 testing samples and (b) the 2015-06 testing

samples. ‘Dim’ is the dimension of the feature trained in the network. ‘AP’ is the average

matching precision.
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Figure 3.12: Examples of image matching results in the dataset of 2015-06. Pairs of

corresponding sonar images are detected using feature similarity. One reference image from

the testing set is matched against all images in the training set.
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Figure 3.13: Average precision for different cut-off thresholds of non-saliency score. The

model is trained on training sets 2014-03 and 2015-06.

Figure 3.14: PR curve for place recognition as compared across different network archi-

tectures. The networks are trained on the training data 2014-03 and tested on the data

2015-06.
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(a) Global localization accuracy with respect to starting positions.

(b) Error histogram.

Figure 3.15: Global localization Accuracy: The colors of the dots indicate the final localiza-

tion accuracy of the global localization mission in 10 steps of PF. The locations of the dots

indicate the locations where a mission starts.

of 2015-06. The precision-recall curve is given in Fig. 3.14. The accuracy of the proposed

network and GoogLeNet are quite similar, while the AlexNet performs more poorly.

3.5.2 Global Localization

For the test of global localization, the goal is to initially localize the robot in a map with no

prior information. We use particle filtering with a high number of particles to provide high-

quality localization results when real-time performance is not critical. We carry out a large

number of trials with random starting vehicle positions around the ship hull. The particles

are evenly sampled in the map area at the beginning of each trial, then 10 iterations of particle

filtering are performed. In each iteration, the weight of each particle is assigned according

to the L2 distance between current observed ftest and the particle’s closest neighbor in the

map f p
closest.

To rule out any potential over-fitting in the localization task, the model is trained on the

data of 2014-03, and the experiment is carried out on the data of 2015-06.

The final localization accuracy is given in Fig. 3.15. It can be seen from the results that

the sonar features perform very well in the task of localization from a variety of starting

locations. Localization error converges quickly and localization fails in only a few extreme

initial starting conditions.
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3.5.3 Real-world Multi-session SLAM Registration

To further concretize our proposed feature in a real-world application scenario, we employ

the proposed feature in an on-line multi-session SLAM registration framework.

The basic registration pipeline was developed within the HAUV project in [84] without

incorporating sonar information. We use PF to estimate the probability distribution of the

vehicle pose in a new SLAM with respect to a reference SLAM graph given observations

from different sensors on-board: depth sensors, DVL and IMU. Since these sensors provide

insufficient cues in the horizontal location, a one-versus-all image matching is conducted

as a final pass within the PF believed areas to search for the best location. Before the

employment of sonar information, the camera images are the only sensor measurement that

provides constraint for horizontal direction. This limits the robustness of the system in that

it suffers from false registration due to visual aliasing existing in the super structure on the

ship. A typical example is shown in Fig. 3.16(a).

In this experiment, we improve the multi-session registration framework by incorporating

the proposed method as an extra measurement for PF update. A registration example is given

in Fig. 3.16. We found that since the proposed sonar feature provides extra information in

both the horizontal and vertical directions, the false registration case can be easily avoided.

False positive registration evidence from visual images are suppressed by sonar features.

3.6 Conclusion

In this chapter, we proposed a novel descriptive feature for FLS imagery using CNN

techiniques, which can be used in underwater vehicle place recognition and localization.

We also proposed a supervised-learning approach to evaluate the saliency of sonar images

within the learned feature space. The approach was trained and tested on real data from

a multi-year ship hull inspection project. Several important conclusions can be drawn

from the experimental analysis: 1) the proposed approach can be used to provide high-

accuracy global localization to a previously-seen map without any prior information; 2) the

learned sonar feature can be used to carry out high-performance place recognition in real

environments; 3) a pre-trained model from one dataset can be quickly fine-tuned on another

dataset with reduced training time while still achieving state-of-the-art performance; and

4) the proposed saliency estimation method can increase place recognition accuracy by

discarding the non-salient measurements before attempting localization.
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(a) Initial particle distribution. Two visual aliasing places in optical images are depicted. This aliasing is

causing false registration in the particle filters without sonar features.

(b) Particle distribution start to converge with multiple sensor inputs. As the vehicle starts the mission

along the surface, multiple measurements from different sensors are used in particle updating, including

optical images and proposed feature extracted from sonar frames.

(c) Particles converge at the right location which is supported by both matching camera images and sonar

frames. The particle filter is able to converge at the right location without being misled by the visual

aliasing shown in Fig. 3.16(a)

Figure 3.16: Real-world example of sonar feature prone to suppress false registration due to

visual aliasing in optical image using multi-session SLAM registration in HAUV navigation

system.
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CHAPTER 4

Utilizing High-dimensional Features in

Real-time Bayesian Filtering

4.1 Introduction

The sonar feature learning framework introduced in Chapter 3 indicates the great potential

of feature learning using CNNs in underwater mobile robotics.

However, current utilization of deep learning techniques in the robotics community has

been primarily limited to topological or discrete problems, such as place recognition or

semantic labeling. In the previous chapter, we have showed that CNNs can be used to train

strong image-level high-dimensional features that can be used in a topological application:

place recognition. In this chapter, we explore the possibility of leveraging these types of

features in metric and recursive problems, which involves the estimation of continuous

states in dynamic systems; potential applications include robot localization and stochastic

control. Probabilistic filtering frameworks have been developed to address these types of

problems. Such approaches have served as the backbone of modern robotics for the last two

decades [94]. However, utilizing learned features as system observations in a probabilistic

filtering framework, such as Bayesian filtering, is non-trivial due to the following factors:

1. High dimensionality: The dimensionality of the learned features with great success

in the literature is typically high, which results in large computational complexity for

filtering approaches such as the extended Kalman filter (EKF) or the unscented Kalman

filter (UKF) as each requires a matrix inversion whose computational complexity is

higher than quadratic in the dimension.

2. Expense of evaluation: Most current deep learning networks in robotics applications

are evaluated on high dimensional inputs such as camera images or 3D laser scans. To

evaluate the mapping between an unknown high dimensional function (for example a
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Figure 4.1: Observation pre-linearization. xt is the estimation state and zt is the original

observation. The knowledge of the original observation model zt = h(xt) is limited to

evaluation at certain points. We estimate the local inverse function of h(), resulting in a new

observation ẑt with an approximately direct linear observation model ẑt ≃ xt + vt.

.

CNN) and the system variable of interest at any given query point can be expensive to

achieve or approximate. For example, to evaluate an image-based CNN model at an

un-visited position requires a synthetic or approximated image for network input.

This results in prohibitively-large computational complexity for sample-based filters

such as the PF or UKF, as each requires an evaluation for each sample location.

3. Lack of a Noise Model: Uncertainty models are readily available for simple learn-

ing algorithms—for example, Bayesian linear regression provides a straightforward

estimation of prediction error. On the other hand, the black-box nature of many

modern algorithms (e.g. CNNs) do not give an explicit framework for reasoning about

uncertainty, yet this uncertainty model is absolutely necessary when plugged into

probabilistic frameworks such as Kalman Filtering (KF).

The above properties of high-dimensional learned features make them unsuitable for direct

use as observations in standard real-time filtering frameworks.

In this chapter, we propose an approach that we call pre-linearization, which transforms

a black-box high-dimensional observation function into a new form that can be trivially

integrated into a traditional Bayesian filtering approach. As depicted in Fig. 4.1, we achieve

this aim by linearizing an arbitrary observation using its approximated local inverse function.

The new resulting observation is both linear w.r.t the system’s estimated state and has

the same dimension as the estimated system state (an upper-bound for the theoretical

71



dimensionality reduction in the system).

In addition to the efficiency gains of this pre-linearization process, we also present a

technique to measure the uncertainty of the processed observation using data perturbation.

This technique has shown great promise in several fields, including machine learning [16],

optimization [79], and data privacy [21], to enable the understanding of functions without

direct knowledge of the underlying transformation being performed.

To concretize the application of the proposed method, we address the traditional mobile

robotics problem of localization and demonstrate our approach in the application of under-

water real-time localization using CNN learned features from FLS images in a real-time

KF. We selected this domain and modality as it represents the challenging areas, where no

hand-crafted features can be used easily in a real-time framework without strict assumptions

to the scene structure, as we discussed in Section 1.3.3. We will show how all the benefits

of a Bayesian filtering approach can be garnered, including physically interpretable uncer-

tainty ellipses and innovation gating of new measurements, while using a CNN learned

high-dimensional feature representation that greatly outperforms traditional hand-designed

features.

The contributions of this chapter are represented in our publication [67], which include:

• An efficient pre-linearization process that transforms an arbitrary high-dimensional

observation into a new linear observation with constrained dimensions.

• An uncertainty measurement approach for the pre-processed observation model using

data perturbation.

• The first real-time localization solution utilizing an imaging sonar to perform underwa-

ter localization using a CNN learned feature representation without further assumption

to the scene structure.

4.1.1 Outline

This chapter is laid out as follows: Section 4.2 gives a brief background introduction to three

topics considered in this work: limitation in Bayesian filtering, uncertainty measurement in

CNNs and data perturbation techniques. Section 4.3 provides a description of the proposed

approach to construct a linear observation from an arbitrary observation function in a

principled manner. Section 4.4 introduces how we apply the proposed approach using

an imaging sonar to better localize an underwater robot using a CNN learned feature

representation. Section 4.5 evaluates the proposed method in a real-time KF localization

system using CNN learned features from FLS sonar images. In this section, we also provide
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comparison of the proposed pre-linearization method to other traditional approaches of using

abstracted features utilization. Section 4.6 provides evaluation on real-time localization

tasks using CNN mid-layer features from camera images to further validate the proposed

method, and to show generalization capability of our proposed algorithm. Section 4.7

summarizes the chapter and discusses future work.

4.2 Background

4.2.1 Restriction on Observations Used in Bayesian Filtering

Bayesian filtering, which has been the primary solution to these problems for decades,

provides a probabilistic framework incorporating a variety of observations in a dynamic

system. Most widely-used filters share the typical Gaussian noise assumption. Widely-used

methods include KF [104], EKF [31] and UKF [55].

The curse of dimensionality has long been one of the main challenges that prevent

Bayesian filtering from being used in large scale systems with high dimensionality in model

functions. In addition, the high cost in computational complexity, the high non-linearity that

often comes along with high dimensionality, could result in a high approximation error in

the linearization procedure shared by a lot of Bayesian filtering approaches. In the context

of robotics estimation problems, where real-time is a crucial property of the system, this

limitation becomes more significant.

For methods like KF and EKF where matrix inversion is necessarily involved, time

complexity can be higher than quadratic. It is O(n2.37) using an optimized inversion solver.

Although there have been efforts made to reduce the computational complexity for these

methods [7], the requirement that the observation model be fully defined also adds a strong

restriction on the flexibility of these methods.

UKF only relies on numerical evaluation of the observation function. The computational

cost quickly precludes real-time use as the evaluation at sigma points is expensive as

discussed in Section 4.1. Given that the observation function is known analytically, the

propagation of the filters above involve matrix inversion in the dimension of observation

states, which is far from real-time performance in high dimensional cases.

PF or Sequential Monte Carlo (SMC) is the most friendly method to the partial defined

and high-dimensional observations within the Bayesian filtering family. However, similar

to UKF, a PF approach requires evaluation at each particle and real-time constraints that

severely limit the number of particles that can be used in practice, which might result in

undesired collapsing of PF as discussed in [14].
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4.2.2 Uncertainty Measurement in CNN

CNNs have achieved great success in a broad range of fields, including robotics. Chen

et al. [22] proposed one of the pioneer place recognition systems based on a feature generated

using mid-level layers of a pre-trained CNN. Sünderhauf et al. [91] provide an extensive

evaluation on the usage of mid-layers of pre-trained models for the task of visual place

recognition. Gomez-Ojeda et al. [36] address the issue of severe appearance change in the

place recognition problem by training an appearance robust network over a high variant

visual-image dataset. In Chapter 3, we also show that a CNN can be used in feature learning

for challenging modalities such as FLS.

However, most current work is applying CNN techniques to place recognition or topology

estimation problems. The state spaces of those problems are often discrete, where an explicit

measurement model is not required and a strict uncertainty measurement is less crucial. In

this work, we examine the less-often-addressed metric and recursive estimation problems in

continuous state spaces, where a more strict knowledge of the measurement model and an

explicit uncertainty quantification are often required. Examples of such applications include

mobile robot localization for navigation systems and pose estimation in stochastic control.

In addition to the issues around observation models discussed in the previous subsection,

another important and un-addressed problem is the formulation of a noise model for such

features. Dropout layers [43] are considered in some recent work as a promising direction

to provide uncertainty measurement for CNNs [34, 57]. Here in this chapter, we propose to

work around this problem and provide an observation uncertainty measurement using data

perturbation. This method captures a similar idea to dropout layers in CNNs while no extra

training is needed and existent pre-trained models can be used directly.

4.2.3 Data Perturbation

Underlying this technique is a growing body of work that supports the use of input perturba-

tions as a form of regularization for learning and estimation problems. The key idea is that

the addition of noise into our data allows for an understanding of the stability of the output

of the function.

Perturbation methods typically involve repeating the optimization or decision procedure

a number of times, with different noisy samples on each run. When the (randomized) outputs

are averaged together, a la a bootstrap approach, the resulting average can be considered

a regularized solution to the original problem. In fact this is almost precisely the design

behind the Random Forest algorithm [69], where the “perturbation” of the data is via a

random subselection of the input features. But the connection between perturbation and
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regularization becomes even more explicit in the case of Least Squares Regression. It

was shown by Bishop [16] that minimizing squared loss with the introduction of noise is

equivalent to so-called Tikhonov regularization input noise; in the case of Gaussian noise

one obtains the usual L2 regularization. It should be noted that the latter result has often

been the central argument in favor of “drop-out” tools for training deep neural networks

[95, 97].

Another benefit of the perturbation method for learning problems is that it provides a

simple and efficient replacement for a full generative model. In many scenarios one has a

natural generative model associated with a learning procedure, but there is a growing trend

towards using essentially black-box tools such as CNNs as part of a larger pipeline (as in

the case of the present work) where there is not a canonical probabilistic model to reason

about posteriors, likelihoods, etc.

Perturbation techniques have also found their way into many aspects of learning but also

in other applications. One of the seminal results in online learning by Kalai and Vempala

involves an algorithm they coined Follow the Perturbed Leader [56]. There have been

several works that argue for the use of so-called stochastic smoothing for optimization,

where a noisy version of the objective function is optimized, as this can make the problem

more robust and efficient to solve [28]. Finally, there has been a lot of recent work on using

added noise to protect data privacy, in a growing area known as differential privacy [30].

4.3 Observation Pre-linearization

In this section, we introduce the proposed algorithm that transforms the original obser-

vation into one that can be used efficiently by Bayesian filters. To begin with, we give

a brief overview of general Bayesian filters and specify the notation that will be used in

Section 4.3.1. Then we describe, in detail, the proposed pre-linearization approach of arbi-

trary observation features in Section 4.3.2. Finally, we introduce a uncertainty measurement

estimation approach to the generated observations model from the pre-processing step

in Section 4.3.3.

4.3.1 Problem Statement for General Bayes filter

Recursive Bayesian estimation, also known as a Bayes filter, is a general probabilistic

approach for estimating unknown states in a Markov process using observed states and

known control inputs. The underlying model for a Bayes filter is given by Fig. 4.2(a).

Considering a time-invariant system with additive noise, the system can be defined by a
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stochastic discrete-time state space dynamic (motion) model

xt = f(ut, xt−1) + wt, (4.1)

and the stochastic observation (measurement) model

zt = h(xt) + vt, (4.2)

where xt ∈ χ is the true state of an unobserved Markov process that needs to be estimated,

ut is control input to the system, and zt is the observed state from the hidden Markov model.

wt and vt are noise in the system, which is often modeled as independent Gaussians with

mean 0 and covariance Q and R.

The goal of the Bayes filter is to estimate the probability distribution of xt, given all the

control inputs u1:t and observation states z1:t, in a recursive way:

bel(xt) := p(xt|u1:t, z1:t), (4.3)

bel(xt) =

∫

p(xt|ut, zt, xt−1) bel(xt−1)dxt−1

= ηp(zt|xt)

∫

p(xt|ut, xt−1) bel(xt−1)dxt−1. (4.4)

The main task of the Bayes filter can be decomposed into a prediction step

b̄el(xt) :=

∫

p(xt|ut, xt−1) bel(xt−1)dxt−1, (4.5)

and a correction step

bel(xt) = ηp(zt|xt)b̄el(xt). (4.6)

Based on the assumption of an independent Gaussian noise model, the resulting b̄el(xt)

and bel(xt) are both Gaussian distributions given by b̄el(xt) ∼ N(µ̄t, Σ̄t) and bel(xt) ∼

N(µt,Σt).

To achieve bel(xt), the observation model defined in Equation 4.2 is required to be

known in either analytical or numerical means, which can be unavailable or hard to achieve

as discussed in Section 4.1. Even if the observation model is known, the high dimensionality

could incur high computational expense. In the case of the KF and its nonlinear variants,
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(a) Markov model in Bayes Filter. (b) Equivalent Markov model when pre-

linearization process is utilized.

such as the EKF and the UKF, bel(xt) is estimated using a best linear estimator as follows:

µt = µ̄t + Σ̄tH
TS−1(zt − h(µ̄t)), (4.7)

Σt = Σ̄t − Σ̄tH
TS−1HΣ̄t, (4.8)

where H is the Jacobian matrix of the observation function and S is the residual covariance

of the observation. Regardless, the method to approximate H and S in different filters all

require a matrix inversion of the dimension of both z and x.

Thus, in the direct use of a high-dimensional observation model, the filter correction step

is often too expensive for real-time applications. To address these issues and make efficient

use of high-dimensional features in a general Bayes filter, we propose the pre-linearization

process below.

4.3.2 Pre-linearization

Inspired by the idea of pre-whitening, we propose a pre-processing step for an arbitrary

high-dimensional observation with no explicit evaluable observation model, so that it can be

used efficiently in a filtering approach. As shown in Fig. 4.1, we propose a new observation

defined by:

ẑt = g(zt), (4.9)

where g() is designed to approximate the local inverse function of original observation h().

Although the method requires no analytical knowledge of the observation function z = h(x),

two basic criteria have to be met:
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1. Sufficient Numerical Knowledge: The observation function h() is known numeri-

cally at some discrete points with enough density, if not known everywhere:

∀x ∈ χ, ∃x0 ∈ χ&||x0 − x|| < σ s.t.

z0 = h(x0) can be directly evaluated.

σ defines the requirement of density. In the case of learned features from an image, σ

should represent a field of view captured by the camera.

2. Correlated Observation: To infer x from z, similarity in z should imply similarity

of x at least locally:

∃ǫ > 0, for ∀x1, x2 ∈ B(x0; ǫ)

||z1 − z0|| > ||z2 − z0|| ⇐⇒ ||x1 − x0|| > ||x2 − x0||

This criteria also implies that the function is locally invertible which holds for most

high-dimensional learned features. Later in Section 4.3.3 we will discuss how this

criteria can be adjusted by the uncertainty measurement. Section 4.3.3 discusses how

uncertainty measurement can compensate for potential errors the more the underlying

observation function deviates from these assumptions.

Given a feasible observation z that meets the assumptions, the pre-linearization function

can be generated as described in Algorithm 3. We construct ẑ = g(z) to fit the inverse

Algorithm 3 Pre-linearization function

Input:

zt: Original observation value

B(µ̄t) ⊂ χ: Confidence area given b̄el(xt).
Output:

ẑt: linearized observation value.

isV alid: Is the output ẑt valid or not.

1: St := {(zj, xj) : known evaluable points within B(µ̄t)
2: if x̄t 6∈ ConvexHull({xj}) then

3: Return(isV alid = 0; ẑt = {})
4: end if

5: for j = 1 to |St| do

6: αj := Sim(zt, zj)
7: end for

8: ẑt := Σj
αj∑
(αi)

· xj

9: Return(isV alid = 1; ẑt)
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(c) valid case (d) non-valid case

Figure 4.2: The knowledge of h( · ) is bounded by sample set S: If S is a bounded set, then

the knowledge field of h( · ) is bounded by S. In 1-D case, if µ̄t falls outside of the bounds

of {xi}, the estimation of h−1
z ( · ) based on S is biased.

observation h−1() in a local area defined by B(µ̄t):

ẑt = g(zt) = Σjwj(zt)h
−1(zj) ∼ h−1(zt), (4.10)

wj(zt) =
Sim(zj, zt)

ΣiSim(zi, zt)
, (4.11)

where Sim(z1, z2) > 0 can be any similarity measurement, such as norm defined in the

space of observation states. An evaluatability detection is also conducted in Algorithm 3

returning a logical value isV alid. This step detects whether the currently estimated location

µ̄t falls outside of the bounds defined by all the evaluatable points of h(), which might result

in a highly biased estimation of g(). A demonstration of the 1-D case is shown in Fig. 4.2.

Given the pre-linearization procedure ẑt = g(zt), the resulting linearized observation ẑt

is linear with respect to the state xt:

ẑt = g(zt) ∼ h−1(zt) = h−1(h(xt)) = I · xt. (4.12)

This observation function can now be directly used in a KF. The underlying graphical model

of the overall estimation problem is shown in Fig. 4.2(b).

Some advantages of using ẑt over zt are readily apparent:

• High Dimension vs Low Dimension: Since Dim(ẑt) = Dim(xt), the computational

complexity for estimating ẑt and involving it into the filter is fixed and the dimension-

ality equals the lower bound of the filtering system (Dim(xt)).

• Nonlinear vs Linear: ẑt, on the other hand, ẑt = g(xt) is constructed to be a linear

observation model. If h( · ) is linear, the usage of either ẑt or zt will degenerate
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to a linear estimation problem. Similar performance should be expected. If ẑt is

highly non-linear, high estimation error could be expected during the linearization

approximation in a lot of Bayesian filtering methods.

4.3.3 Uncertainty Measurement

We measure the uncertainty of the linearized observation ẑt by fitting a Gaussian model:

p(ẑt|xt) ∼ N(µ̄ẑ,Σẑ). (4.13)

The mean value µ̄ẑ is given by Algorithm 3. We estimate Σẑ leveraging a data perturbation

technique that treats the overall observation function as a black box, as depicted in Fig. 4.3.

The idea of data perturbation is to vary the input data to an unknown system, and analyze

the system stability and uncertainty by looking at the corresponding outputs. In our case,

input data corrupted by noise is fed into the function, and the uncertainty of the system is

estimated statistically from the output:

Σẑt =
1

N − 1
Σj(ẑ

j
t − µ̄ẑ)(ẑ

j
t − µ̄ẑ)

T , (4.14)

ẑ
j
t = ĥt(xt; z

j
t , B(µ̄j

t)), (4.15)

where z
j
t and µ̄j

t are perturbed values from original system input (zt, µ̄t). N is the total

number of perturbation points.

In extreme cases, when the original observation function, zt = h(xt) is not locally

invertible, for example z = h(x) ≡ C, the new observation value ẑt is only determined by

µ̄j
t , which results in a wide Gaussian model in the estimation procedure.

It is important to note that the proposed uncertainty measurement features a desired

property, that it is environment dependent. It not only encodes uncertainty coming from

the observation feature itself, but also the uncertainty caused by uniqueness of the feature

or potential aliasing with respect to the environment. We show that this property provides

a more accurate uncertainty modeling to the estimation state in the experiment results

discussed in Section 4.5.
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Figure 4.3: Data perturbation approach for black box noise model estimation.

Figure 4.4: Example of traditional visual features (SIFT) in sonar image matching.
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4.4 Real-time Sonar-based Underwater Localization Us-

ing CNN Learned Features

In this section, we apply the proposed pre-linearizing method described in Section 4.3 to a

real-world underwater localization problem.

In the experiment described in Chapter 3, we have shown that the CNN trained features

from FLS images provide a robust similarity metric among the sonar frames, which can be

achieved in real-time without assumptions about the scene structures. This method can be

easily adopted in a place recognition task by comparing L2 distance between the features.

However, the high-dimensional and black box nature of the feature limits the ways in which

it can be used in the pose estimation problem. (PF can be a way to use it, but we will

demonstrate the advantage of our proposed approach over PF in Section 4.5).

In this section, we utilize the high dimensional learned sonar feature introduced in Chapter 3

and apply our pre-linearization process to construct a real-time KF framework for FLS-based

underwater localization.

The general framework we proposed in the previous section can be applied to this

localization task as follows:

• xt = (x, y, z)t ∈ R3: The estimation state is the underwater robot position time

stamped by t.

• ut = (∆x,∆y,∆z)t: The control input is an odometry measurement obtained by

other on-board sensors on an HAUV; the motion model is given by xt = ut+xt−1+wt.

• zt ∈ R3000 is a high-dimensional generated by the network given raw sonar image

Imgt;

• S = (zr, xr): are known evaluation points of the underlying observation function

zt = h(xt). In this case, xr are positions visited in previous missions and zr are

corresponding features extracted from sonar frames collected at these positions.

• ẑt ∈ R3 is the new observation generated by pre-linearization.

At each correction step in the filtering system, a confidence area B(µ̄t) is given by b̄el(xt)

and a subset st of known points S that falls in the range of B(µ̄t) is selected. ẑt is given by:

ẑt = Σj

exp(−||zt − zj||
2
2)

Σiexp{−||zt − zi||22}
· xj, {(zj, xj)} ⊂ St
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(a) (b) (c) (d)

Figure 4.5: Uncertainty level of ẑ. The uncertainty level of ẑ is shown in det(Σẑ) with

respect to corresponding vehicle positions. The uncertainty level is strongly correlated with

the vehicle position. Sonar frames at positions where uncertainty level is consistently large

or small are shown.

In uncertainty estimation, we perturb B(µ̄t) by sampling µ̄j
t from b̄el(xt). And we

perturb zt by corrupting the input sonar frame with speckled noise. As shown in Fig. 4.5,

the estimated uncertainty level is highly related to the saliency level of sonar frames.

4.5 Experiment on FLS Images

In this section, we evaluate the proposed modeling approach in the application of sonar-based

underwater localization using real data collected in the multi-year ship hull inspection mis-

sion introduced in Section 4.4. We use the CNN model proposed and trained in Chapter 3.

The feature with a dimension of 3000 trained in the 2014 dataset is used. We use this feature

network to extract features and conduct experiments on the dataset from 2015. 27806 frames

are served as map and a path with 11917 frames is used for a localization test, as shown

in Fig. 4.6.

We implement the localization framework using the KF since the resulting observa-

tion is linear. The odometry measurements are also used as control inputs as discussed

in Section 4.4.

We compare our proposed approach with two approaches that also use learned features

as an observation.

1. PF: PF is a specific type of non-parameter filtering that can directly utilize any

abstracted feature without explicit observation modeling.
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Figure 4.6: Test Path.

Figure 4.7: Real-time localization error using the proposed pre-linearization observation in

Kalman filtering. The average processing time for each loop is 11 ms. Blue lines denote the

dead-reckoning localization error using only odometry measurements.
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Figure 4.8: Localization using Particle filtering over original observation. N is the number

of particles used in the filter. The average processing time for each loop is 109 ms when

N = 1000 and 12 ms when N = 50. Blue lines denote the dead-reckoning localization

error using only odometry measurements.

Figure 4.9: Localization using EKF with original observation model estimated from local

linear regression. The average processing time for each loop is 1205 ms. Blue lines denote

the dead-reckoning localization error using only odometry measurements.
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2. EKF: We also compare an EKF framework with a local observation model estimated

using linear regression.

For the particle filter, we evaluate the observation value using one of the nearest neighbors

in the map, which is achieved using a k-d tree (O(n log n) complexity). We carry out

the particle weighting in parallel using four processors to make a fair comparison to the

computational efficiency.

For EKF appraoch, we model the observation function zt with a linear model zt =

h(xt) + n ≃ H · xt + n.

H = argmin ||zr − H · xr||2, (xr, zr) ∈ S

The noise model is also estimated through data perturbation as before.

The localization results are given in Fig. 4.7, Fig. 4.8 and Fig. 4.9. Table. 4.1 summarizes

the computational time of each method. It can be seen, as expected, that the estimated

vehicle position will ‘drift’ due to error accumulation without the use of a corrective

observation. Both the proposed framework and the particle filter are able to correct the

estimated position from drifting by leveraging the sonar imagery. Using our proposed

pre-linearization approach, the KF is able to achieve a promising performance in localization

accuracy with very low processing time. In the particle filter, when the number of particles

is relatively large and able to capture the diversity of the system, the accuracy is comparable

to our proposed method. However, in this case, the PF becomes too slow to enable real-time

performance in a system with multiple processes. If we drop the number of particles to

increase the efficiency to be comparable with our proposed method, the accuracy will drop

to unacceptable levels. For the PF method, nearest neighbor searching needs to be done

as many times as the number of particles for data association. That means although the

particle filter is able to make use of an abstracted feature in a simple fashion, it is too time

consuming for real-time localization for high-dimensional features.

It can also be seen that the estimated linear model performs poorly. Two possible reasons

might account for this performance. The underlying observation model is too non-linear so

the resulting linear estimation is poor. It is also possible that the number of points in the

map are not large enough to support the estimation of such a high dimensional function.

Given that we can estimate the function properly, the processing time indicates that the

direct usage of high dimensional features using the KF family of filters is unachievable

without the proposed approach.

The most time consuming part in the localization procedure in our proposed method is

nearest neighbor searching in the map. Despite the use of an efficient K-d tree implementa-
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Table 4.1: Computational Time

Prop. PF-1000 PF-50 EKF

Time per step [s] 0.011 0.109 0.012 >1

Figure 4.10: Kalman filtering localization with proposed noise estimation.

tion, this is still a somewhat computationally expensive step. The complexity is O(n log n)

with respect to the map for each query. For EKF or other filters that explicitly use the

observation model, the inquiry needs to be done once for the calculation of ct.

The experiment results demonstrate the effectiveness of the feature uncertainty es-

timation as the localization accuracy in these probabilistic filtering frameworks require

reasonable uncertainty models to function properly. However, to better explicitly evaluate

the uncertainty measurement approach we proposed, we compared the actual estimation

error with believed uncertainty from the filtering system in Fig. 4.10. It can be seen that the

uncertainty estimation of the filtering system, which is estimated based on both odometry

uncertainty and our generated model uncertainty, is able to bound the actual estimation error

in most the cases.

As we discuss in Section 4.3.3, the proposed uncertainty measurement approach encodes

the uncertainty specific to the environment. To demonstrate the advantages of this property,

we compared the proposed uncertainty measurement approach with a fixed uncertainty

model estimated from the mean value across the dataset. The uncertainty measurement

results of the vehicle are given in Fig. 4.11. In this comparison, we can tell that the proposed

approach is able to provide a better estimation of the uncertainty than even a reasonable

fixed model, as expected.
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Figure 4.11: Kalman filtering localization with constant noise model.

4.6 Experiments on Other Modalities

To illustrate that the proposed method is able to be generalized to other applications, this

section provides experimental validation of a scenario of real-time localization using high

dimensional CNN features extracted from camera images. We generated the testing dataset

using realistic synthetic camera images from the ICL-NUIM [38] tool, where arbitrary views

of a 3D scene model can be rendered with artificial sensor noise. The living room scene in

ICL-NUIM, as depicted in Fig. 4.12, is used in the experiment.

In this experiment, we evaluate our approach in the application of camera position

estimation. We assume the camera is moving freely on the XY plane. A 2D path of the

camera moving in the plane following a spline curve is randomly generated and serves as the

ground truth, as depicted in Fig. 4.13. We estimate the camera position xt within an EKF,

using noisy odometry measurement ut and camera observation zt, which is pre-processed

by the proposed local linearization approach. For raw image features zt, we use the fc8

layer of AlexNet [5] with a pre-trained model provided by Caffe [51], which extracts a 1000

dimension feature vector from an input rgb image.

The localization result compared to dead reckoning is given in Fig. 4.13 and Fig. 4.14.

It can be seen that our proposed approach is able to efficiently use the high-dimensional and

highly abstracted feature from a camera image and contribute to the localization system. As

the drifting error accumulates, the camera-based EKF is able to keep a bounded error in

localization.
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Figure 4.12: Example view of Living Room in ICL-NUIM [38]

Figure 4.13: Localization result on XY plane.
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Figure 4.14: Localization Error. We evaluate localization error for both of the axes. The

shared trend is that our proposed algorithm is able to directly make use of the high-

dimensional and highly abstract feature from an input image to provide localization in-

formation within the EKF framework.

4.7 Conclusion and Future Work

In this chapter, we propose an observation pre-linearization approach that enables real-time

performance for recursive filtering with high-dimensional features. A practical and efficient

uncertainty measurement of the resulting new observation model is provided based on data

perturbation. We evaluate the proposed pre-linearization procedure by applying it to the

application of imaging sonar-based underwater robot localization, which results in the first

real-time solution using this modality. Experimental results using real world data show that

the proposed method is able to achieve real-time performance in a KF framework. The

accuracy is comparable to sampling-based methods while the computation complexity is

much more favorable for real-time applications. In the future we intend to generalize the

method to online SLAM approaches where localization and map collection are performed

simultaneously.
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CHAPTER 5

Forward-looking Sonar Pose-graph SLAM

5.1 Introduction

In the previous chapter, we explore a general pipeline for underwater localization using an

image-level descriptive feature of Forward-looking Sonar (FLS). The proposed approach

enables an autonomous underwater vehicle (AUV) to perform real-time localization in the

environment with a map built by previous observations. In this chapter, we explore the

utilization of FLS in a navigation system within an unknown environment. We propose

methods to extract geometry information from FLS that improves vehicle pose estimation

within a simultaneous localization and mapping (SLAM) framework.

As we discussed in Section 1.3, FLS has become an important alternative that offers

greater range and insensitivity to water visibility when compared to optical sensing. Never-

theless, the utilization of this modality suffers from unique challenges including low image

texture and high Signal-Noise-Ratio (SNR). Due to these problems, the majority of FLS

applications have been using it for environment reconstruction given known vehicle poses.

Less work has been done to improve the vehicle pose estimation through FLS images.

In this chapter, we propose a novel pose-graph SLAM algorithm leveraging FLS as the

sole perceptual sensor to provide ego-motion drift correction. In this work, we address many

of the practical problems associated with leveraging signals from FLS, including feature

sparsity, low reliability in data association, and geometry estimation. The contributions of

this chapter are represented in our publication [68], which include:

(i) Creation of a system to identify and select the most informative sonar frames for use

in improving system efficiency and reliability, while avoiding the singularities which

pervade the two-view geometry estimation problem when using FLS;

(ii) Development of a robust sonar feature matching strategy using pose prior within a

SLAM framework; instead of global searching within the whole image, believed-

91



region searching is conducted to encode constraints from vehicle pose prior and sonar

device field-of-view (FOV); and

(iii) Evaluation of the efficacy of our algorithm for the application scenario of periodic

underwater structure inspection and assessment.

Experimental results show that the proposed algorithm is able to provide robust loop

closure detection and relative pose constraint estimation from FLS which ultimately corrects

the localization of the platform and minimizes drift.

5.1.1 Outline

The rest of the chapter is arranged as follows: (i) In Section 5.2 we give a brief introduction

on related work using FLS to help AUV navigation systems within an unknown environment;

(ii) in Section 5.3, we provide a thorough introduction to the proposed algorithm; (iii) in

Section 5.4, we evaluate the approach through the use of ship hull inspection data; and

(iv) finally, in Section 5.5, we summarize the chapter.

5.2 Background

In recent history, pioneering research has been conducted to enable the use of FLS for

AUV navigation. Walter, Hover, and Leonard [96] proposed the first SLAM implementation

using Exactly Sparse Extended Information Filter (ESEIF) with manually selected features

from sonar imagery. While building the foundation of FLS for SLAM, this work focused

more on efficiency in building a feature map to emphasize real-time performance. The

work avoided directly addressing the geometric ambiguities in elevation embedded in such

measurements. Johannsson et al. [53] proposed detecting and matching FLS image features

using Normal Distribution Transformation (NDT). This work makes a planar assumption

where all feature points are assumed to lie on a plane parallel to the vehicle. This assumption

helps to add extra constraints to address the ambiguity in elevation measurements in the

SLAM observations. However, it also limits the application scenarios in which such an

algorithm can be used.

A similar assumption was made by Shin et al. in their recent work on FLS-based

bundle adjustment for seabed mapping. This work also introduces the Accelerated-KAZE

(A-KAZE) [4] feature for acoustic sonar images and displays impressive performance on

the challenging data association problem.
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Aykin and Negahdaripour relax the planar assumption of prior work for the two-view

scan matching case [9]. However, they still employ a local planar surface assumption per

image patch allowing the use of acoustic shadowing for feature detection and registration.

The use of shadow information presents more stable performance for the image registration

problem at the cost of longer computation time and greater structural requirements to excite

shadowing effects.

In more recent literature, Huang and Kaess [46] introduced Acoustic Structure From

Motion (ASFM), which used multiple sonar viewpoints to jointly reconstruct 3D structures

as well as sensor motion, with no specific assumption of the scene. In their work, a statistic

analysis was conducted to identify and discuss the degeneration cases for which ASFM

would fail. Particularly, they analyze which motion patterns make for a poorly constrained

optimization problem. In their recent work on acoustic-inertial odometry estimation Yang

and Huang [102] extend the discussion of this problem to more abstract theoretical cases.

Although ASFM shows promising results for providing sonar-based geometry estimation

without underlying scene assumptions, that work was primarily evaluated on simulated data.

However, despite ongoing work there are still open issues, particularly when it comes to

the practical deployment of an acoustic SLAM system using FLS. These problems include,

but are not limited to, robust data association, efficient key frame selection for real-time

performance, and identification and removal of degeneration cases in the optimization. In

this chapter, we present novel algorithms that make use of ASFM as front-end to develop the

missing pieces for a complete end-to-end real-time acoustic SLAM system. The hurdles to

creating a deployable framework that can run on an AUV are addressed, providing solutions

to the practical problems discussed above.

5.3 Methodology

In this section, we describe the proposed acoustic SLAM system in detail. An overview

of the approach is given in Fig. 5.1. A pose-graph SLAM back-end is used to estimate the

vehicle’s full 6 degree-of-freedom (DOF) pose, xi = [x, y, z, φ, θ, ψ] given all the sensor

measurements as constraints between poses. Fig. 5.2 depicts the general graphical model of

our pose-graph representation. Each node in the graph, xi, corresponds to a vehicle pose

with a sensor measurement associated. Two types of constraints from sensor measurements

are considered in this context: odometry measurements from the Doppler velocity log (DVL)

and inertial measurement unit (IMU), and sonar constraints from the FLS local structure

from motion (described later in detail in Section 5.3.2). We assume independent Gaussian

noise for both odometry and sonar measurements. The measurement model for odometry is
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Figure 5.1: System flowchart: The proposed algorithm is supported by a pose-graph SLAM

back-end. It optimizes the vehicle poses given all the measurements. Raw sonar frames

are passed through a saliency test where salient frames are considered for loop closure

proposal based on potential information gain. Marginalized pose constraints, after local

structure from motion, will be fed to the SLAM back-end providing drift correction from

sonar measurements.

Anchor
x1 x2(i) xn(j) xn+1 xn+2(k)

odom1 odomn odomn+1

· · ·

sonar linkij

sonar linkik

Figure 5.2: Depiction of pose-graph SLAM using constraints from local FLS bundle

adjustment. An example of loop closure clique is marked in red (i, j, k).

given by:

zkij = f(xi, xj) + wk, (5.1)

where f() denotes the generative model of odometry between two poses and wk is Gaussian

noise with its covariance scaled proportionally to the elapsed time separating the poses.

To model the constraints provided by FLS images, we propose to use marginalized pose

constraints from a local structure from a motion problem within a clique of loop closure

sonar images. In this section we start with a brief introduction of sonar geometry and

sonar-based structure from motion in Section 5.3.1 and Section 5.3.2. Then we give more

details about how we provide an advanced loop closure hypothesis proposal and feature

matching that improves the robustness of the sonar-based structure from motion and how

we address the challenges in feature sparsity in Section 5.3.3 and Section 5.3.4 respectively.

94



5.3.1 Sonar Frame Geometry

As introduced in Section 1.3.1, an FLS observes the scene and returns the measurement

in the form of range and bearing (r, θ). The measurement for each data point (r, θ) can

originate anywhere on the arc defined by (r, θ) in the Spherical coordinate system centered

at the projection center of the sonar head, as depicted in Fig. 1.13.

In the local Cartesian coordinates of the sonar frames, a 3D scene point Ps can be

obtained from the Spherical coordinates as:

Ps =







Xs

Ys

Zs






=







r cos θ cosφ

r sin θ cosφ

r sinφ






(5.2)

The raw measurement from the transducer, a 2D array of (r, θ), is then converted to a 2D

image for easier interpretation and post processing. The specific manner in which image

conversion occurs can vary depending on the application scenario. Here, we only discuss

the most common: the Cartesian coordinate image conversion. Under this conversion, a 3D

point Ps is projected on the image plane (φ = 0):

ps =

[

u

v

]

=

[

γ ·Ys/cosφ+ w
2

γ · (rmax −Xs/cosφ)

]

(5.3)
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Anchor

x1 x2 x3

zodom12 zodom23

l1 l2

zsonarij

Figure 5.3: Graph Model for Local Acoustic Bundle Adjustment

where (u, v) is the pixel location centered at the upper left corner of the sonar image and

[w, h] are the width and height of the image, as depicted in Fig. 5.3.1. γ is a scaling factor

between the pixel plane and the physical zero elevation plane, which is given by:

γ =
w

2rmax sin(θmax/2)
, (5.4)

where θmax is the sonar FOV of bearing.

5.3.2 FLS Structure from Motion

Given the geometry of imaging sonars described in Section 5.3.1, we can build a local

structure from motion problem within a small set of sonar frames by modeling both the

odometry measurements and sonar feature measurements. We consider a three-frame

structure from motion in the implementation. It is straightforward to generalize the work

over any number of frames.

The structure from motion solves for the maximum a posteriori (MAP) vehicle poses

and landmark positions Θ = {xi, Pk} given all the measurements Z = {zodomij , zsonarim } in a

given clique:

Θ∗ = argmaxθ p(Θ|Z) = argmaxθ p(Θ)p(Z|Θ). (5.5)

We model the odometry measurements again as described in Eq. 5.1. In the structure from

motion setting, instead of direct odometry measurements from the sensors, we use relative

odometry from the current SLAM estimate, given by:

zodomij = f(x̄i, x̄j) + wodom
ij , (5.6)
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where x̄i and x̄j are pose estimates from the SLAM back-end, and Σwba
ij

is given by the

propagated covariance of f(x̄i, x̄j).

We define sonar measurement as:

zsonarim = h(Pm, xi) + vim, (5.7)

where h() denotes the generative model that converts a landmark position Pm to the local

frame of vehicle pose xi, then projects the landmark on the image plane following Eq. 5.3.

We model the measurement uncertainty proportional to the radius of the detected key point.

The whole structure from motion is then a solution to the least square problem of:

Θ = argminx[Σ
m
k=1||h(P

g
m, xik)− zmik ||

2
Σ + Σ||f(xi, xj)− zslamij ||2Σ]. (5.8)

Mahalanobis distance (||x||2Σ = xTΣ−1x) is used for all the residuals. Note one implementa-

tion detail is that we inflate the uncertainty of the relative odometry constraint in the z-axis

to compensate for the spatial ambiguities in the biased motion pattern particular to the ship

hull dataset. After the optimization, we take the marginalized odometry constraints as new

pose constraints for the SLAM back-end, which is given by:

zbaij = f(x∗i, x
∗
j) + wba

ij . (5.9)

5.3.3 Saliency Aware Loop-closure proposal

To ensure real-time performance of the system, an efficient hypothesis proposal system is

essential. This system will propose loop closures based upon sonar frame cliques in a local

acoustic structure from motion. The selection of these loop-closure cliques is based upon the

evaluation of both potential information gain given successful registration and the estimated

saliency of the underlying sonar frames (a proxy for potential matching quality).

The use of information gain for link proposals was introduced by Ila, Porta, and Andrade-

Cetto [50] in which one only adds informative links to keep the SLAM graph compact. Kim

and Eustice [59] also extend this approach for loop-closure hypothesis proposals between

camera images. The information gain of a new measurement between two nodes under the

assumption of a jointly Gaussian distribution is given by:

L = H(X)−H(X|zij) =
1

2
ln

|S|

|R|
, (5.10)

where H(X) and H(X|zij) is the prior and posterior entropy of the graph. R is the
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measurement covariance and S is the innovation covariance:

S = R + [Hi, Hj]

[

Σii Σij

Σji Σjj

]

[Hi, Hj]
T (5.11)

Note that the above equation can be easily extended to the case of several measurements:

S12×12
i,j,k = R12×12

i,j,k +H







Σii Σij Σik

Σji Σjj Σjk

Σki Σkj Σkk







18×18

HT , (5.12)

where R here becomes the covariance of the new measurement znew = (zij, zik) and H is

the corresponding Jacobian matrix of znew. They are given by:

Ri,j,k =

[

Σzijzij Σzijzik

Σzikzij Σzikzik

]

(5.13)

and

H =

[

H
zij
i H

zij
j 0

Hzik
i 0 Hzik

k

]

(5.14)

Eq. 5.10 provides an evaluation of potential information gain that will contribute to the

SLAM optimization problem. Another advantage of the information gain metric is that it

encourages the cliques with higher complexity of motion, which decreases the chance of a

singularity in the local structure from motion, as discussed in [46, 102].

However, as we discussed throughout this thesis, the sparse distribution of strong sonar

features is a fundamental challenge in making a successful structure from motion constraint.

Proposals based solely on information gain can lead to a lot of failed attempts due to lack

of features, decreasing the efficiency of the entire system. To address this problem, we

combine both information gain and the sonar image saliency to determine which images to

use for proposed loop closures.

In Chapter 4, we proposed a global image descriptor feature using a convolutional neural

network (CNN) that provides informative features for image matching. Fig. 5.4 depicts the

data flow for training and run-time use of the feature model. A saliency score evaluating

the uniqueness of the features in a local neighborhood trained on a given map is also

introduced. However, the map dependent score is not practical in the navigation systems in

unknown environments. In this work, we propose an online saliency evaluation based on
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Figure 5.4: Image-level descriptive sonar feature training procedure proposed in Chapter 4.

Figure 5.5: Saliency score estimated from image-level sonar feature with respect to the ship

hull.

local sensitivity of the CNN-extracted features given by:

Saj =

√

Σ
Nj

i=1||fi − f̄ ||22
√

Σ
Nj

i=1||pi − p̄||22

, pi ∈ Bj, (5.15)

where Saj is the saliency score of frame j,Bj is the support area of frame j and pi = (x, y, z)

are vehicle locations within the support area Bj . The saliency score captures the variability

of sonar features fi within a fixed physical support area around frame j. Fig. 5.5 depicts

the distribution of the scores evaluated online as the vehicle moves with respect to the

environment (in this case the ship hull). Examples of the sonar frames with associated

saliency scores are given in Fig. 5.6. As can be seen, the saliency score is well correlated

with sonar images where strong texture exists.

We use the proposed saliency score to prune the loop closure proposals by evaluating

information gain within only the salient frames:

Ls(i, j, k) =







L(i, j, k) = 1
2
ln

|Si,j,k|

|Ri,j,k|
Sa > λs,

0 otherwise.
(5.16)

99



(a) Sa = 10.16 (b) Sa = 8.58 (c) Sa = 8.01 (d) Sa = 8.01

(e) Sa = 1.64 (f) Sa = 1.99 (g) Sa = 1.60 (h) Sa = 1.60

Figure 5.6: Example sonar frames with saliency scores. (a) (b) and (c) give examples of

high saliency sonar frames, where we can see strong texture and features. (d) (e) and (f) give

examples of low saliency frames, where little texture and few features can be recognized.

Sa denotes the mean saliency score in the clique (i, j, k) and λs is a cut-off threshold for

the saliency score. λs = 5 was experimentally found to be optimal for the data gathered in

the ship hull dataset. The saliency-aware information gain Ls(i, j, k) is used to propose and

prioritize the cliques considered in the local structure from motion front-end.

Since the proposal of a clique of size m is an O(nm) problem, we use a sampling-based

method for the initial proposal.

In Section 5.4, we show that the saliency-aware information gain helps to increase

the chance of successful local structure from motion of sonar frames with sufficient valid

matches.

5.3.4 Sonar Feature Matching Using Pose Constraint

The problem of constructing feature point associations between sonar frames is one of the

most challenging tasks in using an imaging sonar in a pose estimation and reconstruction

problem. In this work, we propose to use pose priors that are available from the SLAM
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system to constrain the search area for feature matching within sonar frames. For a feature

point pim detected on frame i, we expect the corresponding feature point location in frame j

to be defined as:

pmj = h(Pm(p
m
i , φm), xi, xj), (5.17)

where ψm is the elevation of underlying 3D scene point Pm and (xi, xj) are the corre-

sponding vehicle poses. Given the elevation φm and feature point ψm, Pm can be uniquely

reconstructed following Eq. 5.2 and Eq. 5.3.

From Eq. 5.17, we can approximate the distribution probability of pmj using linear

covariance propagation:

µm
j = h(Pm(p

m
j , φm), xi, xj)|φm=0 (5.18)

Σm
j = JΣpmi ,φm,xi,xj

JT , (5.19)

Where J is the Jacobian matrix of function h. Σpmi ,φm,xij
denotes the joint covariance matrix

of pmi , φm, xij . Note that pmi , φm, and (xi, xj) are independent variables. We can simplify

Eq. 5.19 by:

Σm
j = Jpmi Σpmi

JT
pmi

+ σ2
φm
Jφm

JT
φm

+ Jxixj
Σxixj

JT
xixj

. (5.20)

σ2
φm

= φmax is the covariance of φm since we have cue of φm due to the ambiguity. Σxixj
is

the joint covariance of pose frame xi and frame xj available from SLAM. The radius of the

meaningful keypoint neighborhood is used to give the covariance of the detected feature

point Σpim
.

(pjm − µj)
T (Σj

m)
−1(pjm − µj) = κ2, (5.21)

where κ2 follows a χ2
2 distribution.

A set of example matching results is given in Fig. 5.7 and it is also compared to nearest

neighborhood matching. A-KAZE detection and speeded up robust features (SURF) feature

descriptors are used in the implementation. It can be seen that our matching approach

results in many more correct associations. While some outliers exist, even in the improved

matching approach, the ratio of inliers is high enough to be effective in a structure from

motion framework. In the implementation of the system an initial structure from motion is

run to enable the identification of gross outliers that can be excluded from a second structure

from motion pass. Features are only included in the structure from motion problem when

they are found in all frames in the clique.
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(a) Frame i (b) Frame j (c) Proposed (d) No constraint

(e) Frame i (f) Frame j (g) Proposed (h) No constraint

(i) Frame i (j) Frame j (k) Proposed (l) No constraint

(m) Frame i (n) Frame j (o) Proposed (p) No constraint

Figure 5.7: Sonar feature matching using pose constraints. The first column gives sonar

image i with detected feature points marked in red. The second column gives sonar frame j.
The expected correspondent location of the feature points in frame j is marked in red on

frame j. The searching area in frame j is marked in green. The third column gives feature

matching results using a pose constraint. The fourth column gives feature matching results

using the nearest neighboring matching.
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Figure 5.8: SLAM missions collected in the inspection of the SS-Curtiss in 2014. This

figure depicts six missions in a common reference frame.

Table 5.1: Trajectory Statistics.

Mission 1 2 3 4 5 6

length in X axis [m] 25.17 15.9 27.40 26.54 26.62 23.54

length in Y axis [m] 149.79 16.46 25.47 32.07 12.79 27.68

length in Z axis [m] 0.1173 8.767 9.51 9.66 9.53 9.21

Num. of nodes 2240 2210 4389 2987 2597 5440

5.4 Experiment

In this section, we evaluate our proposed algorithm on real-world data collected in a ship

hull inspection application. The dataset used in our experiment comes from the inspection

of the US-Curtiss (Fig. 1.7) in 2014. As depicted in Fig. 5.8, the data consists of a set of

trajectories around different portions of the ship hull (focused on areas that exclude the

rudder and screws). Information on the statistics of each trajectory is given in Table 5.1.

We evaluate the loop closure clique proposal approach by analyzing the success rate

of all proposals. If within a hypothesis proposal clique, sufficient feature chains are built

and the structure from motion optimization converges, we mark the proposal as 1 (true

positive). Otherwise, if insufficient feature chains are detected or the structure from motion

is under constrained due to a singular motion pattern, we mark it as 0 (false positive). The

saliency-aware information gain Ls is used to rank the proposals. A Precision-Recall (PR)

curve over all the hypothesis proposals in Mission 2 is given in Fig. 5.9. The results show

that the saliency aware hypothesis proposal method is able to effectively suppress proposals

in the low saliency area, greatly increasing the number of true positives.

We provide quantitative and qualitative results evaluating the localization accuracy of

the proposed SLAM algorithm as compared to dead reckoning localization results. Since the

hovering autonomous underwater vehicle (HAUV) is operating in a GPS-denied environment
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Figure 5.9: Precision-Recall (PR) curve of hypothesis proposal using saliency aware infor-

mation gain. The hypothesized proposal clique is ranked by saliency and information gain

and the PR curve is calculated based on success rate. We compare the proposed method

with a more traditional information-gain only score.

with no external reference set up, there is no ground truth available for the localization

accuracy. To evaluate the performance, we use a relative ground truth generated from an

off-line visual-based bundle adjustment framework using camera images, which is reported

by Ozog et al. in [83]. Table 5.2 depicts SLAM localization accuracy with respect to ground

truth positions compared with dead-reckoning trajectories. To account for the variability

introduced by the randomization of the sample-based initial proposal selection method

introduced in Section 5.3.3, we conduct 20 trial runs for each mission. The mean and

standard deviation of the absolute error in each trial are reported.

The incorporation of the sonar structure from motion constraint is able to improve the

localization accuracy in most of the mission trials correcting the drift error. The improvement

becomes more obvious when the relative error is higher, mainly due to the limited resolution

of the sonar image with respect to the corresponding physical sensor footprint. Failure

cases exist where the sonar constraint is not able to improve the localization accuracy. For

example, in Mission 1, the vehicle is performing a surface mission at the water line of

the ship hull. The small true relative motions are overwhelmed by the noise of the pose

constraints provided by the sonar. This is an example of how, given the properties of acoustic

imaging, sonar constraints are only useful for recovering gross relative motion.

The SLAM trajectories for each method are given in Fig. 5.10 with sonar constraints
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Table 5.2: SLAM estimation accuracy with respect to camera-image-based offline bundle

adjustment for each mission. In this table we compare the localization accuracy of our

proposed algorithm (Prop.) and the dead reckoning (DR). For the proposed method, the

means (µ) and standard deviations (σ) of absolute error over 20 runs for each mission are

given (µ[σ]). The smallest error for each mission in each axis is in bold.

Mission 1 2 3 4 5 6

Error in

X [m]

Prop. 0.65[0.16] 0.39[0.13] 1.29[0.36] 0.39[0.15] 0.62[0.30] 2.19[0.25]

DR 0.79 0.52 1.64 0.68 1.06 2.44

Error in

Y [m]

Prop. 0.66[0.02] 0.74[0.11] 0.57[0.10] 1.49[0.27] 0.61[0.14] 1.26[0.31]

DR 0.70 0.90 0.52 1.64 0.62 1.70

Error in

Z [m]

Prop. 1.30[0.24] 0.42[0.07] 0.97[0.09] 0.42[0.09] 0.50[0.08] 2.08[0.23]

DR 0.99 0.50 0.88 0.29 0.57 2.57

depicted in Fig. 5.11. It can be seen that the benefit of the FLS local structure from motion

front end becomes more obvious as the accumulated error increases. It should be noted that

Figure 5.10: Trajectory estimation result of Mission 2. As the drift accumulates, the

constraints from the sonar local structure from motion are able to correct the trajectory

towards the ground truth.

the corrections applied by the sonar are more modest than typical SLAM corrections using

optical image approaches. This is mainly due to the much lower spatial resolution of the

sonar, and this finding highlights that if water clarity permits, optical constraints should be

leveraged with a high priority. Ultimately, we envision that the system should be able to

make use of both constraints within different parts of the same mission depending on the
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Figure 5.11: FLS structure from motion constraints added to SLAM graph. The results are

shown in a time elevation map. Nodes in the trajectory are colored by the saliency score

associated with the sonar frames.

environment, relative hull position, and imaging geometry.

5.5 Conclusion

In this chapter, we proposed a real-time acoustic SLAM system, which makes use of

measurements from FLS images for underwater robot navigation. We have demonstrated a

complete end-to-end acoustic SLAM system, particularly addressing the practical challenges

of using FLS features, including data association, key frame selection and outlier rejection.

The proposed method is evaluated on a real-world dataset collected for a ship hull inspection

application. Experimental results indicate that our approach is able to efficiently propose

information rich cliques of sonar frames and make use of them in a real-time SLAM system

to correct the robot’s position.
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CHAPTER 6

Conclusion and Future Work

This thesis proposes advanced feature extraction and utilization approaches for both optical

and acoustic sensors in underwater autonomous navigation systems, within a target appli-

cation of ship hull inspection using a hovering autonomous underwater vehicle (HAUV).

We have shown several contributions that use this information to improve underwater vehi-

cle navigation, in both known and unknown environments. In this chapter, we succinctly

summarize the contributions proposed in this thesis and provide a discussion on additional

directions to further pursue our work.

6.1 Contributions

The contributions of this thesis include:

1. A high-level feature detection and description approach for robust registration between

optical images against dramatic appearance changes. We efficiently detect visually

salient patches through image segmentation and local region contrast evaluation. We

achieve robust image registration results using model selection on matched salient

patches. We compare our approach to a traditional feature approach using scale-

invariant feature transform (SIFT) features in a random sample consensus (RANSAC)

matching framework, and show our proposed method could achieve promising per-

formance despite low feature density and appearance changes when the benchmark

method underperforms;

2. Image-level descriptive features leveraging convolutional neural network (CNN)

techniques for Forward-looking Sonar (FLS) images. We trained high dimensional

features highly related to vehicle poses using a CNN over labeled data from an off-

line bundle adjustment (BA) algorithm. The trained features provide a robust and

efficient similarity measurement under high-noise-level and weak-feature-texture
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imaging conditions. The place recognition performance using the proposed feature

achieved promising accuracy compared to traditional hand-crafted features. We have

also integrated the proposed feature in a multi-session simultaneous localization and

mapping (SLAM) registration framework with other sensor measurements and showed

that our proposed feature is capable of improving the system’s robustness against

optical visual aliasing;

3. A general pre-processing procedure to utilize high-dimensional features in real-time

Bayesian filtering frameworks. We reduce the curse of dimensionality of observation

in recursive Bayesian estimations and provide a quantification to black-box feature

uncertainty using data perturbation techniques. We have shown that the proposed

approach can be applied in a real-time localization framework using high-dimensional

sonar image features. In addition to acoustics, we have also applied the proposed

approach on highly-abstracted visual features, which illustrates the generalization of

the proposed approach; and finally,

4. A novel pose-graph SLAM algorithm using FLS images to provide pose constraints

for vehicle ego-motion estimation. We leverage local bundle adjustment of FLS

images to provide more robust constraints over vehicle poses compared to two-view

registration. We have also proposed a sonar image feature matching algorithm using

pose priors achievable from a SLAM system. We evaluated the proposed algorithm on

real-world data collected in ship hull inspection missions, and showed the capability

of the method in drift correction for autonomous underwater vehicles (AUVs).

6.2 Future Work

This thesis provides the foundation to many potential future work directions in underwater

multi-modality navigation systems. In this section, we provide a brief discussion of some of

the interesting potential directions:

Multi-robot navigation systems

Due to restriction of battery life, the applications of AUVs are limited to relatively small op-

eration areas and mission times. Multi-robot cooperation systems could relax this restriction

and increase the utility of AUVs. The proposed multi-session registration approach sets the

scene for future multi-robot applications of the localization techniques.
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In both Chapter 2 and Chapter 3, we show improvement in multi-session SLAM regis-

tration using optical camera images and FLS images. Although all the experiment settings

considered in this document are single-vehicle systems, the proposed features and registra-

tion approaches can be extended to multi-vehicle navigation systems. The challenges of

both heterogeneous platforms and sensors would need to be addressed to make this a reality.

Improved sonar local bundle adjustment with other sensors and infor-

mation

In Chapter 5, we develop a novel pipeline of using FLS images in a SLAM front-end. A

local bundle adjustment on FLS imagery provided the pose constraints. However, the high

ambiguity of some motion patterns between sonar frames limited the effectiveness of the

constraints in all cases. Given information from other sensors, the local bundle adjustment

can be improved. Possible sources include distance measurements from Doppler velocity

logs (DVLs), local scene structure reconstruction from stereo cameras or a CAD model

of the ship hull. Difficulties of this potential extension will lie in the extrinsic calibration

among different sensors.

Key-point feature learning in sonar images

In Chapter 5, we have shown that the sonar feature matching approach based on pose

prior constraint and sonar field-of-view (FOV) could improve matching robustness. In the

experimental implementation put forward in Chapter 5, Accelerated-KAZE (A-KAZE) is

used in sonar feature matching. Although it has been discussed in [89] that this feature

extractor presents better performance in sonar imagery compared to other widely-used visual

features, they are not particularly designed for sonar image geometry.

Leveraging the work in Chapter 3, CNNs have demonstrated great power in learning a

feature representation in FLS images. By harnessing such an approach on key-point feature

representation learning, feature matching could be improved.

109



APPENDIX A

Epipolar geometry and Fundamental matrix

An illustration of geometry relationship between two pinhole cameras looking at one scene

point is shown in Figure A.1. The image points PL and PR are sharing the same plane

defined by scene point P and the camera projection centers OL and OR.

This planar constraint decreases the searching complexity for the corresponding point

searching. Given one point in the left image PL, the epipolar plane is defined by PL, OL

and EL. The corresponding point can only be found on the epipolar line on the right image,

which is the line of intersection of the epipolar plane and the right image plane.

A mathematical description of the above constraint can be concluded by Fundamental

matrix F:

X ′
LFXR = 0

F = K−T
L R[t]×K

−1
R

XL and XR are homogeneous coordinates of a pair of corresponding points,and R and t are

the rotation and transformation parameters between two camera coordinate systems.

In feature point matching, a fundamental matrix is often used to validate the matching

pairs. However, in most of the cases, R and t are unknown. The most common practice

is using RANSAC to estimate a best fundamental matrix. Matching pairs are randomly

sampled to estimate candidate fundamental matrices and the one that fits the majority of

matching pairs will be used. A large number of matching pairs and a sufficient ratio of true

matching pairs are needed to guaranteed the validity of this method.
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Figure A.1: An illustration of epipolar geometry relationship. The image points PL and PR

share the same plane defined by scene point P and two camera projection centers OL and

OR.

.
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APPENDIX B

Support Vector Machines

Support vector machines (SVMs) are supervised learning models with associated learning

algorithms that analyze data and recognize patterns, used for classification and regression

analysis. Given a set of training examples, each labeled as belonging to one of two categories,

an SVM training algorithm builds a model that assigns new examples into one category or

the other, making it a non-probabilistic binary linear classifier.

As shown in Figure B.1, the main task of an SVM training algorithm is to estimate a

boundary that separates the two categories into different sides in a feature space. SVMs can

have varied forms depending on the feature space where its boundary is detected. Given a

set of training samples:

D = {(xi, yi)|xi ∈ Rn, yi ∈ {1,−1}}mi=1

The most standard linear SVMs separate the samples in their vector space Rn. If the

training samples are linearly separable, a boundary can be found with the form: wx − b = 0,

so that:

wxi − b >= 0, yi = 1;

wxi − b <= 0, yi = −1;

When the training data is separable, an infinite number of boundary lines exist that

hold the above constraint. The SVM training algorithm is a solution to the optimization

problem that maximizes the margin of boundary to training samples, which is defined in

Figure B.1(b). The definition of boundary margin indicates that only a small set of samples

is related to the final decision of boundary; those samples are referred to as support vectors.

This property determines that SVMs are less sensitive to the total amount of training samples

and more robust to the problem of overfitting.
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(a) SVM training (b) Margin definition of SVM boundary

Figure B.1: The main task of an SVM training algorithm is to estimate a boundary that

separates two different categories of samples in a feature space.
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2564–2570, Québec City, Québec, Canada, July 2014. URL http://www.informatik.
uni-freiburg.de/∼naseer/publications/naseer14aaai.pdf.

[78] S. Negahdaripour. On 3-d motion estimation from feature tracks in 2-d fs sonar video.

Robotics, IEEE Transactions on, 29(4):1016–1030, 2013.

[79] Y. Nesterov. Smoothing technique and its applications in semidefinite optimization.

Mathematical Programming, 110(2):245–259, 2007.

[80] P. Neubert, N. Sunderhauf, and P. Protzel. Appearance change prediction for long-

term navigation across seasons. In Mobile Robots (ECMR), 2013 European Confer-

ence on, pages 198–203, 2013.

[81] A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic representation

of the spatial envelope. Int. J. Comput. Vis., 42(3):145–175, 2001.

[82] P. Ozog and R. M. Eustice. Toward long-term, automated ship hull inspection with

visual SLAM, explicit surface optimization, and generic graph-sparsification. In Proc.

IEEE Int. Conf. Robot. and Automation, pages 3832–3839, Hong Kong, China, June

2014.

[83] P. Ozog and R. M. Eustice. Large-scale model-assisted bundle adjustment using

gaussian max-mixtures. In 2016 IEEE International Conference on Robotics and

Automation (ICRA), pages 5576–5581, May 2016. doi: 10.1109/ICRA.2016.7487775.

[84] P. Ozog, G. Troni, M. Kaess, R. M. Eustice, and M. Johnson-Roberson. Building

3d mosaics from an autonomous underwater vehicle, Doppler velocity log, and 2d

imaging sonar. In Proceedings of the IEEE International Conference on Robotics

and Automation, pages 1137–1143, Seattle, WA, USA, May 2015.

[85] P. Ozog, M. Johnson-Roberson, and R. M. Eustice. Mapping underwater ship hulls

using a model-assisted bundle adjustment framework. Robotics and Autonomous

Systems, Special Issue on Localization and Mapping in Challenging Environments,

87:329–347, 2017.

[86] F. Perazzi, P. Krahenbuhl, Y. Pritch, and A. Hornung. Saliency filters: Contrast based

filtering for salient region detection. In Proc. IEEE Conf. Comput. Vis. Pattern Recog.,

pages 733–740, Providence, RI, USA, June 2012.

[87] H. Rabbani, M. Vafadust, P. Abolmaesumi, and S. Gazor. Speckle noise reduction of

medical ultrasound images in complex wavelet domain using mixture priors. IEEE

transactions on biomedical engineering, 55(9):2152–2160, 2008.

120

http://www.informatik.uni-freiburg.de/~naseer/publications/naseer14aaai.pdf
http://www.informatik.uni-freiburg.de/~naseer/publications/naseer14aaai.pdf


[88] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat:

Integrated recognition, localization and detection using convolutional networks. arXiv

preprint arXiv:1312.6229, 2013.

[89] Y. S. Shin, Y. Lee, H. T. Choi, and A. Kim. Bundle adjustment from sonar images and

slam application for seafloor mapping. In OCEANS 2015 - MTS/IEEE Washington,

pages 1–6, Oct 2015. doi: 10.23919/OCEANS.2015.7401963.

[90] Sound Metrics Corp. Didson 300 m Imaging Sonar. Specification sheet and docu-

mentations Available at “http://www.soundmetrics.com”, 2014.

[91] N. Sünderhauf, S. Shirazi, A. Jacobson, F. Dayoub, E. Pepperell, B. Upcroft, and

M. Milford. Place recognition with convnet landmarks: Viewpoint-robust, condition-

robust, training-free. In Robotics: Science and Systems, Auditorium Antonianum,

Rome, July 2015. URL http://eprints.qut.edu.au/84931/.

[92] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-

houcke, and A. Rabinovich. Going deeper with convolutions. arXiv preprint

arXiv:1409.4842, 2014.

[93] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust monte carlo localization for

mobile robots. Artificial intelligence, 128(1):99–141, 2001.

[94] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics (Intelligent Robotics and

Autonomous Agents). The MIT Press, 2005. ISBN 0262201623.

[95] S. Wager, S. Wang, and P. Liang. Dropout Training as Adaptive Regularization. In

Proceedings of Neural Information Processing Systems (NIPS), 2013.

[96] M. Walter, F. Hover, and J. Leonard. Slam for ship hull inspection using exactly sparse

extended information filters. In 2008 IEEE International Conference on Robotics

and Automation, pages 1463–1470, May 2008. doi: 10.1109/ROBOT.2008.4543408.

[97] S. Wang and C. Manning. Fast dropout training. In Proceedings of the 30th Interna-

tional Conference on Machine Learning (ICML-13), pages 118–126, 2013.

[98] M. Welling, M. Rosen-zvi, and G. E. Hinton. Exponential family harmoniums with

an application to information retrieval. In L. K. Saul, Y. Weiss, and L. Bottou, editors,

Advances in Neural Information Processing Systems 17, pages 1481–1488. MIT Press,

2005.

[99] S. B. Williams, O. R. Pizarro, M. V. Jakuba, C. R. Johnson, N. S. Barrett,

R. C. Babcock, G. A. Kendrick, P. D. Steinberg, A. J. Heyward, P. J. Doherty,

I. Mahon, M. Johnson-Roberson, D. Steinberg, and A. Friedman. Monitoring

of benthic reference sites: Using an autonomous underwater vehicle. IEEE

Robotics Automation Magazine, 19(1):73–84, March 2012. ISSN 1070-9932. doi:

10.1109/MRA.2011.2181772.

121

http://www.soundmetrics.com
http://eprints.qut.edu.au/84931/


[100] R. W. Wolcott and R. M. Eustice. Visual localization within lidar maps for automated

urban driving. In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ

International Conference on, pages 176–183. IEEE, 2014.

[101] F. Yang, W. Choi, and Y. Lin. Exploit all the layers: Fast and accurate CNN

object detector with scale dependent pooling and cascaded rejection classifiers. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 2129–2137, 2016.

[102] Y. Yang and G. Huang. Acoustic-inertial underwater navigation. In Proc. of the IEEE

International Conference on Robotics and Automation, Singapore, 2017.

[103] S. Yoon and C. Qiao. Cooperative search and survey using autonomous underwater

vehicles (auvs). IEEE Transactions on Parallel and Distributed Systems, 22(3):

364–379, 2011.

[104] P. Zarchan. Progress In Astronautics and Aeronautics: Fundamentals of Kalman

Filtering: A Practical Approach, volume 208. Aiaa, 2005.

[105] Y. Zhang, K. Sohn, R. Villegas, G. Pan, and H. Lee. Improving object detection with

deep convolutional networks via bayesian optimization and structured prediction. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 249–258, 2015.

122


	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Appendices
	List of Acronyms
	Abstract
	Introduction
	Motivation
	Importance and Challenges of underwater robot localization
	Autonomous Ship Hull Inspection with the HAUV

	A Review of Visual-SLAM
	Appearance-based Place Recognition

	A Review of FLS in Underwater Robotics
	FLS
	Challenges in FLS processing
	Imaging Sonar in Navigation Systems
	Scene Reconstruction Using FLS Imagery

	A Review of Convolutional Neural Networks 
	Convolutional Neural Networks
	Application in Mobile Robotics

	Thesis Outline
	Thesis Goals
	Document Road-map


	High-level Feature Place Recognition
	Introduction
	Outline

	Background
	Visual feature matching
	Visual-based navigation

	High-level feature matching
	System Overview
	Salient Patch Proposal
	Single Image Patch Proposal

	Patch Pooling in Neighboring Image Set
	SVM Classifier for Patch Features

	Image Feature Matching with Geometry Model Selection

	Multi-session SLAM Graph Merging for Long-term Hull Inspection
	Particle Filtering
	Particle Weighting Using Visual Matching

	Experimental Results and Discussion
	Experimental Setting
	Image Matching using High-level Feature
	Comparing to Standard Place Recognition Methods
	Self-comparison for System Component Analysis

	Relocalization using Particle Filtering

	Conclusion

	Imaging Sonar Feature Learning
	Introduction
	Outline

	Background
	Visual Place Recognition
	Imaging Sonar

	Methodology
	Network Architecture
	Non-Saliency Score

	Dataset and Training
	Label Generation
	Dataset Composition
	Training and Validation

	Experiment and Discussion
	Naive Place Recognition
	Global Localization
	Real-world Multi-session SLAM Registration

	Conclusion

	Utilizing High-dimensional Features in Real-time Bayesian Filtering
	Introduction
	Outline

	Background
	Restriction on Observations Used in Bayesian Filtering
	Uncertainty Measurement in CNN
	Data Perturbation

	Observation Pre-linearization
	Problem Statement for General Bayes filter
	Pre-linearization
	Uncertainty Measurement

	Real-time Sonar-based Underwater Localization Using CNN Learned Features
	Experiment on FLS Images
	Experiments on Other Modalities
	Conclusion and Future Work

	Forward-looking Sonar Pose-graph SLAM 
	Introduction
	Outline

	Background
	Methodology
	Sonar Frame Geometry
	FLS Structure from Motion
	Saliency Aware Loop-closure proposal
	Sonar Feature Matching Using Pose Constraint

	Experiment
	Conclusion

	Conclusion and Future Work
	Contributions
	Future Work

	Appendices
	Epipolar geometry and Fundamental matrix
	Support Vector Machines

