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Abstract— This paper reports on a method to perform
robust visual relocalization between temporally separated sets
of underwater images gathered by a robot. The place recog-
nition and relocalization problem is more challenging in the
underwater environment mainly due to three factors: 1) changes
in illumination; 2) long-term changes in the visual appearance
of features because of phenomena like biofouling on man-made
structures and growth or movement in natural features; and
3) low density of visually salient features for image matching.
To address these challenges, a patch-based feature matching
approach is proposed, which uses image segmentation and local
intensity contrast to locate salient patches and HOG descrip-
tion to make correspondences between patches. Compared to
traditional point-based features that are sensitive to dramatic
appearance changes underwater, patch-based features are able
to encode higher level information such as shape or structure
which tends to persist across years in underwater environments.
The algorithm is evaluated on real data, from multiple years,
collected by a Hovering Autonomous Underwater Vehicle for
ship hull inspection. Results in relocalization performance
across missions from different years are compared to other
traditional methods.

I. INTRODUCTION

Recognizing a place that has been previously viewed is an

important challenge in both robotic navigation and computer

vision. It is a prerequisite for visual-based navigation sys-

tems, and also important for long-term robot operation using

perception. Several robust approaches have been proposed in

the last decade for place recognition in the terrestrial domain.

However, place recognition in the underwater environment

is a more challenging problem. Dramatic changes in scene

appearance occur due to viewpoint dependent illumination

(underwater robots often carry their own light source) or

biofouling, both of which can cause poor performance when

executing point-based feature matching. The low density

of salient visual features is another factor that also makes

underwater image matching hard.

In this work, we address the problem of underwater

visual place recognition across years using high-level feature

matching Fig. 1(b). The proposed solution has applications

for temporally periodic ship hull inspection and long term

monitoring of benthic marine habitats.
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(a) Using standard point-based features, we are not able to make
a valid match between two corresponding images collected from
different years

(b) Using the proposed method, we are able to match two correspond-
ing images collected from different years

Fig. 1. Depiction of the proposed high-level feature matching method with
real data. The two corresponding images are collected from the years 2013
and 2014. Obvious texture-fading can be seen, which limits the performance
of point-based features. The proposed method, on the other hand, is able to
select a salient patch that contains high-level information that tends to last
longer, resulting in higher robustness against appearance change.

To deal with challenges in the underwater environment,

we propose to match images using high-level features that

persist longer when compared to small feature points. Some

examples from the tested data include ship identification

numbers, portholes, and other man-made structures. Addi-

tionally, since individual image matching is unreliable due to

insufficient features, neighboring images are also considered

in the proposed method to provide more visual evidence for

a robust place recognition. The main contributions of this

work include:

• A visually-salient patch-based feature proposal method,

that enables us to localize the salient regions in under-

water images;

• A patch-feature description that is robust to dramatic

changes in appearance;

• A robust outlier rejection for patch matching using a

geometric constraint.

While the approach can be generalized to many different

applications, in this paper we focus on the relocalization task

of underwater ship hull inspection across years.

The paper is laid out as follows: Section II gives a brief



introduction about related works in visual-based navigation

and visual feature matching; In Section III presents the key

steps in the algorithm of high-level feature matching; and

In Section IV, we evaluate the approach through the use

of ship hull inspection data and compare the approach with

some state-of-art algorithms and finally, Section V concludes

with a summary and future work discussion.

II. BACKGROUND

Many mobile robotic navigation systems are formulated as

a Simultaneous Localization and Mapping (SLAM) problem,

in which a robot is tasked with navigating through a prior

unknown environment using a combination of odometry and

perceptual sensors. Refer to [1], [2] for a comprehensive

survey of solutions to the SLAM problem. Cameras have

commonly been used as the primary sensor modality for mo-

bile robots and the ability for visual place recognition has im-

proved dramatically in recent years. Representative works in

visual-based place recognition include the Fast Appearance-

based Mapping algorithm (FAB-MAP) [3], MonoSLAM [4],

and FrameSLAM [5]. These benchmark systems focus on

searching for a location with the largest probability given

matching results from standard point-based features.

More recently, some representative works that focus on

dramatic scene changes within the place recognition problem

have been developed. SeqSLAM [6], proposed by Milford

et al., estimates the topological location of the vehicle by

matching two segments of the robot’s trajectory instead of

matching two individual images. The robustness of the sys-

tem is improved when neighboring images are involved in the

final matching results. A strict assumption is made that the

two matching segments share the same trajectory route. This

assumption holds for ground robots like autonomous cars,

which drive on the road, however, for underwater robots,

it is almost impossible for two individual segments of the

path to share the same trajectory, since the vehicle can move

freely in space. Naseer et al. [7] proposed a framework that

builds upon SeqSLAM by using Flow Network techniques to

relax the overlapping route assumption and allow for partial

matching. Additionally, they also proposed to use grid HOG

(Histogram of Oriented Gradient) as the descriptor of an im-

age, and match two images based upon the dot product of two

HOG vectors. Though the HOG representation dramatically

improves the performance of image matching in a dataset

taken over multiple seasons, the orientation of the vehicle

relative to the scene is almost static for an autonomous car.

McManus and his colleagues [8] also explored the possibility

of matching through high level features, which is similar to

our method. They proposed to train Support Vector Machine

(SVM) classifiers of signature HOG patch features for a

set of neighboring images using an unsupervised method.

However, the restriction of requiring small or no pose change

relative to the scene limits their approach. Their unsupervised

signature patch searching depends on the fact that the image

is feature-rich. Neither of these two basic assumptions hold

in the underwater environment.

Some effort has gone into addressing the image regis-

tration problem for underwater images. Eustice et al. [9]

proposed to use pose-constraints from a SLAM graph to pre-

constrain the searching area of point-based feature matching

within one SLAM graph. Their work was extended in [10]

by Carlevaris-Bianco and Eustice to search over a set of

neighboring images to provide a larger field of view and

more visual features. Both works assume that a pose prior

is available to provide a constraint in feature matching;

however, no such prior exists when attempting to register two

independently navigated missions. Ozog and Eustice [11]

proposed a registration between different SLAM graphs that

selects candidate images for visual matching. It does this

by comparing the image poses with respect to the ship hull

using planar features estimated from Doppler Velocity Log

(DVL) data. Most of the above work is based on point-based

features that are not robust in the case of dramatic appearance

change.

III. APPROACH

A. System Overview

An outline of the proposed image matching method with

high-level features is shown in Fig. 2. Given a current image

in the SLAM graph of a new mission, the goal of our system

is to find the image taken at the nearest location from a set

of images collected in previous missions. Given a current

image, a set of neighboring images are collected and salient

patch features are proposed. For each patch, a binary SVM

classifier is trained to detect similar patches in the dataset.

Finally, all possible matching features are fed into a geometry

verification method to reject outliers and achieve a robust

matching result.

B. Salient Patch Proposal

As shown in Fig. 1, most images in the underwater envi-

ronment, especially those involved in ship hull inspection, are

of low feature density. To address this problem, we propose

the use of segmentation techniques to select visually salient

regions for feature matching, and make use of neighboring

image sets to provide more visual evidence to achieve a

robust matching result.

Single Image Patch Proposal: Based on human perception

principles, two main characteristics are shared by visually

salient regions: i) obvious and complete boundaries; and

ii) unique color compared to the surrounding area. These

principles are widely used in most state-of-the-art salient

object extraction algorithms such as [12] [13].

Based upon these characteristics, a salient patch selection

algorithm is proposed as outlined in Algorithm 1. First, a

graph-based segmentation method [14] is used to decompose

the image into a set of components with strong boundaries

between each other. The approach makes use of a graph-

based representation of an image: G = (V,E), where

each pixel is a vertex, and each vertex is connected to

its 8-neighbors. The edges are undirected and come with

a weight according to pixel intensity similarity w(e). The



Fig. 2. Flowchart of our high-level feature image matching approach. First, a neighboring image set is gathered for a current image. Then a set of patch
features are detected and described with a set of SVM classifiers based on HOG features. Finally, patch feature matching is carried out on the dataset
followed by a geometric validation method to reject outliers.

Algorithm 1 Salient Patch Proposal

Initialization: a graph of the image G = (V,E); Initial

segments S0 = (C0
1 , ..., C

0
N ). Int(C0

i ) = ∞.

return Final segments S∗ = (C1, ..., Cr)

1: Sort E into E = (e1, ..., eM ) by non-decreasing edge

weight.

2: for i = 1 to M do

3: Si = Si−1

4: Consider ei = (vj , vk) with weight w(ei), vj ∈
Ci

vj
, vk ∈ Ci

vk

5: if Ci
vj
! = Ci

vk
andw(ei) < MInt(Ci

vj
, Ci

vk
) then

6: merge Ci
vj

and Ci
vk

7: end if

8: end for

9: S∗ = SM

10: for i = 1 to |S∗| do

11: Sal(C∗

i ) = ΣBj∈B |Mean(C∗

i )−Mean(Bj/C
∗

i )|)
12: if Sal(C∗

i ) < β then

13: remove C∗

i

14: end if

15: end for

segmentation is initialized as a set of single pixel compo-

nents S0 = (Ci, ..., CN ). Then, neighboring components are

merged by comparing the minimum weight connecting them

and a measure of internal consistency, which is defined as:

Int(Ci) = max
e∈MST(Ci,E)

w(e)

MST(Ci, E) is the minimum span tree of Ci constructed

upon the edge set E. A minimum internal difference is

also defined between neighboring components as a merging

threshold.

MInt(C1, C2) = min (Int(C1) + τ(C1), Int(C2) + τ(C2))

The threshold function τ(C) controls the tolerance level,

which is a function of component size. τ(Ci) = k/|Ci|,
where k is a manually selected parameter. For a smaller

component, merging is encouraged, while for larger com-

ponents it becomes more difficult. The threshold function

also ensures that a larger weight is needed to indicate the

existence of a true boundary.

After the segmentation stage, a saliency evaluation is car-

ried out on each component, resulting in candidate patches.

The saliency score is based on local contrast and is defined

as:

Sal(Cj) = ΣBi∈B |Mean(Cj)−Mean(Bi/Cj)|

where Mean(Cj) is the mean pixel value in component

Cj , and B is a set of bounding boxes containing Cj in

different scales. Mean(Bi/Cj) refers to the mean value of

pixels in Bi not belonging to Cj . Under this definition, a

component is compared to its surrounding area at different

scales to determine its contrast level. A similar saliency

score is defined in some recent salient region/object detection

algorithms [15], [16], [17]. The patches are dropped if the

saliency score is lower than a manually set threshold β.

Patch Pooling in Neighboring Image Set: Given a current

image I , a set of neighboring images R, including I , is

considered. Salient patch proposal is performed on each

image in R. All of the proposed patches are included in

a patch pool P and considered in the next stage. As shown

in Fig. 3(d), the neighboring image helps to propose more

combinations of patches. For this step, SIFT matching is used

since the neighboring images are collected during the same

mission.

C. SVM Classifier for Patch Features

Given the location and scale of a salient patch, a de-

scription of the patch and a distance metric is used for

patch feature matching. A binary classifier is trained to

discriminate matches.

As shown in Fig. 4, HOG features [18] are used to provide

a description for the patch, capturing the outline and shape

information of a patch, and a linear SVM classifier is trained

to detect corresponding patches in a current image. The

whole procedure can be summarized in the following steps:

1) For each patch feature Pi, search for corresponding

patches in the neighboring images using the propagation

method mentioned in §III-B. Extract HOG features for



(a) (b) (c) (d) (e)

Fig. 3. The intermediate steps in salient patch proposal where a pool of candidate patches are extracted. (a) Original current image. (b) Segmentation
results of the current image. (c) Patch proposal of single current image without saliency judgment. (d) Patch pool from all neighboring images projected
onto current image frame. (e) Selected salient patches after saliency judgment. Random colors are assigned to every bounding box. Similar colors are not
indicative of correspondences between (c) and (d).

Fig. 4. Training samples are generated in current image and the neighbor-
ing images. Red: positive samples; Green: positive samples generated by
shifting; Blue: negative samples

Fig. 5. HOG Structure: A patch is divided into a set of blocks by a sliding
window. a block is divided by 4 cells. Within each cell, a 9-bin histogram of
oriented gradient is accumulated. The block feature is a vector of 4 9-bins
histograms. The HOG feature is a vector of all the block features.

all these corresponding patches as positive samples for

SVM training.

2) In every neighboring image, generate motion compen-

sated positive samples by slightly shifting the corre-

sponding patches, as shown in the green boxes in Fig. 4.

3) In every neighboring image, randomly sample N
patches that are off the location of positive patches and

treat them as negative samples, as shown in the blue

boxes in Fig. 4.

4) Train an SVM for the patch feature given all positive

and negative samples. Discard the patch features whose

samples cannot be separated successfully by linear

SVM, which means they are not salient enough to be

distinguished from other neighboring patches.

The downside of the SVM classifier are the false alarms

that occur due to insufficient training samples, as shown in

Fig. 6(a) and Fig. 6(b). A method addressing this problem

is described in the following section.

D. Geometry Verification

In order to reject false positive SVM matches and achieve

a more reliable result, a geometric constraint is used to

perform hypothesis testing.

The fundamental matrix F in epipolar geometry [19] is

widely used for point-based feature matching and structure

estimation in two-view or multi-view systems. It defines a

relationship: xT
1 Fx2 = 0 where x1, x2 are homogeneous

coordinates of corresponding image points. F is defined up to

scale with one free dimension, so at least 8 pairs of points are

needed for estimating F using the standard linear algorithm.

However, 8 pairs of patch correspondences are hard to satisfy

given the low density of features in underwater images. To

deal with this problem, the different parts of the structure of

HOG features are used to propose hypothetical fundamental

matrices F and perform validation to find the best F matrix

as well as the inliers in patch matching.

The calculated HOG feature is shown in Fig. 5. The HOG

feature is constructed from a set of sub-regions (blocks) in

a larger bounding box. Each block in the bounding box

contains four cells. A 9-dimension gradient histogram will be

extracted for each cell. The block itself is a more localized

feature describing a small area relative to the whole HOG

feature. By matching block features between two matched

patches, a fundamental matrix can be estimated. A hypothesis

test is performed as follows:

1) For each patch feature pi with a positive SVM response

(classification) {qij}, block feature matching is done for

every patch pair < qij , pi >.

2) For pi, the best SVM response (the response with largest

distance to the boundary) < qij∗ , pi > is used to

estimate a fundamental matrix Fi.

3) Each Fi is tested on other patch features pi′ , i
′ 6= i. A

score is accumulated:

G(Fi) = Σi′max
j

(number of inlier in < qi′j , pi′ >)

the best response patch in the current image is selected

to generate a fundamental matrix hypothesis Fi.

4) F ∗ = argmaxi G(Fi) is selected to be the optimal

geometry model between the two images given the

feature matching results, and all matching pairs that

satisfy F ∗ are selected as inliers.

The final matching confidence score of the current and



(a) (b)

(c) (d)

Fig. 6. This figure illustrates how the fundamental matrix is estimated and tested for multiple positive responses returned by SVM classifiers. (a) Left:
Patch 1. Right: SVM positive responses. (b) Left: Patch 2. Right: SVM positive responses. (c) Fundamental candidate F is estimated by the best match of
Patch 1. (d) The candidate fundamental matrix estimated from Patch 1 is tested on Patch 2 by searching for the best response of Patch 2 that satisfy F .

matched image is given by:

M(Iin, Ire) =
Σj∈MP (Sal(pj)λj)

ΣiSal(pi)

where MP is the set of patches that have inlier match pairs,

and λj refers to the ratio of inlier block matches within the

HOG pair.

As shown in Fig. 6, the geometric constraint is able to

improve the system by filtering out false alarms in the SVM

response. A verification of the effectiveness of the geometry

constraint is provided in the experimental results section by

comparing performance of the system with and without it.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

To evaluate the robustness of the proposed place recog-

nition approach, a set of experiments and analysis were

performed using a multi-year underwater ship hull inspection

dataset. We first introduce the data and ground truth used

in the experiments in §IV-A. Experimental results with

accuracy analysis compared to other state-of-art algorithms

are given in §IV-B. Detailed analysis of the performance

of the intermediate steps of the framework are discussed in

§IV-B.

A. Experimental Setting

Experiments are performed on data collected by a Hov-

ering Autonomous Underwater Vehicle (HAUV) over three

years (2011, 2013, 2014) on the SS Curtiss [20], [11].

External ground truth for underwater data is extremely chal-

lenging to gather, so we elected to use hand-labeled data for

place recognition ground-truth. Seven places, which included

358 images, were manually labeled from the dataset, where

correspondences could be identified by a human. We used the

data from the year 2013 (118 images) as the query dataset,

and the data from the years 2011 and 2014 (240 in total) for

matching (what we will refer to as the set of current images).

(a) SS Curtiss

(b) Ship hull inspection using HAUV

Fig. 7. Images depicting the ship used in the experiments and the ship
hull inspection process. The image of depicts a robots trajectory over the
hull when performing an inspection.

One hundred unlabeled images from the mission data in 2013

were randomly sampled (images in unknown places) to be

included as noise images to ensure the matching is robust

enough to distinguish true matches from non-salient noise.

Some examples of correspondences in the manually labeled

dataset are shown in Fig. 8. It can be seen that the dataset

is quite challenging due to decay and biofouling.

B. Experimental Results

Comparing to standard place recognition methods: Per-

formance is compared between the proposed algorithms

and two representative point-feature based place recogni-

tion methods. SIFT feature matching with random sample

consensus (RANSAC) for geometric constraint estimation



Fig. 8. Examples of manually labeled corresponding images from 7 places on the SS Curtiss across different years. The images in the first row come from
the dataset we are searching in. The images in the second row are current images. It can be seen that the data is quite challenging, due to the dramatic
decay of patterns and changing light conditions.

and outliers rejection is included as a standard approach for

image matching. A Bag-of-words (BoW) model on SIFT is

also compared in the experiment. BoW trains a vocabulary

of SIFT features from the query dataset and describes images

by the BoW vocabulary. The matching is done based on the

image description.

The confusion matrix of matching results for different

places is shown in Fig. 11. The proposed method is able

to provide reasonable matching results in such a challenging

dataset, while the other two standard methods under perform.

This result is expected since point-based features are often

unable to generate any meaningful correspondences between

images with dramatic appearance changes, however, these

results can be improved. To better illustrate the experiment

results, examples of true matches and false matches are

shown in Fig. 12 and Fig. 9. For some places, the proposed

method is able to provide almost 80% accuracy given the

dramatic appearance changes. In some cases, the decay is

too strong for our image segmentation approach to extract a

meaningful patch, and the proposed method fails to provide a

robust match. For some other cases, when several redundant

patches are detected, the system is not able to properly

determine which ones are of greater importance within one

image. This indicates that a frame-related patch importance

weight should be developed to improve the robustness of our

approach.

Some matching examples of the proposed method used

in above-water images are also provided in Fig. 10 to show

that the approach is able to be generalized to non-underwater

images. The average matching time for one pair of images

is 2.6 seconds on a 2.8GHz CPU. Parallelization should be

done in future work to improve the efficiency.

System component analysis: To get a better idea of

how the proposed approach is able to make reasonable

correspondences between images across different years, we

also analyzed the performance with and without certain

components of the framework. The results are shown in

Fig. 13.

We replaced the SVM classifier of HOG descriptors

with Normalized Cross Correlation (NCC) in searching for

matched patches. The result is displayed in Fig. 13(a). Com-

paring that to the original proposed method (Fig. 11), it can

(a) false negative: Although the structure of the round areas are matched,
it’s considered weak evidence

(b) false positive: many small areas are matched, and the system deter-
mines it’s strong evidence.

Fig. 9. Example of false positive and false negative matches using the
proposed system.

Fig. 10. Examples of image matching using the proposed method in a
different domain, above water images.
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(c) Bag-of-Words

Fig. 11. Results from our proposed technique and from point-based approaches from the literature, presented as confusion matrices where the rows and
columns refer to places or clusters of co-located images of which samples are shown in Fig. 8. Note the last column has no matched row as it refers to
non-labeled random images introduced to the dataset to make matching more challenging/realistic. The red font indicates the accuracy rate of matching
result for each place, while the rest of the row indicates how the false matching is distributed in the query dataset.

Fig. 12. Examples of successfully matched pairs. The system is able to make valid correspondences between images with dramatic appearance changes.

be seen that SVM with HOG features has greater robustness

with respect to providing valid matches, compared to NCC.

The main reason is that HOG features have a relatively

higher tolerance to small rotation and appearance changes

than the image patch intensity comparison. In the case when

appearance changes caused by corrosion or so is not obvious,

the NCC method tends to perform similar to SVM, such as

place 4 in the dataset Fig. 8.

The contribution of geometric validation on false positive

rejection is also demonstrated by the comparison experiment

with and without it, as shown in Fig. 11 and Fig. 13(b),

respectively. It can be seen that the geometric constraint im-

proves the system’s robustness significantly by rejecting false

positive responses returned by the SVM classifiers. Without

the geometric constraint, matches tend to happen between

two images with several salient regions, in which case many

false positive matches are returned and are included in the

final matching score.

The use of neighboring image sets in providing more

visual evidence in patch matching is also illustrated in

Fig. 13(c), in which no neighboring images are considered.

The proposed method supports the use of a default maximum

number of neighboring images (N = 4), which improves the

final performance of the proposed method.
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(a) NCC instead of SVM on HOG
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(b) Without geometry validation
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(c) Without neighboring image information

Fig. 13. System component analysis. Identification of the contribution of each system component by comparison experiment without certain components
or with those components replaced by other simpler alternatives. Results are presented as confusion matrices where rows and columns refer to places or
clusters of co-located images of which samples are shown in Fig. 8. Note the last column has no matched row as it refers to non-labeled random images
introduced to the dataset to make matching more challenging/realistic.

V. CONCLUSION AND FUTURE WORK

In this work, a high-level visual feature image matching

approach is presented to address the challenge of underwa-

ter image matching under dramatic appearance changes. A

salient region identification method is proposed to locate

visually salient regions and find high level features. SVM

classifiers based on HOG features are used for feature de-

scription and matching. Geometric constraints are employed

to reject false positive matches provided by SVM. The

approach is evaluated on real data collected in multi-year ship

hull inspection missions and the performance is compared

with other standard place recognition methods. The proposed

method strongly outperforms traditional point-based feature

matching techniques.

To further improve and generalize the proposed place

recognition system, several future directions should be con-

sidered: 1) a more thorough system analysis by replacing

different system components with other alternatives, such as

different segmentation methods (mean-shift, etc); 2) more

experiments on datasets from other applications; 3) oriented

patch descriptor to increase robustness to viewpoint variation.

Furthermore, given the capability to robustly register multi-

year datasets, updating the patch classifiers to include the

information from different years could increase the stability

of the system.
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