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Abstract— This paper reports a novel mutual information
(MI) based algorithm for automatic registration of unstructured
3D point clouds comprised of co-registered 3D lidar and camera
imagery. The proposed method provides a robust and principled
framework for fusing the complementary information obtained
from these two different sensing modalities. High-dimensional
features are extracted from a training set of textured point
clouds (scans) and hierarchical k-means clustering is used to
quantize these features into a set of codewords. Using this
codebook, any new scan can be represented as a collection
of codewords. Under the correct rigid-body transformation
aligning two overlapping scans, the MI between the codewords
present in the scans is maximized. We apply a James-Stein-type
shrinkage estimator to estimate the true MI from the marginal
and joint histograms of the codewords extracted from the scans.
Experimental results using scans obtained by a vehicle equipped
with a 3D laser scanner and an omnidirectional camera are
used to validate the robustness of the proposed algorithm over a
wide range of initial conditions. We also show that the proposed
method works well with 3D data alone.

I. INTRODUCTION

A fundamental requirement of mobile robots is to sense
and understand the environment around them. Two important
categories of perception sensors typically used are: (i) range
sensors (e.g., 3D/2D lidars, radars, sonars) and (ii) cameras
(e.g., perspective, stereo, omnidirectional). To create realistic
3D maps from these sensors requires precisely aligning
camera data onto range information and vice versa. To
accomplish this task, camera and range sensors must be ex-
trinsically calibrated [1]–[3], which allows for the association
of the two modalities intra-scan; however, creating full 3D
models of a large environment requires the automatic inter-
scan alignment of hundreds or thousands of scans.

One of the most common methods of scan alignment
is iterative closest point (ICP) and was first introduced by
Besl and McKay [4]. In their work, they proposed a method
to minimize the Euclidean distance between corresponding
points to obtain the relative transformation between two
scans. Chen and Medioni [5] further introduced the point-
to-plane variant of ICP owing to the fact that most of the
range measurements are typically sampled from a locally
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Fig. 1. The proposed scan registration method learns a codebook of the
high-dimensional features extracted from the scans. Using this codebook
the empirical histograms of codewords present in the scans are computed
for a given rigid-body transformation. The MI is optimally estimated from
them using a James-Stein-type shrinkage estimator. This MI is maximized
at the optimal transformation parameters that aligns the two scans.

planar surface. Similarly, Alshawa [6] introduced a line-
based matching variant called iterative closest line (ICL).
In ICL, the line features are extracted from the range scans
and aligned to obtain the rigid-body transformation. Several
other variants of the ICP algorithm have also been proposed
and can be found in the survey paper by Rusinkiewicz and
Levoy [7].

One of the main reasons for the popularity of ICP-based
methods is that it solely depends on the 3D points and
does not require extraction of complex geometric primitives.
Moreover, the speed of the algorithm is greatly boosted when
it is implemented with kd-trees for establishing point corre-
spondences. However, most of the deterministic algorithms
discussed so far do not account for the fact that in real-
world datasets, when the scans are coming from two different
time instances, we never achieve exact point correspondence.
Moreover, scans are generally only partially overlapped—
making it hard to establish point correspondences by apply-
ing a threshold on the point-to-point distance.

Recently, several probabilistic techniques have been pro-
posed that model the real-world data better than the deter-
ministic methods. Biber et al. [8] apply a probabilistic model
by assuming that the second scan is generated from the first
through a random process. Haehnel and Burgard [9] apply
ray-tracing techniques to maximize the probability of align-
ment. Biber [10] also introduced an alternate representation
of range scans, the normal distribution transform (NDT),
where he subdivides a 2D plane into cells and assigns a
normal distribution to each cell to model the distribution of
points in that cell. This density is used to match scans and,
therefore, no explicit point correspondence is required. Segal



et al. [11] proposed to combine the iterative closest point
and point-to-plane ICP algorithms into a single probabilistic
framework called generalized ICP (GICP). They devised a
generalized framework that naturally converges to point-
to-point or point-to-plane ICP by appropriately defining
the sample covariance matrices associated with each point.
Their method exploits the locally planar structure of both
participating scans as opposed to just a single scan as in
the case of point-to-plane ICP. They have shown promising
results with full 3D scans acquired from a Velodyne laser
scanner.

Most of the ICP algorithms described above are based
on 3D point clouds alone and very few incorporate visual
information into the ICP framework. Johnson and Kang [12]
proposed a simple approach to incorporating color informa-
tion into the ICP framework by augmenting the three color
channels to the 3D coordinates of the point cloud. Akca et al.
[13] proposed a novel method of using intensity information
for scan matching. They proposed the concept of a quasi-
surface, which is generated by scaling the normal at a given
3D point by its color, and then matching the geometrical sur-
face and the quasi-surfaces in a combined estimation model.
This approach works well when the environment is structured
and the normals are well defined. Pandey et al. [14] proposed
an algorithm for bootstrapping the ICP algorithm using
camera data. They exploit the co-registration of the 3D
point cloud with the available camera imagery to associate
high-dimensional feature descriptors such as scale invariant
feature transform (SIFT) [15] or speeded up robust features
(SURF) [16] to the 3D points. They first establish putative
point correspondence in the high-dimensional feature space
and then use these correspondences in a random sample
consensus (RANSAC) framework to obtain an initial rigid-
body transformation that aligns the two scans. This initial
transformation is then refined in a GICP [11] framework.

All of the aforementioned methods either use the point
cloud data alone or use the data from the two modalities
(camera/lidar) in a decoupled way, without exploiting the
statistical dependence of the multi-modal data. It is important
to note that the camera image and the lidar point cloud are
statistically dependent on each other; because, the underlying
structure generating the two signals (3D point cloud / image)
is the same. It is not new to fuse multi-modal data by exploit-
ing their statistical dependence. In fact, registration of multi-
modal data by maximizing the mutual information (MI) has
been state-of-the-art in the medical imaging community for
over a decade. The idea of MI-based multi-modal image
registration was first introduced by Viola et al. [17] and Maes
et al. [18]. Since then, researchers (especially in medical
imaging) have widely used the MI framework to focus on
specific registration problems in various clinical applications
[19]. Within the robotics community, the application of
MI has not been as widespread, even though robots today
are often equipped with different modality sensors (e.g.,
camera/lidar). Here, we present a novel MI-based algorithm
for automatic registration of unstructured 3D point clouds
collected using co-registered 3D lidar and camera imagery

Fig. 2. Test vehicle (left). The 3D laser scanner and omnidirectional camera
system mounted on the roof of the vehicle (right).

Fig. 3. The top panel is a perspective view of the Velodyne 3D lidar range
data, color-coded by height above the ground plane. The bottom panel shows
the above ground plane range data projected into the corresponding image
from the Ladybug3 camera.

(Fig. 1). Our method provides a robust framework for in-
corporating complementary information obtained from these
modalities into the registration process.

The remainder of this paper proceeds as follows: In
Section II we describe the proposed method of automatic
registration of 3D scans. In Section III we present results
showing the robustness of the proposed method and present
a comparison of our method with generalized ICP. Finally,
in Section IV we summarize our findings.

II. METHODOLOGY

In our work we have used a Velodyne 3D laser scanner
and a Point Grey Ladybug3 omnidirectional camera system
mounted to the roof of a vehicle (Fig. 2). We assume that
the intrinsic and extrinsic calibration parameters for these
sensors are known. The calibration allows us to project
3D points from lidar onto the corresponding image (and
vice versa) as depicted in Fig. 3. This co-registration allows
us to extract high-dimensional feature descriptors from the
image (SIFT [15], SURF [16], etc.) and associate them
to a corresponding 3D lidar point that projects onto that
pixel location. Moreover, we can also extract 3D features
(fast point feature histogram (FPFH) [20], rotation invariant
feature transform (RIFT) [21], spin-images [22], etc.) from
the point cloud. We combine these features to form a robust
high-dimensional feature vector, which can be calculated at
some keypoints of the scan. This allows us to represent a scan
as a collection of high-dimensional feature vectors. Thus,
for any two overlapping scans the joint distribution of these
features should show maximum correlation when viewed



(a) Sample images from training dataset (ford campus)

(b) Sample images from testing dataset (downtown)

Fig. 4. The codebook and target distribution are learned from the training
dataset, and all experiments are performed on the testing dataset. It should
be noted that the training and testing datasets are captured in similar outdoor
urban environments, though not the same. It is important for the codebook
to be representative, but the testing and training environments need not be
identical.

under the correct rigid-body transformation. Here, we use
concepts from statistics and information theory to formulate
a MI-based cost function to solve the scan registration
problem. An overview of the proposed method is shown in
Fig. 1.

A. Theory

The mutual information between two random variables X
and Y is a measure of their statistical dependence. Various
formulations of MI are present in the literature, each of
which demonstrate a measure of statistical dependence of
the random variables in consideration. One such form of MI
is defined in terms of entropy of the random variables:

MI(X,Y ) = H(X) + H(Y )−H(X,Y ), (1)

where H(X) and H(Y ) are the entropies of random variables
X and Y, respectively, and H(X,Y ) is the joint entropy of
the two random variables.

H(X) = −
∑
x∈X

pX(x) log pX(x) (2)

H(Y ) = −
∑
y∈Y

pY (y) log pY (y) (3)

H(X,Y ) = −
∑
x∈X

∑
y∈Y

pXY (x, y) log pXY (x, y) (4)

The entropy H(X) of a random variable X denotes the
amount of uncertainty in X , whereas H(X,Y ) is the amount
of uncertainty when the random variables X and Y are co-
observed. Hence, (1) shows that MI(X,Y ) is the reduction
in the amount of uncertainty of the random variable X
when we have some knowledge about random variable Y.
In other words, MI(X,Y ) is the amount of information that
Y contains about X and vice versa.

B. Mathematical Formulation

We first create a dictionary of codewords representing the
quantization of the high-dimensional features extracted in

Fig. 5. Illustration of the nearest neighbour search algorithm used to
establish codeword correspondence; each shape above represents a different
codeword—green colorings belong to scan Q and red to scan P. The
codeword cqi that gives the maximum similarity score with cpi is chosen
as the correspondence.

the scans. We extract N such features (training samples)
from a set of scans called the training dataset (Fig. 4). We
use a hierarchical k-means clustering [23] algorithm on the
training samples to cluster the feature space into K clusters.
The centroids of these clusters are defined as codewords
{ci; i = 1, 2, · · · ,K} and the collection of these codewords
is called the codebook. We use this codebook to map any
feature vector to a unique integer i corresponding to the
codeword ci that gives a maximum similarity score with the
feature vector.

We consider the collection of these codewords present in
a scan as the random variables X and Y. The marginal
and joint probabilities of these random variables, pX(x),
pY (y) and pXY (x, y), can be obtained from the normalized
marginal and joint histograms of the codewords present in
the scans that we want to align. Let P and Q be the two
scans that we want to align. Let CP = {cpi ; i = 1, · · · , n}
and CQ = {cqi ; i = 1, · · · ,m} be the set of codewords,
and {pi; i = 1, · · · , n} and {qi; i = 1, · · · ,m} be the
set of 3D points corresponding to the codewords present in
scans P and Q, respectively. If the rigid-body transformation
that perfectly aligns these scans is given by [R, t], then the
coordinate transformation of any point in scan P onto the
reference frame of scan Q is given by:

q̂i = Rpi + t. (5)

For a correct rigid-body transformation, the codeword cpi
of point pi should be the same as the codeword cqi of the
corresponding point q̂i. Thus, for a given rigid-body trans-
formation, the corresponding codewords cpi and cqi are the
observations of the random variables X and Y, respectively.

We use nearest neighbor search to establish the codeword
correspondence (Fig. 5). A codeword cpi in scan P is first
transformed to the reference frame of Q. All the codewords
in scan Q that are within a sphere of radius r around cpi
are considered as potential correspondences. The codeword
cqi that gives the maximum similarity score with cpi is
chosen as the correspondence. In the case where we have
multiple codeword assignment within the sphere, then the
codeword that is closest in Euclidean space to cpi takes
precedence. We use this correspondence to create the joint
histogram of codewords for the given transformation. The
maximum likelihood estimate (MLE) of the marginal and
joint probabilities of the random variables X and Y can be
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Fig. 6. A non-uniform target distribution estimated from the training
dataset. The feature descriptors chosen here are a combination of FPFH
and SURF extracted from the co-registered lidar and camera data. The size
of the codebook is 200.

obtained from the normalized marginal and joint histograms
of these codewords.

It is important to note that the number of codewords
extracted from a scan (i.e., n or m) is typically much less
than the dimensions of the joint histogram (i.e., K × K).
Moreover, the number of different codewords present in any
scan is generally only a fraction of the size of codebook.
This causes most of the entries of the joint and marginal
histograms to be unobserved, leading to high mean-squared-
error (MSE) in the MLE due to overfitting. Therefore, we
apply a James-Stein (JS) shrinkage approach to improve
the MSE of the maximum likelihood (ML) estimator. This
method was proposed by Hausser and Strimmer in [24] for
entropy and MI estimation, and is based on shrinking the ML
estimator of the distribution of a random variable Z toward
a target distribution T = [T1,T2, · · · ,TK ]:

ẐJSk = λTk + (1− λ)ẐML
k , (6)

where Ẑk = pZ(z = k) and λ ∈ [0, 1] is a shrinkage
coefficient used to optimize the estimation of MI. The target
distribution here refers to the distribution of codewords
observed in an ideal case (i.e., when n � K × K). If all
the features extracted from a scan were equally likely, then
a uniform distribution becomes an obvious choice for the
target distribution. However, the occurrence of any feature
extracted from the scans is dependent upon the environment.
So, we learn the target distribution from the training dataset
along with the codebook. The target distribution is estimated
from the normalized histogram of codewords present in the
training dataset. A sample target distribution corresponding
to a particular codebook is shown in Fig. 6.

The shrinkage coefficient λ is calculated from the number
of codewords obtained from nearest neighbor search:

λ =
2

(1 + exp−c/σ)
− 1, (7)

where c is the number of corresponding codewords and σ is a
parameter proportional to the average number of codewords
present in a scan. Thus, λ takes on a value between 0 (no

(a) Standard MI without James-
Stein estimator

(b) Shrinkage optimized MI with
James-Stein estimator

Fig. 7. Top view of the MI cost-function surface versus the translation
parameters x and y aligning the two scans. The correct value of translation
is given by (0.02, 4.31). Light to dark represents increasing values of the
cost function.

correspondence / no shrinkage) and 1 (maximum correspon-
dence / full shrinkage).

Once we have a good estimate of the joint and marginal
probability distributions we can write the MI of the random
variables (X , Y ) as a function of the rigid-body transforma-
tion [R, t], thereby formulating a cost function:

Θ = argmax
Θ

MI(X,Y ;Θ), (8)

where Θ = [x, y, z, φ, θ, ψ]> is the six degree of freedom
(DOF) parametrization of the rigid-body transformation
[R, t].

The small number of codewords present in a scan make
the estimation of MI a challenging task. The shrinkage
approach described above provides a robust estimate of MI.
Fig. 7 shows a comparison between the standard MI and
the shrinkage optimized MI-based cost function. Clearly, the
proposed shrinkage optimized MI-based cost function shows
a global maxima at the desired rigid-body transformation. We
use the simplex method proposed by Nelder and Mead [25] to
estimate the optimum value of the registration parameter, Θ,
that maximizes the cost function given in (8). The complete
registration method is summarized in Algorithm 1.

III. EXPERIMENTS AND RESULTS

We present results from real data collected from a 3D laser
scanner (Velodyne HDL-64E) and an omnidirectional camera
system (Point Grey Ladybug3) mounted on the roof of a
Ford F-250 vehicle. We use the pose information available
from a high end inertial measurement unit (IMU) (Applanix
POS-LV 420 INS with Trimble GPS) as the ground-truth
to compare the scan alignment errors. The datasets used in
our experiments are available online [26] and are divided
into two distinct runs: (i) downtown and (ii) ford campus,
both taken in Dearborn, Michigan. We use the downtown
dataset for testing and the ford campus dataset for learning
the codebook and the target distribution. We performed
the following experiments to analyze the robustness of the
proposed algorithm.



Algorithm 1 Automatic registration of scans by maximiza-
tion of mutual information (MI)

1: Input: Co-registered camera and lidar scans P and Q.
Initial guess of the rigid-body transformation Θ0.

2: Output: Estimated registration parameter {Θ}.
3: Extract generalized feature vectors from scans P and Q.
4: Quantize the feature vectors using the pre-computed

codebook.
5: while convergence of Nelder-Mead simplex optimization

do
6: Calculate correspondence of codewords for the current

transformation Θk.
7: Calculate the marginal and joint histogram of the

corresponding codewords.
8: Calculate shrinkage coefficient λ (7).
9: Calculate James-Stein estimator of the marginal and

joint distributions (6).
10: Calculate the MI: MI(X,Y ;Θk).
11: Update Θk → Θk+1.
12: end while

A. Effect of using data from both modalities (camera/lidar)

In this experiment we demonstrate the effect of choice of
features on the robustness of the algorithm. We show that
incorporating features from both modalities (camera/lidar)
into the registration process improves the performance. We
tested our algorithm for the following features:

1) Reflectivity and Grayscale (refc+gray): We used ap-
proximately 20,000 uniformly sampled points from the
textured scan. The reflectivity obtained from the lidar
and the corresponding grayscale intensity obtained
from the camera are used as a two dimensional feature
descriptor.

2) 3D only (FPFH): Keypoints were detected using the
Harris (3D) keypoint detection algorithm available
in point cloud library (PCL) [27]. The number of
keypoints extracted from a point cloud were between
500–1000.

3) Image only (SURF): We used OpenCV’s implementa-
tion of SURF to extract image keypoints. We assigned
the corresponding SURF descriptor to all 3D points
that projected within 1-pixel of these keypoints. Only
a fraction of the 3D points were assigned these SURF
features (∼500–1000).

4) 3D and Image combined (FPFH+SURF): For all the
3D points that are associated to a SURF descriptor, we
calculate the FPFH and append it to the existing SURF
descriptor.

In this experiment we randomly selected 200 scan-pairs
from the downtown dataset spaced approximately 1–5 m
apart. We aligned these scan-pairs using the proposed algo-
rithm without any initial guess (i.e., initial guess was fixed
at [0, 0, 0, 0, 0, 0]>). In Fig. 8 we have plotted the translation
error in the output of the proposed algorithm for different
kinds of features used. We also compared the output of

refc+gray FPFH SURF FPFH+SURF GICP
0

5

10

15

20

E
rr

o
r 

(%
)

 

 

Generalized ICP seeded with
output from proposed method

Output with no initial guess

(a) Mean translational error

0 50 100 150 200 250
0

2

4

6

8

Trials

E
rr

o
r 

(m
)

 

 

refc+gray
FPFH
SURF
FPFH+SURF
GICP

(b) Translational error for each trial

Fig. 8. (a) The blue bars depict the mean registration error starting from
no initial guess. The error is calculated as the percentage of the distance
between the scans that are aligned (i.e., error =

‖t−t̂‖
‖t‖ × 100, where t

= true translation vector; t̂ = estimated translation vector; ‖ · ‖ = euclidean
norm). The green bars represent the mean error for the same set of scans
aligned using GICP seeded with the output obtained from the proposed
algorithm. The GICP algorithm alone does not converge in the absence
of a good initial guess (far right error bar). (b) Here we have plotted the
translation error (‖t− t̂‖) for each trial. The proposed algorithm works well
in all trials when we use high-dimensional features. In the case of simple
features (refc+gray), the algorithm often gets trapped in a local minima
similar to the GICP algorithm (see red circles and blue squares).

the proposed algorithm with the GICP algorithm that uses
the 3D point cloud alone. We found that for a poor initial
guess, the GICP algorithm fails to converge whereas the
proposed algorithm gives better convergence. As shown in
Fig. 8(a) the average error is reduced when we use high-
dimensional features instead of simple surface reflectivity
values. If we look at the error in each trial (Fig. 8(b)), then
we see that the algorithm converges (close to the optimum) in
all trials when high-dimensional features are used. However,
for simple features (refc+gray), the algorithm is often trapped
in a local minima similar to the GICP algorithm (see red
circle and blue squares in Fig. 8(b)). The average error in
the proposed algorithm can be further reduced by passing its
output as an initial guess to the GICP algorithm (the green
bars in Fig. 8(a)). Thus, the proposed method provides a
principled way to incorporate any kind of features into the
registration process that helps in reducing the registration
error.

B. Effect of vocabulary size

In this experiment we analyze the effect of vocabulary size
(i.e., the quantization levels of the codebook) on the proposed
algorithm. Since we are not trying to do any recognition, we
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Fig. 9. Mean error in translation is plotted as a function of distance
between the scans for different vocabulary sizes of two different features:
(a) refc+gray and (b) FPFH+SURF.

do not need very fine quantization (i.e., large codebook size),
and can use a coarse codebook. Moreover, the computation
time of our algorithm increases with the size of the codebook.
Therefore, we would like to keep the size of the codebook
as small as possible. With this experiment we try to identify
the optimum size of the codebook for a particular choice
of features. We learned the codebook of different sizes
(100, 250, · · · , 1000) for each particular feature set (e.g.,
refc+gray, FPFH+SURF). We randomly selected 150 scan-
pairs (1–3 m, 3–4 m and 4–6 m apart) from the downtown
dataset. We aligned these scan-pairs using the proposed algo-
rithm (no initial guess) with different codebooks to quantize
the features. In Fig. 9 we have plotted the mean translation
error for the different codebook sizes. As shown in Fig. 9
the average error increases with the distance between the
scans. Although, for simple features (refc+gray), plotted on
top panel of Fig. 9, the increase in error is much more than
high dimensional features. The effect of vocabulary size as
seen in Fig. 9 is dependent upon both features used to create
the codebook as well as the distance between the scans under
consideration. For example, we found that the optimum value
of codebook size for the combined 3D and image features
(i.e., FPFH+SURF) is 100 when the distance between the
scans is less than 4m, but for larger distances between the
scans a finer codebook (vocabulary size = 1000) gives better
results. Since the computation complexity of our algorithm
is directly proportional to the codebook size, we use smaller
codebook sizes as the gain in accuracy is not very large.

C. Comparison with generalized ICP

In this experiment we show that the proposed MI-based
cost function has a wider basin of convergence as opposed to
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(a) Error comparison between GICP and proposed method

(b) Registration result for GICP (c) Registration result for MI

Fig. 10. Error comparison between GICP and proposed method with
(FPFH+SURF) features. (a) Graph showing the error and standard deviation
in translation as the distance between scans P and Q is increased. (b)–
(c) Top view of the 3D scans aligned with the output of GICP and proposed
method for two scans that are approximately 6 m apart. Note that the GICP
algorithm fails to align the two scans after approximately 4 m whereas the
proposed method shows better convergence property and aligns scans that
are almost 10 m apart.

the state-of-the-art GICP algorithm [11]. Here, we selected
a series of 15 consecutive scans from the downtown dataset.
The average distance between the consecutive scans is ap-
proximately 0.5 m–1.0 m. In this experiment we fixed the
first scan to be the reference scan and then tried to align
the remaining scans (2–15) with the base scan using (i)
GICP, and (ii) our proposed method. The average error in
translational motion between the base scan and the remaining
scans obtained from these algorithms is plotted in Fig. 10,
computed over 90 trials. We found the plotted error trend
to be typical across all of our experiments—in general the
GICP algorithm alone would fail after approximately 4 m of
displacement when not fed an initial guess. The reason for
this becomes more clear by analyzing the cost function of the
two algorithms. In Fig. 11 we have plotted the cost function
of the proposed algorithm and the GICP algorithm for two
scans that are 4.5 m apart. Clearly, the proposed method
has a wider basin of attraction in both x and y direction.
The GICP based cost function (plotted in Fig. 11(b)) has
a narrow basin of attraction in the y direction but shows
better convergence along the x direction. This is mainly due
to the nature of the GICP cost which allows sliding along
planar surfaces. The ground plane and the planar structures
on both sides of the road (Fig. 11(d)) does not constrain
the translation along the y direction but it constrains the
motion in x direction. Unlike GICP cost the proposed method
does not suffers from planar structures and provides a wider
basin of attraction in all directions, thereby converging to the
correct solution even if the initial guess is extremely poor.
Whereas the GICP cost function shows better convexity near
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(d) Image corresponding to the scans for which the cost functions
are evaluated above.

Fig. 11. In (a) we have plotted cost as a function of translation along
y direction (i.e. the direction of motion of vehicle). In (b) and (c) we
have plotted the cost funtion for the same scans by varying both x and
y parameters of the rigid body transformation, while keeping the remaining
parameters to be fixed to the true value. The proposed method (c) has a wider
basin of attraction in both x and y direction, whereas the GICP based cost
function (b) has a narrow basin of attraction in the y direction. The basin
of attraction in the x direction (b) is better in this case mainly due to the
vertical buildings present on both sides (d).

the global maxima, but has a poor basin of convergence. This
means the GICP algorithm will converge faster if the initial
guess is close to the global maxima but will fail to converge
otherwise.

IV. CONCLUSION

This paper reported on a MI-based scan registration al-
gorithm that allows for the principled fusion of camera
and lidar modality information within a single optimization
framework. The widespread input flexibility of this algorithm
was demonstrated through the use of several different feature
sets ranging from very simple (reflectivity + grayscale) to
advanced (FPFH+SURF). The proposed algorithm demon-
strated good convergence performance and a wider capture
basin than state-of-the-art GICP, when implemented with
high-dimensional features. GICP, however, shows a more
peaked cost function and is able to obtain a lower final reg-
istration error when given a good initial guess. Future work
will examine how to improve the MI-based cost function so
that it shows a sharper response near the optima and thus
yields final registration errors comparable to GICP.
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