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Abstract— Real-world autonomous driving in city traffic
must cope with dynamic environments including other agents
with uncertain intentions. This poses a challenging decision-
making problem, e.g., deciding when to perform a passing
maneuver or how to safely merge into traffic. Previous work in
the literature has typically approached the problem using ad-
hoc solutions that do not consider the possible future states of
other agents, and thus have difficulty scaling to complex traffic
scenarios where the actions of participating agents are tightly
conditioned on one another. In this paper we present multipolicy
decision-making (MPDM), a decision-making algorithm that
exploits knowledge from the autonomous driving domain to
make decisions online for an autonomous vehicle navigating
in traffic. By assuming the controlled vehicle and other traffic
participants execute a policy from a set of plausible closed-
loop policies at every timestep, the algorithm selects the best
available policy for the controlled vehicle to execute. We
perform policy election using forward simulation of both the
controlled vehicle and other agents, efficiently sampling from
the high-likelihood outcomes of their interactions. We then score
the resulting outcomes using a user-defined cost function to
accommodate different driving preferences, and select the policy
with the highest score. We demonstrate the algorithm on a real-
world autonomous vehicle performing passing maneuvers and
in a simulated merging scenario.

I. INTRODUCTION

During the last decade, there has been a great deal of

work on the development of fully autonomous cars capable of

operating in urban traffic. The problem of robust autonomous

driving has been investigated through earlier work during

the DARPA Grand and Urban challenges, and since then

there have been many teams actively developing improved

capabilities. Work in areas of path planning, multi-sensor

perception and data fusion has allowed vehicles to navigate

difficult environments and handle the presence of obstacles

and other hazards.

A key challenge for an autonomous vehicle capable of

operating robustly in real-world environments is the discrete

uncertainty that exists in choosing actions that account for

the intent of other agents in the environment. These agents

include other drivers on the road, as well as pedestrians at

crosswalks and in parking lots. Much of the decision-making

made by human drivers is over discrete actions, such as

choosing whether to change lanes or whether to pull out

into traffic. These decisions need to be informed by both

the continuous uncertainty of the state, such as the actual
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Fig. 1. In the top image, the red car is faced with a discrete choice as to
whether change lanes to pass vehicle v2 in front of vehicle v1 (middle) or
remain behind slow vehicle v2 (bottom). The MPDM algorithm evaluates
these possibilities, while simulating forward the other vehicles, shown in
the center and bottom images. By considering the closed-loop interactions

between vehicles, when the red car pulls in front of v1, the simulation
expects v1 to slow down to accommodate a safe lane change. Without this
consideration, the red car would have assumed v1 would simply maintain
its current speed and declared the lane change infeasible.

position of vehicles, but also the discrete uncertainty such

as whether another driver is making a turn, or is trying to

overtake another vehicle.

Directly managing this discrete uncertainty is significant

because accounting for the breadth of behaviors necessary

to operate a car within traffic makes traditional techniques,

such as hand-tuned finite state machines (FSMs) [1] or

trajectory optimization [2] difficult to scale up to full real-

world driving. A major drawback of such techniques is

that they fail to model interactions between multiple agents,

which is key for navigating dynamic traffic environments

efficiently and safely.

In contrast, this paper presents multipolicy decision-

making (MPDM), a high-level decision process that factors

autonomous driving into a set of policies that encode closed-

loop behaviors and uses online simulation to evaluate the

consequences of available policies. The central contributions

of this paper are:

• A decision-making algorithm able to handle traffic.

• This technique leverages simulation of closed-loop in-

teractions to reason about action consequences.

• An evaluation of MPDM in simulation and on a real-

world autonomous vehicle in passing and merging traf-

fic scenarios.

Modeling vehicle behavior as a closed-loop policy for both

the car we are controlling and nearby vehicles, manages



uncertainty growth by assuming other vehicles will make

reasonable, safe decisions. Simulating forward the other

vehicles in the environment allows us to account for changes

in driver behavior induced by neighboring vehicles, as occurs

in scenarios such as merging, where another driver will slow

down to make space for a merging vehicle (see Fig. 1).

Policies within this approach are closed-loop deterministic

controllers that implement high-level driving behaviors, such

as driving along a lane, changing lanes or parking. To select

the optimal policy, for each candidate policy we sample a

policy outcome from the current world state using forward

simulation of both the vehicle state and the future actions

of other traffic participants. We can then evaluate a reward

function over these sampled outcomes to accommodate user

driving preferences, such as reaching goals quickly and

ride comfort. We demonstrate the algorithm in a real-world

autonomous vehicle performing passing maneuvers and in a

simulated lane merging scenario.

Furthermore, we develop our approach in a principled

manner deriving from the partially observable Markov de-

cision process (POMDP) model (see [3] for a tutorial),

as it provides a powerful framework for simultaneously

considering optimality criteria and the inherent uncertainty of

dynamic environments. Unfortunately, finding optimal solu-

tions for general POMDPs is intractable [4], [5], especially

in continuous state and action domains. However, we will

use the POMDP as a formal model to make clear where

approximations and assumptions are being made.

II. RELATED WORK

The most notable first early instances of decision-making

architectures for autonomous vehicles capable of handling

complex traffic situations stem from the 2007 DARPA Urban

Challenge [6], an autonomous car race held in a mock

urban environment. As mentioned earlier, DARPA partici-

pants tackled decision-making using a variety of solutions

ranging from FSMs [1] and decision trees [7] to heuristic

approaches [8]. However, these approaches were tailored for

very specific and simplified situations and were “not robust

to a varied world” [8].

A number of investigators have tackled the decision-

making problem for autonomous driving through the lens of

trajectory optimization. Tran and Diehl proposed a convex

optimization method that they apply to an automated car-

like vehicle in simulation [9]. However, their approach does

not consider dynamic objects. Gu and Dolan used dy-

namic programming to generate trajectories that do consider

dynamic objects in the environment [10]. Although their

simulation results are promising, they do not demonstrate

their method on a real vehicle. The trajectory optimization

method proposed in [2] optimizes a set of costs that seek

to maximize path efficiency and comfort, accounting as

well for the distance to static and dynamic obstacles. They

demonstrate the method on a simple passing maneuver, but

their real vehicle results are limited to static obstacles. The

key problem with trajectory optimization in traffic scenarios

is that they account for where other vehicles are now, but will

not be able to account for what the vehicle will do in the

future, particularly in response to actions from our vehicle.

POMDPs provide a mathematically rigorous formulation

of the decision-making problem in dynamic, uncertain sce-

narios such as autonomous driving. A variety of general

POMDP solvers exist in the literature that seek to ap-

proximate the solution, e.g. [11], [12]. Nonetheless, they

require computation time on the order of several hours even

for problems with very small state, action and observation

spaces compared to real-world scenarios. A loose parallelism

with our approach in the POMDP literature can be found

in [13], where a POMDP solver is proposed that exploits

domain knowledge provided as a set of pre-computed initial

policies, which the solver then refines and switches on

and off over time. However, this approach still requires

unreasonable amounts of computation time to be applied

to real-world systems. In fact, the idea of assuming finite

sets of policies to speed up planning has appeared before,

particularly in the POMDP literature [14]–[16]. However,

these approaches dedicate significant resources to compute

their sets of policies, and as a result they are limited to short

planning horizons and relatively small state, observation, and

action spaces. In contrast, we propose to exploit domain

knowledge from autonomous driving to design a set of

policies that are readily available at planning time.

Furda and Vlacic take a more practical approach to the

problem by formalizing decision-making for autonomous

vehicles using multiple-criteria decision-making (MCDM)

theory [17]. However, they do not explicitly consider the

potential future intentions of other traffic participants. More

recently, Wei et al. presented a two-step decision-making

approach that finds suitable velocity profiles by evaluating

a set of candidate actions [18]. Nonetheless, their method is

targeted at in-lane driving situations, and does not consider

complex decisions such as passing or merging. In earlier

work, Wei et al. presented modeled interactions between

vehicles on highway ramps to perform merging maneu-

vers [19]. However, their results are limited to simulations.

Similarly, Trautman et al. explored modeling interactions of

other agents for planning [20], presenting an evaluation with

a mobile robot navigating crowded indoor environments.

Overall, there remains a substantial gap in the prior work

for principled decision-making that is robust in scenarios

with extensively coupled interactions between agents. This

work addresses this problem directly by modeling the high-

level behaviors of all agents in the system.

III. PROBLEM STATEMENT

The problem of decision-making in dynamic, uncertain

environments with tight coupling between the actions of

multiple agents can be formulated as a POMDP, which

provides a mathematical model that connects perception and

planning in a principled way. Here, we first formulate the

problem as a general multi-agent POMDP. Then, we use

this formulation to show where we make approximations in

our approach via reasonable domain assumptions, achieving



a decision-making system that can control an autonomous

vehicle navigating in a multi-agent setting online.

A. General Decision Process Formulation

Let v ∈ V denote one of N vehicles in the local area,

including our controlled vehicle, for which we can define

an action avt ∈ A that transitions its state xv
t ∈ X at

time t to a new state xv
t+1. An action avt is a tuple of

the actuated controls on our car for the steering, throttle,

brake, shifter, and directionals. Note that to control a vehicle

reliably, it is necessary to choose actions of this granularity

at a relatively high rate — on the order of 30 to 50 Hz. As

a notational convenience, let xt be the set of state variables

for all vehicles, and correspondingly let at be the actions of

all vehicles.

To model the dynamics and uncertainty in the system, we

use a Markovian model to evolve the system forward in time,

based on models for dynamics, observation, and driver be-

havior. A conditional probability function T (xt, at, xt+1) =
p(xt+1|xt, at) models the effect of actions on vehicle states.

Likewise, we model observation uncertainty as the con-

ditional probability function Z(xt, z
v
t ) = p(zvt |xt) where

zt ∈ Z is the combined set of sensor observations at each

time t, including observed vehicle states and a map of static

hazards in the environment. We further model the behavior of

other agents in the environment as a conditional probability

distribution D(xt, z
v
t , a

v
t ) = p(avt |z

v
t , xt) in which the action

taken by drivers is conditioned only on the current state and

observation.

The core problem we wish to solve in this decision

process is to choose an optimal policy π∗ for our vehicle,

in which a policy for a vehicle is a deterministic mapping

πv : xt×z
v
t → avt that yields an action from the current state

and observation. The decision process chooses the policy to

maximize the reward over a given decision horizon H as

follows:

π∗ = argmax
π

H
∑

t=0

γt

∫

xt

R(xt)p(xt) dxt, (1)

where γt is a reward discount factor, and R(xt) is the reward

function. We can define the joint density p(xt) as follows

p(xt+1) =

∫∫∫

xt zt at

p(xt+1, xt, at, xt) dat dzt dxt (2)

and decomposing recursively using the state transition, ob-

servation, and driver behavior models above yields

p(xt+1) =

∫∫∫

xt zt at

p(xt+1|xt, at)p(at|zt, xt)

p(zt|xt)p(xt) dat dzt dxt. (3)

Given that this is a multi-vehicle system, we can assume the

instantaneous actions for each vehicle will be independent

of each other, as the action avt only depends on the current

state xt and the local observation zvt . Let the joint density

for a single vehicle v be

pv(xv
t , x

v
t+1, z

v
t , a

v
t ) = p(xv

t+1|x
v
t , a

v
t )p(a

v
t |x

v
t , z

v
t )

p(zvt |x
v
t )p(x

v
t ). (4)

Leveraging the independence assumption, we obtain

p(xt+1) =
∏

v∈V

∫∫∫

xt zt at

pv(xv
t , x

v
t+1, z

v
t , a

v
t ) da

v
t dz

v
t dx

v
t . (5)

To incorporate a deterministic policy πq for the vehicle q ∈
V under our control, we can replace the driver behavioral

model in the single car joint defined in Eq. 4. With this

model constructed, we can estimate the expected reward for

a given policy πq by drawing samples from the full system

model in Eq. 5 that we propagate over the entire decision

horizon H .

The problem with this formulation is that when sampling

from the distribution in Eq. 5, because of the uncertainties

at every stage, each sample will have a very small posterior

probability due to the large state space of this system. The

large state space with many levels of uncertainty results in

a combinatorial explosion, particularly as we account for all

the possible action sequences other vehicles could undertake.

In the practical case for driving, we want to sample high-

likelihood scenarios on which to make decisions. Sampling

over the full model will result in many cases of other drivers

acting in ways substantially different from how human

drivers behave, including swerving off of roads and into other

lanes. However, we wish to capture in our model the vast

majority of driving, in which all drivers are safe most of the

time, so we can anticipate likely actions for other vehicles.

The next section applies approximations designed to focus

sampling on more likely outcomes.

B. Approximate Decision Process

In this section we will introduce two key approximations

that reduce the state space sufficiently to be tractable for

real-time use: 1) choosing policies from a finite discrete set

of known policies for both our car and other cars and 2)

approximating the vehicle dynamics and observation mod-

els through deterministic, closed-loop forward simulation

of all vehicles with assigned policies. The result of these

approximations will be to convert the problem of finding a

policy into a discrete decision-making problem over high-

level vehicle behaviors.

Let Π be a discrete set of carefully constructed policies,

where each policy captures a specific high-level behavior,

such as following a lane, or making a lane change. Because

we assume other cars on the road follow basic driving rules,

we can also select a policy πv ∈ Π to model their behavior.

Thus, we can reconstruct the per-vehicle joint from Eq. 4 as

pv(xv
t , x

v
t+1, z

v
t , a

v
t , π

v
t ) = p(xv

t+1|x
v
t , a

v
t )p(a

v
t |x

v
t , z

v
t , π

v
t )

p(πv
t |x

v
t )p(z

v
t |x

v
t )p(x

v
t ), (6)

where we approximate the driver behavior term

p(avt |x
v
t , z

v
t , π

v
t ) as deterministic given πv

t . The additional



term p(πv
t |x

v
t ) in comparison to Eq. 4 models the probability

of a given policy being selected for this vehicle. In this

paper we assume that we can determine the most-likely

policy πv
t for other vehicles given a model of the road

network, and focus on the control of our vehicle. We will

address accurate computation of p(πv
t |x

v
t ) in future work.

Using the formulation for single-vehicle joint distributions

of Eq. 6, we finally split out other vehicles v ∈ V and the

vehicle under our control q ∈ V separately as follows:

p(xt+1) ≈

∫∫

xq zq

pq(xq
t , x

q
t+1, z

q
t , a

q
t , π

q
t ) dz

q
t dx

q
t

∏

v∈V |v 6=q





∑

Π

∫∫

xv zv

pv(xv
t , x

v
t+1, z

v
t , a

v
t , π

v
t ) dz

v
t dx

v
t



 .

(7)

By modeling policies as closed-loop systems, we can rea-

sonably approximate the state transition term p(xv
t+1|x

v
t , a

v
t )

in Eq. 6 with a deterministic simulation of the system dynam-

ics. This is a reasonable approximation to make because we

assume we have engineered all policies to generate action

sequences that are achievable within the safe performance

envelope of the vehicle, thereby reducing the impact of

uncontrolled vehicle dynamics.

IV. MULTIPOLICY DECISION-MAKING

Our proposed algorithm, MPDM (Algorithm 1), imple-

ments the approximate decision process of Sec. III-B using

deterministic simulation to approximate the execution of

closed-loop policies for both our car and nearby cars. The

key is the assumption that agents in the environment execute

actions that can be modeled as a set of policies crafted

based on knowledge from the autonomous driving domain,

efficiently approximating the solution to the problem stated

in Sec. III.

MPDM is robust to future uncertainty at the discrete deci-

sion level through continuous replanning and at the low-level

control level through closed-loop policy models. Similar to

model-predictive control techniques, continuous replanning

over a longer time horizon H while only executing over a

shorter horizon lets us react to changing vehicle behavior.

Closed-loop policy models ensure robustness to bounded

low-level uncertainty in state estimation and execution, as

the policies can adapt to local perturbations.

The algorithm takes as input a set of candidate policies

Π, the current most likely estimate over the world state

p(x0), and a decision horizon H . Note that the estimate

over the world state includes the most-likely policies cur-

rently executed by the other agents, which in this work

we determine according to a road network model and the

pose of the agents therein. The algorithm then determines

a set of applicable policies Πa given x0 that are relevant

in the current world state. The next step of the algorithm

consists in scoring each policy according to a user-defined

cost function using forward simulation. In this step, for each

applicable policy π, we sample the evolution of the system

from state x0 under π to obtain a sequence of states of the

Algorithm 1: MPDM policy election procedure.

Input:

• Set Π of available policies for our vehicle and others.

• Most likely estimate p(x0) of the state at planning

time, including the most-likely policies πv
0 ∈ Π for

each of the other vehicles.

• Planning horizon H .

1 Πa ← ∅
2 foreach π ∈ Π do

3 if APPLICABLE(π, x0) then

4 Πa ← Πa ∪ {π}

5 C ← ∅
6 foreach π ∈ Πa do

7 Ψ← SIMULATEFORWARD(x0, π,H)
8 c← COMPUTESCORE(Ψ)
9 C ← C ∪ {〈π, c〉}

10 π∗ ← SELECTBEST(C)
11 return π∗

world Ψ = (x0, x1, . . . , xH), where xt = π(xt−1, zt−1) for

0 < t ≤ H . Next, the sequence Ψ is scored using a user-

defined cost function. The score obtained, c, is added to the

set of scores C. Finally, the optimal policy π∗ associated to

the highest score in C is returned.

A. Policy Design

Each policy implements a particular closed-loop driving

behavior, such as driving along a lane, changing lanes or

executing a parking maneuver. At runtime, we execute the

currently selected policy in a separate process from the

policy election procedure. These policies are individually

engineered to account for particular driving behaviors, with

varying levels of complexity. For instance, in a simple driving

scenario, the policies can be:

• lane-nominal: drive in the current lane and maintain

distance to the car directly in front,

• lane-change-left/lane-change-right: a separate policy for

a single lane change in each direction,

• park-car: stop the car within a marked parking space.

Contruction of this set of policies is primarily dependent

on covering the set of behaviors necessary to navigate the

given road network and comply with traffic rules. We can

adjust the scope of the behaviors represented to match

particular applications, such as limiting the car to highway-

only behaviors.

At any given world state xt, it is likely only a subset of

possible vehicle behaviors will be feasible to execute, so we

first run an applicability check on each available policy. For

example, if our car is in the right-most lane of a highway,

policies that perform a lane-change to the right would not

be applicable.

Note that the policy election procedure detailed in Algo-

rithm 1 does not, in practice, run fast enough to account

for either emergency vehicle handling or abrupt changes in



system state, so therefore all policies are designed to always

yield a safe action. This constraint ensures we can respond to

a changing environment at real-time speeds, without being

bound by the speed of policy election. This safety criteria

is important for managing outlier policies for other vehicles

(with relation to p(πv
t |x

v
t )) in which we allow our individual

policies to manage dangerous cases. In future work, we

expand the set of policies for other vehicles to include more

readily modeled outlier cases, such as stopping.

B. Multi-vehicle Simulation

By casting the forward simulation as a closed-loop deter-

ministic system, we can capture the necessary interactions

between vehicles to make reasonable choices for our vehicle

behavior. We choose a likely policy for each other vehicle in

the environment, and then step forward via the deterministic

state transition model detailed earlier in Eq. 7.

In order to achieve policy election at a real-time rate on

the order of 1 Hz or faster, we rely on the closed-loop nature

of the low-level control to achieve approximate simulation.

While it is possible to perform high-fidelity simulation, in

practice we use a simplified simulation model for each

vehicle assuming ideal steering control. The key is that the

simulation models inter-vehicle interactions sufficiently well

to make reasonable decisions about which policy to execute.

C. Policy Election

To select a policy to follow, we need to evaluate the out-

comes of the simulations for each policy under consideration

using a cost function including a variety of user-defined

metrics, and then choose the best policy. The difficulty in this

problem is in accounting for the many criteria that appear

in real-world driving decisions. An autonomous car must

simultaneously reach the destination in a timely manner, but

also drive in a way that is comfortable for passengers, while

following driving rules and maintaining safety.

We cast these criteria as a set of metrics m ∈ M, where

each metric is a function m : {xt} → R that evaluates

the full simulated state and action sequence over the fixed

horizon H . Our typical metrics include

• distance to goal: measured from the final pose to the

goal waypoint in map,

• lane choice bias: an increasing cost for lanes further

away from the right-most lane,

• max yaw rate: the maximum recorded yaw rate during

the simulated trajectory, and

• simple policy cost: a hard-coded constant cost for a

given policy to break ties.

These metrics capture accomplishment of goals, safety,

implementation of “soft” driving rules, and rider comfort.

The challenge in combining these metrics is that each one

returns a cost in different units with different expected cost

distributions. We combine these costs into a single score for

each policy by computing a per-policy score using a linear

combination of the normalized scores for each metric. For

each metric mj , we compute a corresponding weight wj that

encodes both an empirically tuned importance of the metric

depending on user requirements, as well as how informative

the metric is within the given set of policies. We downweight

uninformative metrics in which there is too little variation

among the policies.

V. EVALUATION

Fig. 2. Our autonomous car platform, a Ford Fusion equipped with four
LIDAR units, survey-grade INS, and a single forward-looking camera. All
control and perception is performed onboard.

We evaluate MPDM using real-world and simulated ex-

periments in passing and merging scenarios. This evaluation

highlights the utility of simulating forward both our car and

neighboring cars with closed-loop policies. Passing another

vehicle demonstrates switching between policies as better

options become available as the vehicle advances. Merging

highlights how simulating forward all cars with closed-loop

policies allows our system to account for the reactions of

other drivers as a consequence of our action.

For the passing scenario, we perform real-world experi-

ments on a closed test track to validate the approach. We

demonstrate merging in a simulated environment to allow

for a larger number of cars present than is typical in our

real-world test environment.

As a scope limitation for this paper, we assume the

policy used for other cars is easily inferred from direct

observation. The other vehicles in our system perform only

a straightforward lane-keeping behavior that will slow down

to account for vehicles within their path. This behavior

is, however, sufficient to demonstrate the kinds of tightly-

coupled vehicle interactions we wish to evaluate.

A. Autonomous Vehicle Platform

For our real-vehicle experiments, we used our autonomous

vehicle platform (see Fig. 2). This automated vehicle is

a Ford Fusion equipped with a drive-by-wire system, four

Velodyne HDL-32E 3D LIDAR scanners, an Applanix POS-

LV 420 inertial navigation system (INS), a single forward-

looking Point Grey Flea3 camera and several other sensors.

An onboard five-node computer cluster performs all plan-

ning, control, and perception for the system in realtime.

The vehicle uses prior maps of the area it operates on

constructed by a survey vehicle using 3D LIDAR scanners.

These prior maps capture information about the environment

such as LIDAR reflectivity and road height, and are used for

localization and other perceptual tasks. The road network

is encoded as a metric-topological map using a derivative



Fig. 3. Trajectories of 14 passing maneuvers executed using MPDM on a test track, overlapped on satellite imagery. Each trajectory is colored with a
different color. The circles correspond to the location of the passed vehicle half way through the passing maneuver, where the color of each circle matches
that of its associated passing trajectory. A model of our autonomous vehicle platform appears on the far right for scale. Satellite imagery credit: Google.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Execution of a passing maneuver with MPDM. Successive stages of the decision-making procedure are shown in snapshots from an onboard
camera on the autonomous vehicle performing the maneuver (top row) and in a visualization of the forward simulations for the available policies and their
scores (bottom row). Initially, the vehicle cruises at nominal speed using the lane nominal policy (a), (e). Although the lane change left policy is able to
drive the vehicle further according to the forward simulation, a preference to stay in the right lane encoded in the scoring function prevails. As the lane
nominal policy encounters a slower vehicle upfront, the lane change left policy achieves the highest score and the vehicle initiates a lane shift (b), (f).
After reaching the goal lane and finding a clear course, lane nominal takes over again to speed up and pass the slower vehicle (c), (g). Note that at this
point only the lane nominal policy is applicable due to the presence of another vehicle in the adjacent lane. Finally, the vehicle returns to the initial lane,
once more, as per the effect of the preference to stay in the right lane when possible encoded in the scoring function (d), (h).

of the route network definition file (RNDF) format [21],

providing information about the location and connectivity

of road segments and lanes therein.

Estimates over the states of other traffic participants are

provided by dynamic object tracking running on the vehicle,

which uses LIDAR range measurements. The geometry and

location of static obstacles are also inferred onboard using

LIDAR measurements.

B. Simulation Environment

For both simulating forward the consequences of policies

in MPDM and for evaluating our system, we have developed

a multi-agent traffic simulation engine. The engine allows

simulation of the system dynamics and perception of the

agents involved, and is fully integrated with the real vehicle

platform’s software architecture via the lightweight commu-

nications and marshalling (LCM) framework [22].

VI. RESULTS

We now report on the results of the evaluation of MPDM

both on our real autonomous vehicle platform and in simu-

lation. We first demonstrate MPDM on the real vehicle in a

series of passing maneuvers, where our algorithm decides to

pass a slower vehicle in the preferred lane of travel. Using

these real-world results, we then show the performance of

our simulator by comparing its outcomes with the actual

trajectories of both our vehicle and other traffic participants.

Finally, we demonstrate our algorithm in a simulated merging

scenario. All policy elections throughout the experiments use

a planning horizon H = 10 s discretized at timesteps of

∆t = 0.25 s.

A. Passing Scenario on the Real Vehicle

We evaluated MPDM in a multi-lane setting on a closed

test track in a scenario in which we pass a slower human-

controlled vehicle. In these experiments, our vehicle starts

driving on the right lane and, as it advances, encounters the

slower vehicle in its preferred lane of travel that is limiting

its progress. At that point, as a consequence of the scoring

function used, the vehicle decides to pass the slower vehicle.

Fig. 3 shows the trajectory of our controlled vehicle and the

location of the passed vehicle halfway through the passing

maneuver for the 14 trials we executed in this scenario.

The policies considered for the controlled vehicle in this

scenario are lane-nominal, lane-change-left and lane-change-

right, while a single lane-nominal policy is considered to

simulate forward the future states of the passed vehicle.



(a) (b) (c)

Fig. 5. Simulated merging scenario highlighting the simulation of a policy merging into traffic, even if the gap present is not already large enough,
by anticipating the behavior of another car. In the election start point (left), the car evaluates the merging policy to yield its predicted trajectory shown
in white. When executing the policy, as in the prediction in simulation, our car drives out in front of car 2, causing car 2 to start slowing (center) as
anticipated, and eventually completes the merge into traffic (right). The red trajectory shows the planned path for the merging policy at runtime.

Fig. 4 shows the evolution of the policy scores throughout

the passing maneuver.

B. Forward Simulation Evaluation

After running our algorithm in the series of passing

maneuvers described above, we are able to compare the

outcomes of the forward simulation of policies with the

actual real-world trajectories, for both our controlled car and

the passed car. For this, we recorded the position of our

vehicle (using its pose estimation system) and of the passed

vehicle (using the dynamic object tracker) throughout the

passing maneuvers.

Fig. 6 shows the prediction error for each policy as the

root mean squared (RMS) difference between the simulated

consequences of the policies and the actual trajectories of

the vehicles involved. Results are shown for the first 5 s

of the planning horizon averaged over all policy elections

throughout all passing maneuvers, per timestep.

The effect of the delay in computing the prediction can be

observed in that the errors are non-zero at t = 0 s. That is, the

assumed world state has changed from its initial state used

in the simulation. A disagreement between the simulated

policy for the controlled vehicle and its actual trajectory

can be observed, which manifests a difference between the

simulated dynamics model and the vehicle’s speed controller,

particularly in the longitudinal axis. Regarding the prediction

errors for the passed vehicle, they are particularly uneven

when running the lane-change-right policy. This is the con-

sequence of an impoverished performance of the dynamic

object tracker as the passed vehicle is left far behind when

completing the passing maneuver.

Despite these inaccuracies, however, our simulation en-

gine’s performance was sufficient for the decision-making

process in completing the passing maneuvers.

C. Merging Scenario in Simulation

Fig. 5 demonstrates a simulated merging scenario to

highlight how simulating forward other car policies allows

MPDM to exploit the reactions of other cars. To illustrate

the expressive power of our multi-vehicle policy model, we

evaluated a policy that will attempt to merge into traffic, even

if there is not a sufficient gap present. By anticipating that

the reaction of car 2 would be to slow down and match the

speed of a car driving into its path, the predicted outcome of

the policy is feasible without being overly conservative. A

traditional trajectory optimization algorithm (that does not

consider the behavior of the other car in response to our

vehicle) would likely not be able to execute this maneuver,

since it would not be able to predict that a sufficiently large

gap would become available. Because this is a simulation,

we choose the policy parameters for the other three cars in

traffic such that the other cars will avoid colliding with a

vehicle in its path, and by using the same policy parameters,

we are able to merge between cars 1 and 2 exactly as in the

policy election simulation. Note that because all cars execute

safe behaviors, including slowing or stopping for vehicles in

our path, should car 2 accelerate into our path, any running

policy will still avoid a collision. As a comparison, we can

disable prediction of the expected reactions of other cars, in

which our car waits more conservatively until both cars 2

and 3 pass before pulling into the lane.

D. Performance
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Fig. 7. Computation time required by the policy election procedure as a
function of the planning horizon and the number of policies sampled (a)
and as a function of the planning horizon for two of the primary policies
used in our experiments (b).

Fig. 7 shows the computation time required to sample

policy outcomes and perform a policy election, as evaluated

on a development laptop (2.8GHz Intel i7) with similar

hardware to the cluster nodes operating on the vehicle. To
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Fig. 6. Prediction errors for the commanded vehicle and the passed vehicle as given by forward simulation of the lane nominal, lane change left and lane
change right policies.

obtain the time required as a function of the number of

sampled policies, we run MPDM in simulated scenarios with

an increasing number of policies (from 1 to 20). As expected,

the computation time required by the policy election proce-

dure grows linearly with the number of policies and with the

planning horizon, given that the sampled policies demand

similar computational requirements.

VII. CONCLUSIONS AND FURTHER WORK

In this paper, we have introduced a principled framework

for decision-making within dynamic environments incorpo-

rating extensively coupled interactions between agents. By

explicitly modeling reasonable behaviors of other vehicles

in the environment, in the form of policies, we can make

informed high-level behavioral decisions while more accu-

rately accounting for the consequences of our actions. We

demonstrated the feasibility of this approach in a passing sce-

nario in a real-world environment, and further demonstrated

MPDM can handle traffic cases like merging, in which most

other approaches will fail to reasonably account for between-

vehicle interactions.

In future work, we will integrate behavioral anticipation

into the system to determine what is the most likely policy

other cars are following in a principled manner, in order to

allow for more complex vehicle interactions.
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