q~>> MIDWEST UNIVERSITY 2018
L

Family Editor—Beyond the basics
411-Part 1

511-Part 2

Paul F. Aubin, www.paulaubin.com

Paul F. Aubin is best known as the author of many books and video training courses at
lynda.com for Revit and other Autodesk tools. He has 28 years of experience in the
Architectural industry and has worn many hats in that period, from designer, to CAD
Manager, technologist, and trainer. He continues many of these in his current role as an
independent Architectural consultant based in Chicago. Paul is the founder and host of
ChiNamo; the Chicago Dynamo Community.

Class Description

Success with the family editor is so much more than creating simple objects with flexible
dimensions. This two-part session will dispense with the basics and jump right into the
deep end of the pool! | will share with you several real content creation examples that |
have built for my clients over the years. Each will explore family creation concepts that go
beyond the basic box or simple flexible family. If you want to up you family creation game,
join me for this information packed two-part session.

Learning Objectives

e Understand how to make smooth 3D forms.

e Model complex forms both with native Revit geometry and leveraging imported mesh
geometry.

e Use robust formulas to drive parametric values and incorporate invisible parameters to
enhance functionality.

e Control nested families with family types parameters and custom drop-down lists.

Introduction

To get the fullest potential from Revit, you must be comfortable with the family editor and
creating custom family content. There are so many techniques worthy of our attention.
Naturally | had to be selective. | like each one of the techniques discussed herein for
different reasons. While some of the techniques complement each other, many do not.
Rather than attempt a continuous narrative, this session is just a pot luck of family editor
goodness. So, sit back and enjoy. You are sure to find something useful for your next
content creation project.

q~>> MIDWEST UNIVERSITY 2018
L

411—Family Editor—Beyond the basics, Part 1

In Part 1 we will explore some modeling techniques and look at different kinds of geometry.
We’'ll discuss the use of voids and solids in the service of creating smooth geometry. Explore
the choice or face-based, work plane-based and non-hosted families. Lighting fixture families
offer lots of opportunities for innovation and we’ll look at some of my favorite features to add
to such families. We’'ll wrap up part one with a look at some highly specialized families
created using both solid modeling and imported mesh modeling techniques.

Geometry

First let’s review some of the basics: In the traditional family editor, we have five forms to
work with: Extrusion, Blend, Revolve, Sweep and Swept Blend (See Figure 1).

% & iy T@

Extrusion Blend Revolve Sweep o Swept Blend

Figure 1—Forms in the traditional family editor

All five are sketch-based solids (or voids). But if you analyze them carefully, you find that
any form you can make with an extrusion can also be created by a sweep with a single
straight-line path. Likewise, a single straight-line path with two profiles in a swept blend
can mimic anything created by a blend. And in most cases, you can mimic nearly any form
created by a revolve using a sweep with a circular path. This means that if you are clever,
you can create nearly all forms using sweeps and swept blends exclusively. Why would
you want to do this? To leverage Profile families! The Sweep and Swept Blend are the
only two that support the use of Profile families in place of the sketch. So, in situations
where using a profile would be desirable over a sketch, you will want to use a sweep or
swept blend instead of the other three. Using forms that support profiles can be
advantageous for a few reasons:

e Profiles are separate families.
e You can build them independently of the other geometry in a family.

e This eliminates the possibility that the sketch will flex unexpectedly based on
unintended relationships to other nearby forms (Automatic sketch dimensions).

efiles can be drawn as a single static form or can use parameters and formulas.

Profile§jcan be reused in many families. They can be loaded and reloaded as
needediin as many families as needed.

vill be showing you today make use of sweeps or swept blends with profiles.

’MIDWEST UNIVERSITY 2018

Pick Path

In addition to supporting profiles, both swept forms also support the “Pick Path” method of
creating their path. This means that you can easily associate the shape of a sweep or
swept blend with the edges of another form using the Pick Path method. This is an easy
way to make a parametrically flexible path without requiring lots of parameters or
constraints. Pick Path automatically follows the shape of the picked geometry and can
follow a 2D or 3D path. Sketched paths can only be 2D (in a single work plane).

Making Smooth Corners

It is often desirable to make smoothly rounded corners on the geometry in a family. Unlike
some 3D programs, Revit does not support filleting 3D geometry. Therefore, you will have
to build your solids with smooth corners and/or use voids to “knock off” the sharp corners.
The trick is making sure that the filleted edges are smooth without seams showing. To do
this, you need to make sure that the fillet edge is tangent to any other nearby edges.
Sometimes this is hard to do when relying on voids. Sometimes voids can hurt
performance as well. So, | usually try to build the form with solids first and then use voids
only where necessary. Figure 2 shows a good example:

Figure 2—Object with smooth edges created from several joined forms

The outer edges of this molded countertop and sink use a sweep along a path that has a
mall radius at each corner. The challenge with this approach is that your sweep profile

bwing about 1/32" extra is usually enough to avoid the dreaded “Can't
error (see Figure 4).

R
L MIDWEST UNIVERSITY 2018
g

Autodesk Revit 2078
Messages
(= Emor (must be addressed in order to continue)
(= Cant create sweep
=~ Emor
& Sweep :id 334213
& - Casework : Casework 2 : Casewark 1:id 334250
i Show More Info Export... Collapse <<
To highlight an element in the graphics window, select itin this tree,
This arc must be Resulti ng ina Most standard view commands work without exiting this dialog.
oNghtly larger than small radius here ——
€ prorile wi
P Delete Flement(s) Delete Checked. .. oK Cancel

Figure 4—Errors while modelling are frustrating

31& 53/4"

i

e 34"
A e S

<5/30n @
Figure 3—Profile cannot be larger than the smallest

radius in the path
()

Path ——ﬁ u

Figure 5—Sometimes a single profile must be
broken into smaller pieces

So, if your profile is bigger than the radius of your path, you will have to break it up into
smaller profiles and then create more than one solid element (see Figure 5). You can then
use join geometry to put them all together. But this is often harder than it sounds...

In this example, the reference plane marks where the first profile is cut. There are several
solids joined together to make the overall form (see Figure 6).

MIDWEST UNIVERSITY 2018

Figure 6—Create the final form from a series of solids (Seams show only while solids are selected)

To complete the inner portion, another sweep is used for the main shape of the sink bowl.
However, this time, the path is on the inside edge meaning that even if the arcs on the
path are very small, you can end up with a large solid form around the outside edge if the
profile shape is large (see Figure 7).

Separate extrusion
joined in to form the
bottom surface

!;;’MIDWEST UNIVERSITY 2018

(like a simple straight edges), then you will have a much better chance of joining the forms
(see Figure 8).

s
«<Sketch> : Line N

- This small horizontal segment
helped it join successfully
L\ B

Figure 8—It takes some effort sometimes to get complex forms to join successfully

This cleanup sink family uses all solids. The smooth edges are achieved by ensuring that
the fillet corners in the sketches are all tangent on both sides (the tangent lock helps
maintain these). An alternative is to use voids to “knock off” the sharp edges. Here is an
example piece of furniture that uses that approach (see Figure 9).

>
Figure 9—Sharp edges on solid forms can be rounded off using voids whose path is picked from the edges

Reuvit furniture is notorious for appearing hard and stiff. Softening the edges with this
technique can help to make furniture that is more appealing and feels more natural.

hased and Work Plane-based Families

e-based families are very popular. They have many useful features to be sure (hosting
ace instead of an object, they work through linked files, they offer flexibility in

BM IDWEST UNIVERSITY 2018

orientation), however, they also come with some undesirable ones too (inflexibility in
default orientation and icon previews being the biggest, but also issues with using
embedded 2D graphics).

Consequently, | tend to limit my use of face-based families to those situations where:

1). | absolutely need a host, and
2). I need the host’s category to be variable (like walls or columns) and or flexibility
in physical orientation (like horizontal or vertical for example).

Otherwise, | tend to explore other options. This might include dedicated hosts (wall-based,
ceiling-based), using work plane-based or simply leaving it un-hosted (example shown in
the “Face-based or Freestanding” topic in Part 2 below).

Voids and Always Vertical

For this example, | have an item that uses both face-based and work plane-based in the
same piece of content. It is a face-based sink element (that you place on the face of a
countertop). There is an embedded void in the family that automatically engages and cuts
the countertop. Meanwhile, there is also a nested work plane-based faucet family within it.

The difference between the face and work plane-based here is subtle.

Preperties =

Erapertie, *

- Face-Based with integrated void

(»
l x, - - { ’ -4 -
£
Family: Plumbing Fistuses £ Faruly: Plumbing Eictures -
Constraints | | |Constrants 2 -
8

Hound Connector Dime... [Lse Diametes S = Found Connector Dim.[Use Cameter

[Mechanical | Mechancst]
PatType Mol = 5 Part Type Marenal

Ickeritity Clata J |Identity Data 2

OmniClass Humber 2.4

Oirreril s Nusmnber

DIN-

Cut with Veids When Lo... [
Shared =]
Room Cakeulation Paint [

ol L “ | Work Plane-
- hii Based and Always
= | vertical

m;mnme “Faucet_Baicris
[, Wiews (all)

F|gure 10—Combining face-based and work plane-based in the same piece of content

v« BATH v A cangularitn *

Face-based can be inserted on nearly any face in your model, including faces of linked
geometry. That was not really needed here; a sink will always be inserted on a horizontal
plane, but face-based families also support nested voids. So, if you add a void to the face-
based family and use it to cut the face host inside the family, the family will attempt to
automatically engage the void with the host object when you insert it in a project. For this
to work, the face you insert it on must be a category that supports voids. This is typically
cutable geometry (more on this in the “Nested Family Visibility (Cutable or non-cutable)”
topic in Part 2 below) like system families, casework or columns for example. If you placed
it on a piece of furniture, it would not cut the void into the furniture element.

Work Plane-based gives you behavior like face-based for placement but does not

automatically engage voids. (You can add voids to them and use cut geometry separately
Ses however). Despite this apparent limitation, the nice thing about Work

i$ that you can enable it for nearly any category and you can couple it with

tical” checkbox. This makes the orientation of content that uses these

"}M IDWEST UNIVERSITY 2018
L

features much more predictable than an equivalent face-based item. So here | favored
Work Plane-based for the faucet to gain control over the orientation and its vertical offset
(from the floor) and Face-based for the sink to take advantage of the automatically applied
void to cut the sink hole. So | do not use just one or the other. | think you should always
seek to use the right tool for the job. Below in the “Face-based or Freestanding” topic in
Part 2, we'll see an example where | chose to leave it un-hosted. All options have their
usefulness under the correct circumstances.

Preview Orientation

Another common place for the use of face-based families is in ceiling mounted items like
lighting fixtures. Face-based in this case is helpful in that if the host face (usually a ceiling)
moves, the light or other ceiling mounted fixture will move accordingly. But, since it is not
explicitly ceiling-based, it is flexible; allowing the host to be any surface such as a ceiling,
a roof or even a reference plane. And even more importantly, this host face can be in a
linked model! The biggest disadvantages when using face-based ceiling items are: the
orientation of the icon preview on the type selector and the need to change the default
placement option (on the ribbon) each time you run the component command and choose
a face-based ceiling element (see Figure 11).

R =HiG-&- - @ = . \/"\ oA = :'£ P ML_‘I:]' w "3 - Autodesk Revit 2018.2 - Mot For Resale Version - 01_Door Jambs_B.rvt - Reflec
m Architecture Structure Systems Insert Annotate Analyze Massing & Site Collaborate View Manage Add-Ins Openings Studio Quantification Site Designer F
Cope ~ (] Lyl | ga ain 1 - — o

by Ko -8 B2&D P ome == SN
- B - _ - =
Modify o = ‘_‘Df_’ ()" = o E * Load Model | Placeon [Placeon Place on
= T B Gloin - I A + O IRETE N Family In-place |Vertical Face| Face |Work Plane
Select Properties Clipboard Geometry Modify View Measure Create Mode Placement
Modify | Place Component t

Properties b4
Defaults to "Place on Vertical Face" — _
/_LITE_Suspanded-Track-Ll'naar o
£L

d Type Selector Preview orientation
New Lightin _LITE_Suspended-Track-Linear : 4° L IS up5|de down

Constraints

Host

Elevation ‘_/

Graphics J
Plan Symb —

Number of

Lamp Type

Otherwise, when placing a face-based ceiling item in reflected ceiling plans and using the
“Place on Face” option, you will usually get good results. However, there is one significant
exception to this. If you use the Basic Ceiling rather than the Compound Ceiling family, the
face orientation will point up instead of down. This means that your face-base lighting
fixtures will be point the wrong way! (see Figure 12).

"BMIDWEST UNIVERSITY 2018

v
Ao
Flip Work Plane
3 _g"
\ [} =]
\
|
] 8
adbdb yi Ak
Ceilings : Compound Ceiling : 2'x 2' ACT Systemn : R2 ‘ Ceilings : Basic Ceiling : Generic i

Figure 12—Basic Ceilings do not work well with face-based content

In such cases, you can flip the work plane by selecting the component and then clicking the
Flip Work Plane control that appears. But you'll have to do this for each item you place.

These are minor inconveniences in most cases, so typically the pros of using a face-
based family for ceiling content outweigh the cons. And while we cannot change these
default behaviors, we can improve the preview orientation a bit; at least the one that
shows when opening the family or in the load family dialog. (The preview shown on the
type selector cannot be edited sadly).

The easiest way to adjust the preview is to orbit the 3D view to the desired orientation
using standard view navigation techniques. In that 3D view, right-click the ViewCube and
choose: Save View. (This might prompt you to rename the 3D view). Then save as the
family. In the save as dialog, click the Options button. Choose the modified 3D view as the
thumbnail preview source, check the “Regenerate if view/sheet is not up-to-date”
checkbox and then click OK (see Figure 13).

30 View: View 1- _LITE_Suspended-Track-Linear.ifa =N |
i :
")W Go Home Home
Save View
Lock to Selection
Toggle to Perspective-30 View
Set Current View as Home
Set Front to View >
Reset Front
Show C S5
Thumbnai Preview b i
L N Orient to a Direction >
- EL\Regenerane if view/sheet is not up-to-date. - Orient to a Plane...
g R S o
- Options...
Cancel
1fs E: b "‘

Figure 13—Customize the preview

You will see this preview in the open and load family dialogs.

"

If you want to add symbolic geometry to your lighting or other face-based family, you will
need to consider the orientation carefully. For items that will be placed on the ceiling, the
orientation of the 2D symbolic elements can be placed in the Ref Level plan view of the
family without issue. This is because they will remain parallel to the ceiling plan when
inserted. However, for wall mounted fixtures like wall sconces, the Ref Level plan will be
parallel to the wall face instead. This means that to get 2D graphics to show in ceiling
plans, you will have to add them to one of the elevation views (usually the front or back)
instead (see Figure 14).

NN N

I—“—‘-l __1 Il | [/\%

Lighting Fixtures : _LITE_Sconce-Surface-Linear-Dn: 24" I
L

BMIDWEST UNIVERSITY 2018

2D Symbols

PN

®

Figure 14—Vertically oriented (wall mounted) light fixtures with embedded 2D graphics

Grid Modules

Acoustical tile ceilings are very common. To make it easier to place light fixtures on these
ceilings, you can add a pair of reference planes in each direction and drive them with grid size
parameters. Set these parameters to match the size of the ceiling grid (i.e. 2x2 or 2x4). Then
you can use the align tool to easily center fixtures on the grid modules (see Figure 15).

T Langth-=tr-6" =
lea'eq’ |z 0]
&
5 g A | ° @
& . o s
o~ R al Lighting Fixtures : Recessed Dawnlight : 6 Round : Left
" =) Grd Lef
-.E- — t g 2 sl | T T T T
@ . E 8 £ . .
a 1oaE 5. Align these reference planes to the
2 U 2 ceiling grids when placing them
5 & 12 o
£ Add grid size
I reference planes ®
Trim W =0'-0 916 I |3
1 I 5" Round :|
TAMW = 0= 096" oo bl fuerence Flane -Gt Right| |
EQ l Eq | |

to drive them

Ly o
, o wmm:z-o-‘-‘{/—‘ And grid size parameters

Figure 15—Add grid module reference planes and parameters for ceiling grid centering

Optional Vaid Cutting Ceiling

eiling elements have voids integrated into them. This allows the fixture to
o the ceiling plane. This can have an impact on performance in large files

In the Project

> «

x

Properties X Properties
’ Recesse d Downlight
1 Recessed Downlight . : -
. 6" Round - Wall Washer 6" Round - Wall Washer
. Pl « | Hg EditT,

Lighting Fixtures (1) ~ | Eg Edit Type Lighting Fixtures (1) it Type

——4|Constraints // 2 A Constraints y : : £ /
s i <not asso
i g

Host {Compound Ceiling : 2' x 2' ACT Syst...
—

|

J

Elevation

Graphics

n
AR
K‘\

Cut Ceiling
Text by
> ; >
=
&Tul S5 In the Family
s’ S Editor
E=I .

=011 = 0 1=

Figure 16—Create a void that moves away from the surface when “Cut Ceiling” is unchecked

To deal with this, you can use a Yes/No parameter to drive the size of the void element.
When checked, the void will be big enough to engage the surface host. When unchecked,
it will move away from the face and disengage?.

Version Identifier

Sometimes it can be helpful to have parameters with “fixed” values. You might do this if
you are using a constant value in a formula. Or if you want to add fixed manufacturer
information. In many of my families that | build for clients, | like to add a “Version ID”
parameter. This is just a text field that | input a value to keep track of what version of the
family is being used. If you issue a version of the family to the team, and then later update
this family, this version ID can be a useful way to tell if the team is using the latest version.
Simply select the family and check the ID on Properties.

To make this ID “read only,” add the version ID in quotes in the formula field in the family
editor. This way, it will show up in the project, but will not be editable. You can use this
trick for any parameter that requires a fixed value (see Figure 17).

is does not always work as expected. Once you uncheck the void, it will not reengage with
echecking the box. So, it works well to disengage the void, but not as well to reengage it.

"BMIDWEST UNIVERSITY 2018

Properties %

Family Types .
Type the text in quotes
Recessed Downlight - | Typename: 6" Round in the formula Field
6" Round - Wall Washer
Search parameters \
Lighting Fictures (1) | Hg Edit Type AW
Constraint Y . Parameter ‘ Value ‘ ‘ Fo
onstraints 2 - —
Host ECt:mr;t:ur’vd Ceiling: 2'x 2' ACT S;:st..‘E Default Flevation 40 R S—
Elevation 180" Graphics '
Graphics P Wall Washer O =
Cut Ceiling i Square |
Text Plan Symbol < Detail ltems> Down Light Plan : Plan Symbol /
SCE Version {V1_20150526 ; Cut Ceiling (default) O = I
- T _—— B Text
SCB Version (default) V1_20150526 =

Figure 17—Create a “read only” text value for a version ID

Square or Round?

Sweeps have some unique features. One of my favorites is Trajectory Segmentation. | am
always pleased with myself when | can utilize it. When toggled on, this feature affects the
path of your sweep. Specifically, it affects the curved segments of the path and renders
them in segments instead of a smooth curve. It is listed in the help as an MEP feature. They
show an example like the one at the top of Figure 18. While this is certainly a valid use for it,
what | find most exciting about the feature is that it can controlled by parameters!

Other f : Other

TraJe:tnrySagmantatmn I Trajectory Segmentation []
Maximum Segment An... |45.000° Maximum Segment An... 4:‘:::'
= Fam The path is a
Name: 6" Round circle, but a
Round Ly Yes/No parameter

4" Round - Wall Washer toggles it from
47 squ : :
MM square to circle in \\
: ound i
VoidR |6 Round - Wall Washer @ Family Types
Trim W 8" Square %
Offset Abovd®” Square - Wall Washer |
“Round
| Light Sourceg=po nd - wall Washer | L3
| DefaultElave 8" Square
! — = E'Ssuare - Wall Washer Other

Wall Washer 0 - Tw?ctc\}- Segmentation | [/ , =f
| Maximum Segment An... 360,000°

Square [z

Plan Symboi<Detail ltems> Down Light Plan : Plan t

[

Figure 18—Trajectory segmentation can be set manually or with a parameter

Looking at the bottom of the figure, | am showing an example where | used this feature to
create a recessed downlight fixture. The same fixture can flex to different sizes and using
trajectory segmentation, can be either round or square. The path for the sweep is a circle
(shown at the right). Then the trajectory segmentation feature is linked to a family
parameter (Yes/No) that you can toggle on or off. When it is on, we get a square. When it
is off it is circular. Because the path is a circle, these are the only two options. If you use
an arc for your path, like the example, at the top of the figure, you can also change the
Maximum segmentation angle setting to get more or fewer segments along the curve.
hbers give more segments.

g.included in lighting fixture families has angle parameters that can be

“’}M IDWEST UNIVERSITY 2018
L

driven by parameters. This makes it easy to create a fixture that can toggle from a normal
spotlight to a wall washer. Just add a checkbox (Yes/No) parameter to toggle Wall Washer
on and off. Then use this in an IF formula to control the angle of the Tilt Angle built-in
parameter (see Figure 19).

Graphics R

Wall Washer O

Square
Plan Symbol<Detail Items> Down Light Plan : Plan Symbol

Cut Ceiling (defaut) / A sl
Rt va { O W .

1
Plan symbols controlled by a <Family

- Types> parameter at the type level
In the Family Editor, the angle !

of the light source changes :
with the Wall Nasher checkbox =17

Tilt Angle 90.00°
Spot Field Angle 90.00°
Spot Beam Angie 30.00°

Light Source
3

Figure 19—Use a Yes/No parameter combined with an IF formula to drive the angle of the light fixture

Two things to note about this example: First, notice that the figure shows the Front
elevation of the family and its orientation is “upside down” due its being a face-based
family. Notice that the ceiling is at the bottom; so, when you define your geometry and
behaviors, you have to take this into account. Second, the symbol used in the reflected
ceiling plan views is a 2D Detail Item family nested into this lighting fixture family. It is
possible to setup additional parameters and formulas to make the correct symbol toggle
automatically based on the Yes/No checkbox. (I will show an example of this in the “Make
a “List” Parameter” topic below in Part 2). However, in this case, since all of this is type-
based, | thought it better to manually designate each choice at the type level instead of
doing it formulaically. Sometimes, we can get carried away with the formulas and “smarts”
to the detriment of the overall experience. Once the family types are defined and saved,
there is little reason for them to change. Therefore, there is little risk involved in setting the
<Family Types> parameter value manually for an example like this.

Complex Specialized Models

Last year | participated in a reality capture workshop in Volterra Italy. (I will be returning
next month for a second one!) In the workshop, we used laser scanners and
photogrammetry to capture several buildings, historical sites and artifacts. From this we
came away with nearly a terabyte of point clouds and raw data. Over the intervening
months, | have been slowly building Revit models (when time permits) of some of the sites
using the point cloud data (see Figure 20 and Figure 21).

R
S MIDWEST UNIVERSITY 2018
g

R AUTODESK' RECAP PRO

Mayors_Statue_lsolated

B Paulaubin l\ connect - -_' — O X

e atine =y,
1 1
f s B R
y: 4225 m z -1.600 m - Window Distance ‘
AT e A -

Figure 20—Point cloud of the Volterra City Hall; Mayor’s Office

There are two basic approaches that | have been taking to achieve this:

e Linking in the Point Cloud and tracing over it with Revit geometry.

e Creating mesh models from the point cloud and using them directly in Revit.

Picture frame family
with custom molding Custom
profile“and custom I

S E textures
texture for painting ’—? 5 4 | g

Massing Family
with freeform
surfacce for

the flag

Custom
millwork
Families ——

~~ ™ Parametric chair Family
with options for overall
size and showing or not
showing arms

tom families in the Mayor of Volterra’s office

“’}MIDWEST UNIVERSITY 2018
o

Point Clouds in Revit

When working directly on the point cloud in Revit, you must link the point cloud into a
project file. Revit does not support point clouds in the family editor. This is unfortunate
since there are many times when it would be useful to be able to do so. To overcome this
limitation, | have used two techniques:

e Link a point cloud into a temporary project, use it to take measurements and build
the family separately with the data captured from the measurements.

e Link a point cloud into a temporary project, create an in-place family and then build
relative to the point cloud. In-place geometry can then be copied and pasted into a
component family while in-place edit mode is active.

Both methods can be effective, but they also both have challenges as well. | tend to rely
on the first method more often. | will often take measurements and then physically print
out views of the model with these dimensions to help me model separately in the family
editor (see Figure 22). While perhaps not very “green,” it helps to have them printed.
Minimizes the amount of back and forth between multiple screens and views.

‘ w
A ' :
\ il 3 : X
' —_—
i . L
! ;‘;y:ﬁg Ojfe Flopr, = o Mayor's Office ;I;n‘: o 7-'- . .'higyofizﬁne ;::ur 5
WV_Mayor's Desk Cut1 WV_Mayor's Desk WV_Mayor's Desk Cut
@ 110 @ 1:10 O 1:10

Figure 22—Add dimensions on working views and use to assist in modeling

The figure shows a flexible family superimposed over the point cloud that was measured
and printed out to help build it. These measured views are used in conjunction with
photographs of the same items. This method allows for good results. There are places
where compromises must be made. Particularly in areas where the point cloud might be
missing information or distorted as sometimes happens if the line of sight was
compromised during scanning.

Chandelier

The chandelier in the mayor’s office presented a nice modeling challenge. It was complex,
3 gh@rganic detailing combined with regular geometry and it had to be a light fixture.

"}M IDWEST UNIVERSITY 2018
L

with several separate lamps, create nested families for the individual lamps instead. Be
sure to check the Light Source checkbox in the nested families instead of the parent
family. But if you want these nested light fixtures to function as light fixtures in the host
project, they must also be set to “Shared” families (see Figure 23).

All nested lighting families are seen as light sources for rendering.

(— This is because they are shared Families

*
Artificial Lights - Chandlier wa PC ? X
Line-based Famlly For chaln. Grouped Lights (i @ itne
‘/_\ Individual links made From =/~ Ungrouped Lights
sweeps 1 :Council Chamber Sconce : Council Chamber Move to Group...
Leaves shaped by splines 2 :Council Chamber Sconce : Council Chamber
5 :Council Chamber Sconce : Council Chamber Remove from Group

6 :Council Chamber Sconce : Council Chamber
7 :Mayor's Office Chandelier : Mayor's Office Ch
11 :Individual Candle : Individual Candle

12 -Individual Dragon Gandle : Individual Dragor
13 ZIndividual Dragon Gandle : Individual Dragor New...

Group Options

Revolve with

transparent material 14 :Individual Dragen Candle : Individual Dragor
15 ‘Individual Dragon Candle : Individual Dragor
16 ‘Individual Dragon Candle : Individual Dragor
17 :Individual Dragon Candle : Individual Dragor
Edt.

19 Jndividual Candle : Individual Candle

Rename...

20 dndividual Candle : Individual Candle
21 :Individual Candle : Individual Candle
22 JIndividual Candle : Individual Candle

< >

==

— Shared Family
Other

Work Plane-Based [m]

Always vertical =)

Cut with Voids When Loaded

Swept Blends with voids for the
wings

Figure 23—Chandelier family

There are a few other points of note in this family. The chains are line-based families with
a nested parametric array to repeat the chain links as the family stretches to longer and
shorter sizes. To draw them at the proper 3D location and orientation, create work planes
with reference planes and/or reference lines.

Work planes are important to many of the other details as well: the revolve used for the
flame-shaped light bulbs (made from a revolve), the dragon wings (made from swept

blends and voids), the leaves (made from extrusions using splines for the freeform edges),
and finally each layer of the chandelier are built on reference planes defining each level.

TS
s‘hbMIDWEST UNIVERSITY 2018
o>

Imported Geometry

There are many organic forms in the Volterra dataset. There are plenty of statues and
sculptures and there are some flags and other fabric items like tablecloths and draperies.
If you want the model to look authentic and realistic, you need an efficient way to deal with
such items. For the backs of the chairs and the tablecloths in the council chamber, | relied
on sweeps and swept blends whose profiles and paths rely heavily on splines to give them
their organic forms. This approach can work well; but can also be quite time consuming.

There are two alternatives:

Use the massing environment. (The flags in the mayor’s office are built this way) or import
mesh geometry directly into the family editor.

To comment briefly on the flags, the main feature that is utilized to create their form is the
support for lofted forms in the massing family editor. You can select two or more shapes
(open or closed) and create a smooth transition between each of them. If you use closed
shapes, you get a solid, and open shapes will make a 3D surface. The flags use open
spline shapes and make a free-flowing surface.

It is possible to use the massing environment to create nearly any organic 3D form (don’t
believe me, check out: http://paulaubin.com/books/renaissance-revit/), solid or surface.
So, this would certainly be possible for the statues as well. But you will often pay a heavy
cost in file size and performance for these forms and not all categories are supported. To
say nothing of the steep learning curve associated with the mass environment or how
radically it deviates from the traditional user interface. And sometimes the time and effort
to do it, even if you have the expertise, can be hard to justify.

For these reasons, in the Volterra dataset, | took a different approach for the sculptures. |
imported mesh models directly into the family editor! Now, as you may well be aware,
there is a common rule of thumb in the family content creation world that says: “do not
use CAD imports”. Well, in this topic, | am going to be breaking this rule!

Revit creates solid geometry, and the results from it are often quite nice, but given the
simplicity of the solid modeling tools in the traditional family editor, it is often quite
challenging to create complex or smooth organic forms. Sometimes CAD is all you have.
Or you might have mesh models created in other software; or in the case | am discussing
here, you might have point clouds. Such cases are where mesh models provide a viable
and compelling alternative.

The approach is a bit convoluted and involves working outside of Revit in 3ds max for
some of the steps. However, since it is included with the AEC collection that most firms
have, this is not a huge obstacle for many.

Here is the summary of the process:
Juesh

irst thing ou need is a mesh. You can get these from a variety of sources. | will
I two possSibilities here. The first will be creating a mesh from a point cloud. The

http://paulaubin.com/books/renaissance-revit/

"}MIDWEST UNIVERSITY 2018
o

second will be using an existing mesh file in another file format.
Make the edges of the Mesh invisible

If you have ever tried importing a mesh into Revit, you were probably less than satisfied
with the results. Usually, all the tessellation of the mesh will show up in Revit making it
graphically unappealing for most drawing types (see the left side of Figure 24).

Without invisible edges ;. with invisible edges

Imports in Families : Impart Symbol : location <Nat -
Shared=

Generic Models : Mayors Office Statue_Inv_Edges:
Mayors Office Statue_Inv_Edges

Figure 24—Mesh models show all their facets when inserted into Revit

The solution to this is to process the mesh in 3ds max first to hide the edges of the mesh.
The mesh can be saved with the edges invisible and then brought into Revit yielding much
nicer results (see the right side of Figure 24).

Import into Revit

Once you have a processed mesh with invisible edges, import this into a Revit family.
Perform a few cleanup steps in Revit and optionally add any view-specific 2D graphics.
Save the family and use it in your projects.

Detailed Procedure to Process and Import Models

Let’s dig a little deeper into the process. As noted above, you first need a mesh. This can
be something you create from a point cloud, create in other 3D modeling software or
download from the Internet. Process will vary slightly depending on the mesh model’'s
source. For the statue models in the Volterra dataset, | created them directly from the
point cloud using the mesh service from Autodesk that is part of ReCap Pro. If you do not
have access to ReCap Pro, similar functions may be available in other point cloud
processing software.

to quic
n of the

y create a family from one of the sculptures. The first step is to isolate that
oint cloud in ReCap Pro. Use a Limit Box to do this (see Figure 25).

Drag the faces of
the Limit Bex to
isolate the object

Click ta finish
Sl CLICK o edit the Boxor use TAB 10 edn the dimensions.
ol CTRL ar! CLICK sy wge 1 rototr the ben,

You can optionally isolate collections of points to focus on just the object and remove
anything unneeded. This will involve selecting points that you want to isolate and moving
them to a named group to make them easier to work with. To make the selection easier,
you can adjust the point display. In this case the Intensity display mode offers nice
contrast. Then use a convenient selection method such as Fence to select unneeded
points. You can clip these points to hide them (see Figure 26). Repeat as required to
leave just the points you need visible.

R AUTODESK RECAP PRO

' clip the
selected points

There are other handy tools. You can select all the points of the statue and then create a
“Scan Region” from them (like a layer). This will make it easier to return to this collection

of points later. You can also create a “View State” of the current view. This will allow you

election and limit box later and zoom right to this portion of the model.

: required to create a mesh, but it will prove useful to have these later if you
dito repeatany of the steps (see Figure 27).

MIDWEST UNIVERSITY 2018

. . Optionally add a View State. This A Scan Region allows you to save the
A&, p (B o4 will save the Limit Box and view selection of points and easily reselect
orientation making it quick and them later.
fow state with the corrent view seftngs | easy to return here later.

(] Lion Statue AF v - A e - Ao -
: A o sens [R] Cowstatue 28] cow statue] CowStatue
4 Unassigned Points \] tion Statue (& tion Statue (2] tion Statue
| 2 X samllesitne . @ Mayor's Statue C x . @ Mayor's Statue @ Mayor's Statue
. s : = .
e oS e dvs= F 'm" i
P} scan Locations » Unasef S152te 2 N egion | 4 Unassigned Points
> /Annutamuns > x Scan Locations 4 May..nts o x
A 1A ~ |la 2~

Figure 27—Save your work with View States and Scan Regions making it easy to return later

With the statue isolated, you are ready to convert it to a mesh. Use the cloud-based
service for this. When you first choose Mesh from this flyout and click Start, it will prompt
you to upload your project. This might take some time (sometimes a very long time). Once
it is finished uploading, you will see the dialog on the right side of Figure 28. Give your
mesh a name, choose the “High” quality? option and select all output formats. Click
Submit. When it is finished, you will get an email indicating how to access the files.

set the options for generating the
object mesh

mesh created! :
Mayors Office Lion Statue is ready! Mayors_Office_Statue
Download now or view on A360 Drive [

fi mesh quaiity @

object mesh @) 0 =
B2 Scan projects can now be converted DU T
directly into mesh data! Edit your :
visible scene to display the points you . ;

would like to convert and click "start” Low Medium
to begin. We'll notify you in-app and
co

output farmat @

v 08B v RCM

total cost
try now free!

cloud credits buy more credits

cancel

Figure 28—Point cloud with a sculpture

ReCap Photo Workflow

Depending on the coverage of your point cloud, you might have to do some post
processing on the mesh. If you have ReCap Photo, you can open the RCM file directly
and edit it. Otherwise, you can use the OBJ model in other mesh editing software. ReCap
Photo has tools to clean up the mesh and fill holes (see Figure 29).

in the procéss you might need to reduce the number of faces in the mesh. This can be done in ReCap
as shown below) or you can come back here and try the “Medium” quality option here instead.

MIDWEST UNIVERSITY 2018

R 7 usncens [[ERE mayors_ofice_state.rcm - ReCap Ph Educaion kcenie maruwe Ox| | R [? sasoce: [N mavors_afice_statue rm - R

Use the Hele Fill kool
and click the edge of
a hole to Fill it s

H R EE &

Figure 29—Fill holes and cleanup the mesh in ReCap Photo

When you are finished with the cleanup, export the model to the format of your choice,
such as 3ds Max FBX format (see Figure 30).

J Export model X

Bl =B @

Quick Export ‘Advanced

Optimize for: |+ 3ds Max- FBX

www.autodesk comiproducls/3ds-max

Quality O Low QO Med @® High
(1] il

Figure 30—Export the completed mesh to 3ds Max

s

3ds Max Workflow

In 3ds Max, load the exported model. You may need to further process the model in 3ds
Max. In my experience, the most common things to look for are orientation, scale and
number of faces. There may also be some cameras and other items you don’t need. Feel
free to clean up and of these things (see Figure 31).

>

Y
igMIDWEST UNIVERSITY 2018

Q

Figure 31—The Orientation, scale, number of facets and excess cameras may need attention

The most important thing you need to do is hide the facet edges. To do this and preserve
their visibility when importing into Revit, we need to export using the DXF 2004 format.
This format supports up to 32,767 vertices. So, we need to make sure that the total
number of vertices is within this limit (see Figure 32).

DWG/DXF Export Warning >

orted in a DWG

This object will be skipped during Export.

Figure 32—DXF has a maximum number of vertices allowed on export

To get the number in the allowable range, you can return to ReCap Pro, and create a new
mesh using the “Medium” setting this time. But then you will have to clean up the mesh in
ReCap Photo again. Instead, you can return to ReCap Photo and use the tools to
decimate the mesh and then export it to Max again. Or, stay in 3ds Max and use the
ProOptimizer modifier. This tool will help you quantify the current number of points and
faces and allow you to reduce them if there are too many (see Figure 33).

[+1[Front] {Stand;

hed ProOptimizer
P Editable Mesh

Figure 33—DXF has a maximum number of vertices allowed on export

One you have the vertices under 32K, collapse the modifier stack to return to an Editable
Mesh. Then choose the edge select option. You want to select most of the edges. You
need to leave at least a few edges visible so that you can still select the object. These can
be on the bottom of the statue or some other i |nconsp|cuous area (see Flgure 34).

+1[Frant] [5tanda

Right-click
the stack to
collapse

Select all edges
except the very
bottom

HHH

Figure 34—Collapse the stack and select edges. Make them Invisible

Click the Invisible button to make them invisible.
Alternative with Downloaded Meshes

Another common place to get meshes is from online 3D libraries. These might come in a
variety of formats. 3ds Max can read most formats. Shown here is an example with an
airplane mesh. In this case, you will be a little more strategic about your edge selection.
Remember you need to leave at least some edges visible to allow the mesh to be
selected. Unlike the statue, with an object like an airplane, there are some obvious edges
that would be appropriate to leave visible. Items like the windows or other detailing. Maybe
the edges of the wings or other features that would benefit from a hard edge. Sometimes
odels e material IDs. This can help in selection of these elements (see Figure 35).

Figure 35—Use Select ID to select items by material ID

In this case, the material ID 2 grabs all the windows and some detailing on the wings. You
can detach these elements to make them into separate objects. This will allow for easier
selection and layering (see Figure 36).
* Edit Geometry 3 e] [Standard] [Wireframe]

Create Delete

Attach Detach

Divide

Extrude 0.0m

Bevel 0.0m

Normal: ® Group Local

Slice Plane

Cut Split
¥ Refine Ends

Weld

Figure 36—Detach a selection to create separate elements. Make the fuselage invisible

You can hide the detached items and then easily select the fuselage and other parts that
need to be invisible and repeat the process from above. The element will disappear when
not selected and will appear dashed while selected.

igure 37). Right-click each layer and make it By Layer. This will allow us to

Je color and material once imported into Reuvit.

< @ |Windows.

By Layer

3

Figure 37—View the layers after processing the file

From the File menu, choose: Export > Export. Choose DXF for Save as Type. Browse to
a location and give the file a name. In the dialog that appears, choose: AutoCAD 2004
DXF. This is important as this format is required to retain the invisible edges when

oCAD File X

Date modified Type

Quicl

cess

kac
Desktop

Libraries

L

ThisPC

Figure 38—Export as a DWF 2004

Revit Workflow

We are finally ready to import the file into Revit. In Revit, create a new Family and choose
a category and template, then import the CAD file (Figure 39).

ReEHG-G-a-e2-F0A -0 G- B3~ Gl
Create Inset Annotate View Manage Add-lns Openings Studio Quantification Site Designer Revit Express To

2 il 2 ‘

% (CAD|

Modify Impert _Image Manage Import Load Lo
CAD Images Family Types Family G

Select = Link mnnrt w1 nad from

Import CAD

Imports data or 3D geometry from other CAD programs to a Revit

Properties = project or family.

'; You can import data stored in the following formats: 30M, DGN,
bt DWG, DXF, SAT, and SKP.

B3 Edit ype Press F1 for more help

Family: Entourage

AD into a new family

4
’E MIDWEST UNIVERSITY 2018

You will probably want to disable the “Correct lines that are slightly off axis” checkbox.
Choose any other options as required and open the file (see Figure 40).

File name: ‘ Plane.DXF Vl
— v | Files of type: |DXF Files (*.dxf) ~

[Current view only Colors: Positioning: | Auto - Origin to Origin -
LayersfLevels: | Al v Place at: |Ref, Level v
Importunits: |Auto-Detect Orient to View
Took ¥ !. [Correct lines that are sightly off axis Cancel

Figure 40—Configure CAD import options

When the file comes in, all the invisible edges will be preserved making for a very nice
result. Any edges you left visible like the windows will still show (see Figure 41).

Figure 41—Invisible edges are preserved

The final step is to adjust color and materials. This is done in the Object Styles dialog. You
can remove the material designation and set the color to black. You can also delete any
unneeded layers and rename layer O if desired (see Figure 42).

[ot en %

Mocel Otyects Annaeston Dbyects Imerted Cpecs el Cbjects Anotaaon Obpecs moorisd Obect

Line Wesght Line Weight
Categorey = 1 Line Coler Line Fasterm Material cat t + e Celo e Pattemn Materisl
£ [Psjeton | | | T [Prjecion |__* |

s [m : .
I T | : LR T r—
ALHAL 1 iack Sobd - onal 25

ety Sabicategeries = (PRI ——

Deiete Rrrame - Delete Hename.

| s o o Carcel sty)
Figure 42—Adjust colors, materials and layers

all you need is the 3D, , you are done. But optionally you can import 2D geometry into

S uwed (see Figure 43)

MIDWEST UNIVERSITY 2018

= e —
Tl e P et et ey TS T TETERY | o firvtere Fre - Bemieg FAT S0 laia &)

SRy TP PR PRNCY . SJCIRNE T

I
1
1
|
I

= 3 yr=re OS2«] »
SRI| i Vi View | st 7o 5otk =enreE

yr=ia Ol G fEra e

b !
| Dctail ems : Mazking Region : Masking Region

| w-ir OFas@ERE < [> wr= v e 6 R «

Figure 43—Optionally add symbolic geometry to the 2D views

The best part of this technique is not only do we get quite satisfactory 3D results without
spending hours modeling custom and organic forms, but the files end up quite small! Take
a look at the file size for that airplane! The statue looks pretty good too (see Figure 44).

A Date modified: 2/24/2018 3:13 PM

ype: Autodesk Revit Family
Size: 1.03 MB
B | Date modified®20/2018 7:58 PM

Figure 44—Mesh imports are quite compact

Naturally, these models are not parametric. You can scale them by editing their type
properties, but they will not stretch or have other parametric behaviors. If you need those
behaviors, you'll need to consider taking the time and effort to build a native Revit model.

q~>> MIDWEST UNIVERSITY 2018
L

511—Family Editor — Beyond the basics, Part 2

In Part 2 we will explore some additional modeling techniques with an emphasis on
formula driven values. We’'ll discuss nested families for control of graphics and to leverage
category behavior. We’'ll explore some formulas, throw in some trigonometry of course
and we’ll wrap up part two with a look at cutable behavior and using <family types>
parameters to drive a list of values.

Casework

An important consideration when planning out a piece of family content is deciding how
much detail to include. Should it be simple or complex? As you might expect, there are
pros and cons to each approach. In general, however, it is good to take a “wholistic”
approach to your content planning. Let’s look at casework as an example.

| have had the opportunity to build casework libraries for several firms. Each has its own
criteria and goals. While at first it may seem that casework is a straightforward problem to
solve, there are many considerations and possible variations. Consider the images shown
in Figure 45. The 3D geometry of the example on the left uses a simple extrusion for the
entire form. It is drawn in elevation view so that the shape of the toe kick can be
incorporated into the sketch. Separate door front families are nested in and placed on the
front to represent doors and drawers. The example in the middle is based on the out-of-
the-box families. A sweep is used to create a hollow box that sits on top of separate
extrusions for the toe kick. Again, there are nested families for the door and drawer fronts.
The third example on the right uses several sweeps and extrusions to create members
representing each piece of wood and material in the actual construction of the case.

Solid Mass, Door Fronts, Simple Box, Detailed Construction,
2D Detail for Section Door Fronts Door Fronts

Figure 45—Casework examples with varying geometry strategies
iel®f thése approaches is correct? As you might expect, to answer this question we

to know more about what the specific requirements are. But ultimately, there are
ihtages and disadvantages to each approach, so it becomes a matter of preference.

“’}MIDWEST UNIVERSITY 2018
o

When you look at the front of each of these units, they look nearly the same. The only time
you can really tell the difference is when sectioning through them. If you do not anticipate
needing to section them, then the approach on the left is perfectly fine. However, if you
need a more accurate rendition of the actual case in both elevation and detail/section
views, then you might favor the approach on the right. The middle can be seen as a
compromise between the two.

Solid vs Void

In the case of the client that went with the approach on the left, we had to use voids for the
sink base units. This is because if we left those units solid, then when you add a sink you
would see the solid form from below filling the sink. By adding the void, you create an
opening below that allows for the sink (see Figure 46).

Solid Mass, Void Sink without void in Sink with void in base
used for sink bases base

Figure 46—Voids required in sink bases to properly interact with sink

There were some similar situations when glass doors were required. While | prefer to
minimize the use of voids, | did like the simplicity of this approach and the ability to have a
single extrusion for most elements in this library. Using voids allowed me to keep the
construction consistent across the whole library.

Internal Construction

The approach on the right in Figure 45 above has the advantage of showing a rendition
that is very accurate in 2D and 3D and when you section through it. This is advantageous
because you are building it as it will actually be built. This nearly eliminates any chance of
having the model show inconsistencies from plans to sections to elevations. It does
require a bit more effort to build this kind of model. There will often be more parameters
and reference planes required. And certainly, more individual pieces of geometry will be
uire e Figure 47).

MIDWEST UNIVERSITY 2018

[T e == o |] e
Wdih = 357 O] A . 1 I| o
] EQ 4 [(Q?w E" E | m _I! i
7= T= e e | 10]
i) f H\ H 5] . == i = i g
f H Jl % e Fegs—s—sssmssss= t d
e ; ST I - ”ﬂ ~ I #
i - y
i A : < [l ™ : §
. W £ Iy b= S TR 3 :
oy H & |~ i P H
=g sssdlessstha=k | | ~ i | i
éﬁIE'I_ TR |___‘:’\'J_ = P il T o | g
= : = I I 1 1 | i
ki o) 'R i | Ground
ur-rr DR PTEE < > were B Sram « ;
I 1 N ~
i
1 (]| 5 Top
| = zl | =T ~—
{ e Pl Ronr |
| i "
| |
| b il
| ik
| MK
| L
- Tl = -
Ground floor [[
were EEHSREE » et E@@EPIER ¢ b

Figure 47—Building the case in individual pieces emulating its actual construction

Alternatively, you can represent the section cut using a nested 2D component. In the
example shown on the left of Figure 45 above, this is what was done. Since the case is a
solid extrusion, when you slice through it in section, you would not see anything but a
solid. But since the Casework category supports nested 2D detail items, you can create a
fully parametric 2D Detail Item family and have it show only when the instance is cut.

T Fioo: Pl B, Livet - D211 [@) 5| |) Ot Voew Dot 0-B08ts [=E)
T I T I T :: I | TS
| I 1 [

_____ — __ e e e
[o) I B - (|| I
I & .
T “algl W -7
) i =
_____ N <R - - - - et
W | ! | " A ||| [t S
Loen e
H Vo =55 00d
Thickness Fﬁﬂls = 0.T508k, cknes Frijpts = 07500
Flastc Twin Fin (standard)
v g | i v
yr-ry BORAWEE < » - B EREE «
| 1 [é— A -
8 8 2% 8 &
- (3] Ak
1] |~ S w : a
B—t -} | B2 5
i m(:.— - = = 3 W r
ﬁ ~I1 | b g f:l;
|~ < =]
______ 5 . i
: ; " & 3TRef level
; I i e 0.0000
'ea | EQ (1
J—T\‘—* EQJ{EQ \ 2 3 5K Zinc Plated
A A I v [v
> v FEPMeE P IaR ¢ b

ted 2D Detail Item family as an alternative

"}M IDWEST UNIVERSITY 2018
L

I've built entire libraries each way, based on this experience, | do not see an obvious
advantage of one approach over the other. | think if you are consistent with whatever
approach you choose, you will find that the results are quite satisfactory in any of the three
methods showcased.

Zero and Negative Values

Sometimes you need a length parameter to support zero and negative values. The length
parameter itself can be set to any value you like: positive, negative or zero. But depending
on what that parameter is assigned to, it might break the geometry or dimensions when
you try to flex to zero and negative values. As an alternative, apply the parameters to the
Extrusion Start and/or End values of the extrusion. You can use zero and negative values
as long as the total thickness of the extrusion remains a positive value (see Figure 49).

Properties X
. In the family editor the A/
| parameter is applied to a
small extrusion

Casework (1) ~

Constraints B3 ..-—-..

Extrusion End 0.0000 =

Extrusion Start -0.5000 -k

Worlk Piane Reference Plane : Back | Ascociate Family Parameter

Graphics b

Wisible Z,

Visibility/Graphics Overrides Edit... Ex

Materials and Finishes]

. 4
. <
Properties B —— ey
e
- In the project, you can flex NN
52622 Lhese values. A value of <
zero will not break it

Casework (1) ~ Edit Type
Censtraints A oA -
Level Tevel T Apply
Host Level : Level 1 x o _—
Offset 00" —_ a
Moves With Nearby Elements [m]
Construction
F Extension Length Left 06
Extension Length Right 0o
Identity Nata

Figure 49—Parameters assigned to the Extrusion Start and End values can be any number if the total thickness
remains positive

Options Lists

When building libraries for casework manufacturers, they often have many options and
variations possible. While many can certainly be included in the model, many options do
not need to be modeled at all. Consider options like variations in hinges or drawer sliders
or changes in the construction of the case. They can be included as shared parameters
that can be included on schedules. This is the most efficient way to include options. |
usually like to include a tooltip in these parameters so that users will know which options
to choose (see Figure 50).

Sometimes the option can also drive geometry. But the nice thing about shared
parameters is that they can appear in schedules and tags regardless of whether or not
they are used to drive the family’s geometry.

 MIDWEST UNIVERSITY 2018

Construction | w
Extension Length Left (defautt) 00000
Extension Length Right (defoutt) 00000

shared ter fie:
Style< Casework> Majestic = . ared parameter file:
Cobinet Backs 174" Hardboard] O |Family parameter Bro: Create
Cabinet Tops_Full Sub Top 2 s in schecsof tage)
Drawer Bottoms White Faced Hardboard ¥ =
False Sink Front - (®) Shared parameter i
Einiched Ends, All Ends Fimished % (Can be shared by mutple projects and families, exported o 08 p,,,
Glass in Doors_3/16" Tempered 7 appear in schedules and tags) oy R i
Removable Back [m] ‘ New..
Shelf Thickness All Shehves 1 Thick 0 2z —
Tight Reveal Eighth Ly [l = —— EopeTes Ry
Tight Reveal Siteenth | Shelf Thickness_All Shelves 1" Thick = = —
To rat Uncheck for 3/4", 1" If Cabinet Is 36" Wide or More : Shelf Thickness_All Shelves 1" Thick Parameter Properties ‘ x
Drawer Slides ulterer FR1921)
File Drawer Slides 100# Full Ext Zinc Coated (Fulterer FR5000) - Discipine: —

Shelf Thickness_All Shelves 1° Thick

tyle
| Toe Space_Integral
Ui | vermin Control

K

C Tooltip Description:)
r

=
oK Cancel

Figure 50—Name checkboxes carefully and use tooltips to show what the unchecked state is

Controlling Reveals with Formulas

All three strategies above use nested families for the door and drawer fronts. These are
simple families with an extrusion or sweep for the solid panel portion of the door/drawer
front. Additional families are nested in for the hardware. In many cases, there are setback
and reveal requirements around all four edges of the door or drawer front. This is
accomplished with reference planes and parameters in the door/drawer family. The size of
the reveals is then driven by parameters in the host family to which the door/drawer family
is nested (see Figure 51).

Reveals — %

e

In some cases, | set these values at the type level manually in the family or with a type
catalog if there are many variations. However, in the case of one collection, there were
very specific rules about the reveals. There are three possibilities: “Standard,” “Eight Inch
Tight Reveals” and “Sixteenth Inch Tight Reveals.” Furthermore, there are different styles
for the fronts. One of the styles uses different values for reveals than the others.

BMIDWEST UNIVERSITY 2018

This could have all been controlled in a type catalog, but we decided to control it with
formulas instead. Since there are more than two possibilities, we needed to nest
conditional statements. The formulas look at three Yes/No parameters. One of them is a
check to see if the style of the door/drawer fronts is set to the “Millennium” style.
(Millennium uses different rules than the rest). If not, then it looks at two other
checkboxes: Eight and Sixteenth. These two checkboxes create three possibilities: Only
Eight checked, only sixteenth checked, and in the case where they are either both
checked or both unchecked, the result is the same (see Figure 52).

@

" " R " " " f @
{1/4 118 g l{1/4 1/8 Ty ‘{1/4 1/1e Ty B
il q. i j{ ki e h SN
¥ -
@ @
T S iS
:é‘: by
re ~ - ~
< - ~ 2 < < P \(\' < < P \2 <
-
14,1 A 1Al A LA A\
/ ’ / v
Standard Reveals | . Eight Tight Reveals 4 / Sixteenth Tight Reveals
\ / y
N [/ ~
4 -~
N / -
N / ~
/ >
~ - - . / - e
A N A -
— — I — I — |l — N
1 4 2 . 3
A101 A101 A101
T >~ >
- AN - ~ -~ <
~ -~ ~ -~ ~ e
~ - ~ - ~ ~
Level 1
- - OI - O"
=, —
Tight Reveal Eighth | ' Tight Reveal Eighth \ ' Tight Reveal Eighth o)
Tight Reveal Sixteenth iy, Tight Reveal Sideenth 0o/ Tight Reveal Sixteenth 2./
— gial . et preeimteT i
Drawer Slides 73% 3/4 Bxt Epoxy Coated (Fulterer FR192T) ¢ Drawer Slides 75# 3/4 Ext Epoxy Coated (Fulterer FR1821) Drawer Slides 75% 3/4 Ext Epoxy Coated (Fulte
File Drawer Siides 100% Full Ext Zinc Coated (Fulterer FRS000) Eile Drawer Slides 100% Full Ext Zinc Coated (Fulterer FR5000) Eiie Drawer Siides 100% Full B¢ Zinc Coated (Fulte
Reveals Standard Reveals Reve Eighth Inch Tight Reveals Reveals Siteenth Inch Tight Reveals
RV Top Bottom o RV Top Eottom [RV Top Bottom 0' 01/8"
RV Left Right I RV Left Right RV Left Right 3
61 - Vi GV
GHI GH1 G
Parameter Value Formula
Tight Reveal Eighth [
Tight Reveal Sixteenth =
Toe Space_|ntegral = -
Drawer Slides 75% 3/4 Ext Epoxy Costed (Fulterer FR1S31] =
100# Full Ext Zinc Coated (Fulterer FR3000) =
Siteenth inch Tight Reveals = if(and(Tight Reveal Eighth, Tight Reveal Sixteenth), "Standard Reveals”, if(and(Tight Reveal Eighth, not{INV is Millennium}), *Eighth Inch Tight Reveals”, if (and(Tight Reveal Sixteent
op = f(and(Tight Reveal Eighth, Tight Reveal Sixteenth), 0.5", if(or(and(Tight Reveal Eighth, not(INV_Is Millennium)), and{(Tight Reveal Siteenth, not(INV_Is Millenniumi)), 0.125" 0.5%))
RV Left Right = #(INV_i5 Millenmium, 0.5 if(and(Tight Reveal Eighth, Tight Reveal Sixteenth), 0.4375" if(Tight Reveal Eighth, 0.125", i (Tight Reveal Sixteenth, 0.0625") 0.4375))
= (INV_is Millennium, 025", 0.125%)
= if(and(Tight Reveal Eighth, Tight Reveal Sixteenth), 0.25', if{or(and(Tight Reveal Eighth, not(INV_is Millennium), and(Tight Reveal Sixteenth, not(INV_is ium])), 0.125"0.25%)

2—Formul&s with IF statements drive the sizes of the reveals

e
‘

Here is the formula for the left and right reveal from the figure as an example:

if(INV_Is Millennium, 0.5", if(and(Tight Reveal Eighth, Tight Reveal Sixteenth),
0.4375", if(Tight Reveal Eighth, 0.125", if(Tight Reveal Sixteenth, 0.0625", 0.4375"))))

The first IF checks to see if the item is set to Millennium. If so, the reveal is: ¥2". If this is
true, then no further query is performed. If not, a nested IF asks if both the eight and
sixteenth checkboxes are checked. If so, we have “Standard” reveals and the value is set
to: 7/16". If this is not true, then two more nested IF statements come next to ask if only
one of the boxes is checked. If eight is checked, the value is set to: 1/8". If not and
sixteenth is checked, then the value is assigned to: 1/16". If none of those are true, (both
boxes are unchecked) then Standard Reveals are used, and it assigns a value of: 7/16".

E]MIDWEST UNIVERSITY 2018

The formulas for the top and bottom and interior conditions are similar.

| would prefer this were simpler. My number one wish for new features in the family editor is
a true list parameter! (That and concatenation). And while there are work arounds to lists
(see the “Make a “List” Parameter” topic below), in cases like this with a few checkboxes
and some carefully tested formulas, you can arrive at almost the same user experience. The
trick here is making result of both eight and sixteenth or neither eight and sixteenth equal
checked equal the standard reveals. This makes it less likely the user will make a mistake.
They must be sure to check only one of the two boxes if they don’t want standard reveals.

Profile Family Rotation

Rotation is a common challenge in many pieces of family content. There are a variety of
techniques that are in common use. Using a reference line is the typical “go to” solution.
This is effective for many simple examples. Here | am showcasing an alternative that can
work well for some common scenarios (like door swings), but also in many other areas as
well like the examples shown in Figure 53.

Propeiies x Properies x

= . Orafting Table
n Boor D@ COTC-70

Dooet (1) +| B it Type Comcek (1 < i et Type
Constraints 2~ Congtasinty. &

Level [E=eelT |
tere o e o
Sl Henght 3 | Ofuet o
{ Constnction £ Meves With Nearty Elem... [
Frame Type Geaphics
Materials and Finishes Drafting Table ngle 20007
Frame Materisl Tidamnie Mo
Finish
Dimengicoens
Saing

User checks
these boxes

Right Lesf Open

= notikeft Leat Gpen)

= nck{Faght Leal Open)

= ileft Leaf Open, 0%, -50°)
= #iRight Lesf Open, 0°, 507)

Formulas in 7 4o
the Family

e rotation parameter of nested profile families in sweeps

<

<
’QQMIDWEST UNIVERSITY 2018

The trick is to assign a parameter to the rotation parameter of the profile used to form a
sweep. The example in the middle is the simplest one. A drafting table with adjustable
angle. The surface of the drafting table is a sweep. The profile of the sweep is a long thin
rectangle. The parameter is assigned to the Angle parameter of the sweep profile. The
mobile lab table to the right uses the same approach, only the sweep is inside a nested
family for counter in this one (see Figure 54).

Properties

x

=
. X
Casewark (1)

Materials and Finishes
Material

{Laminate, Linen, Matte =

~| £ Edit Type

Identity Data
Subcategory i=None>
Solid/Veid ‘Solid

Profile
Profile

PRF_Rectangle: Leaf

Horizontal Profile Offset 0"

Vertical Profile Offset 0"

Angle

Profile Is Flipped

Other
Trajectory Segmentation

|

f Associate Family Parameter

| Erofie : Profile

Figure 54—Sweeps have a built-in Angle parameter that can be driven with a family parameter

The door is similar but adds a second sweep for the glazing component. Both the sweep
for the door panel and the glazing use the same angle parameter. There is also a void
sweep in the same size as the glazing sweep to cut the door panel. The glazing sweeps
use an offset built into the family to shift the profile shape from the origin. The origin
remains at the hinge pomt of the door to allow for the proper rotation (see Figure 55).

Window Families

Reynore -
Model Type Propertie X
WManufacturer
Type Comments Family: PRF_Daor v Load. ..
URL
Descril ption Type: Glazing ~ Duplicate. ..
Assembly Code
Rename...
Properties help
Propertis hel S
Project Browser -Doorifa | Parameter Value |
- 3D Views Structural 2 \
o View 1 Section Shape Nt Defined
- Hevatons (Elevation 1) ey
- Exterior b [ofcet 21"]
* . Interior . e A
[X 0" 01/4 Y =l
'R‘ght Y o8 \\ = Associate Family Parameter
Identity Data
. Sections (Seftion 1) - "
o Typelmage /\-h Offset =2 - 1 4
0 Families Keynote
Annotation Model ;
Brofiles Manufacturer
-
& PAF Door Type Comments Profile.in i
- Glazing R Family Editor i
i lite Description . :
Panel Rssembly Code origin J
o Walls Cost .
- Basic Wall Section Mame Key EQ EQ
o] Groups Aszembly Description Y
3 Type Mark ¥=0-¢
= ReitLinks o W i

Figure 55—Add an offset in the profile family to adjust the center of rotation

Offset parameter shifts
the profile shape

| Path: Sketch |

Angle parameter rotates_/
around the sketch path

\hen cre ating a library of components, | often start by identifying the common features
ants and then building these into a series of components and “seed” families.

just a starting point family that has as many of the features | need in it and

. Then | can save copies from that seed to make the library. | discussed

ST UNIVERSITY 2018

casework above. | built seeds for each of those libraries before starting. In this topic, | will
show a library of windows.

Most of these windows use the same set of nested components. There is a sash family. This
gets nested into another subcomponent and hosted to a reference line. This reference line
can rotate the window sash and by positioning it differently, we can use the same nested
family to create casement, awning, hopper and fixed windows. Since they all use the same
nested sash components, they all benefit from behaviors built into the sash families. The most
important feature in this case is the inclusion of several muntin patterns. Included are a single
pane to up to a 5x5 pattern giving five different versions of the family (see Figure 56).

Nest 1 Reference line Nest 2
with rotation
- parameter

Clean
Jjeints

Face-based family with an
Nest in sash extrusion for the muntin
Families with T pattern. (Separate
muntins. (Save —~_families for each pattern)
and control choice separate Families T~

with a <Family types> For each muntin
parameter condition)

ka'

! —
Windows:3x3:3x3

|

Nest in all varia

Figure 56—Add an offset in the profile family to adjust the center of rotation

| decided to build the muntin patterns separately for each configuration. In other words, |
am not doing flexible arrays and trying to build it all into a single family. The main reason
for this is that is by using a single extrusion for the muntin pattern, all the intersections will
clean up. If they were arrays, they would overlap and show seams. The down side of
building them this way is that | need to make several versions; one for each muntin
pattern. We therefore limited this to the following: None, 2x2, 3x3, 4x4 and 5x5. However,
there are parameters that allow the outer bays to vary from the inner ones, so they do not
have to all be equal. This gives some variation to the collection (see Figure 57).

MIDWEST UNIVERSITY 2018

WULsIUE LPEpLn

Frame Width Sill

Frame Width Jamb_2

Frame Width Jamb_1

Frame Width Head

Frame Depth {default)

Sash Depth Offset

Muntin Width

Muntin Thickness

Offset from Wall Centerline (default)

gEeeeaegsaE
o

Space Vertical Lites Equally (default)

[
Space Horizontal Lites Equally (default) [
Lite Width Right (default) 0
Lite Width Left (default) o
i
i
Sx
||
|

Lite Height Top (default)

Lite Height Bottom (default)

Grille Pattern<Windows> (default)
LCLLER == = s (= L1
Frame Depth matches Wall Thickness (default)
Wall Closure By host
Construction Type

Open in 30 (default)

SCB Version (default) §V1_201 61004

Window Trim Material M2 Wood - Window Trim
Window Muntin Material 148 Metal - Steel, Polished
Window Sealant Material Rubber, Black

Window Glazing Material 102_Glass

Figure 57—Outer bays can optionally vary from the internal ones

These windows also feature 2D symbolic graphics that show in plan and elevation views.
This includes support for coarse, medium and fine levels of detail (see Figure 58).

| i - r—---"- - - - - - |
b | I |
I 1] H.[:Lu:]Eﬂ
P | - |
Coarse Fine
Pl Symbolic lines A = 30 Geometry
! \ Fi Y
! \ /! \
! Y ! Y
! Y ! Ay
! \ Y I / \ A\ !
! N N / ! A 5 !
Ay I kY !
oS NS
—ig—— —ig—

Figure 58—Symbolic linework in plan and elevation supports varying levels of detail

Finally, they have materials, sealant on the outside, trim on the inside and features that
allow them to be centered or offset in plan as user needs require.

sa;> MIDWEST UNIVERSITY 2018

Electrical Fixtures

This topic will look at some electrical fixture families. They use a simple 3D representation
in elevations and 3D. In plans, they use scale-dependent 2D symbolic graphics. They can
be inserted at various mounting heights. When the height is different than the default, a
label displays the height value in plans. Furthermore, there are several toggles to control
the different kinds of fixtures: GFI, Dedicated Circuit, 220V, etc.

Face-based or Freestanding

In the “Face-based and Work Plane-based Families” topic in Part 1, | discussed some
pros and cons of face-based families. As | noted there, these are very popular for many
kinds of content. This typically includes electrical fixtures. One very nice feature of face-
based families is the Default Elevation parameter. When you place a face-based family in
a plan view, using the place on a vertical face option, this value will be used as its
placement height. You can move the instance later as required. This default is only used
when inserting in a plan view. This feature coupled with hosting behavior are attractive
features for electrical fixture families.

However, most electrical fixtures also have special requirements for plan views that differ
from elevations and 3D. In plan we typically want to show a symbolic representation.
Furthermore, we typically want this 2D plan symbol to adjust with the scale of the view,
while in elevations and 3D we typically want to see an actual 3D representation. For
simple fixtures, these requirements are quite easy to satisfy. But when there are more
requirements, the features and benefits begin becoming more complicated and more
difficult to satisfy. The items | have here had the additional requirement of showing text in
plan views to indicate the type of fixture and the mounting height above the floor.

The mounting height presents the biggest challenge. The level in a face-based family is in
a different view and orientation than it will be in the project. The Default Elevation
parameter is a “default” parameter. Once the item is inserted, the object will have an
Elevation parameter instead. Some elements also have an Offset parameter. All of these
are built-in parameters and none of them are available to tags or schedules. So, the
solution many folks arrive at is creating a custom shared parameter for the mounting
height instead. The trouble with that approach is that with a face-based family it is difficult
to control this reliably. Furthermore, face-based families can be inserted on any face. But
if you want specialized and scale-dependent 2D graphics in plan views, you must make
assumptions about the insertion of these families so that you can introduce the 2D
symbolic graphics in the correct view of the family to make sure they appear in the
project’s plan view. Most of the time, these issues and their potential problems can be
mitigated, while staying with a face-based solution. But there is another alternative: Don’t’
use face-based, instead, make the electrical fixture content non-hosted.

Non-hosted elements eliminate any of the orientation issues. They have a fixed reference
level and rlentatlon You can place them in plans easily and use a custom shared

" parameter towgontrol the mounting height. This parameter measures from the reference

ppear in tags and schedules (see Figure 59).

<
’EQMIDWEST UNIVERSITY 2018

Nested 2D Components

Flgure 59—Electrical symbols with nested annotation families for plan views

[flestosFont - W Gt (o Hortd E=a ey =) =) ' =@
Family Editor . biate Width = 0" 4 <
Yiews e n/—p-r E
|
= it X
& Eca ¢ b
[0 A & o i
§ il N 1 [e
=i =i 5 1
& ! 5 S o]
a 0!] 1] | & |
b | 2 ~ Ry
________ S iily oo EIRBfEevL | \ n I
i R 0-0" \ m‘_x{;\ P 11
| wli = = J a [Il
Family Types ¥ Two types control size " pers OSRESHER ¢ ool et - ectacl Ot =&
e nane: [bomy = Project View i
i % 220v
Parameter | Vahae | Feemula [voer | 4 \GF
Hide Mounting Height (defaul) |m] I LTI T S -
Hansantal Label [default] =] Instance-based b Mok .
A f ChEcKBoXes GoNtrolns _——— |
[w] = labels in project | M
= prej r“‘*-‘_
' =
o 0L > o
g £]
o 0 _GFI
P 0 - ' ogn
: GFI @ 3' - 8"AFF
. ~— :
o : . = S~ l
= andinutiHide Moantang Heght), Meunting N
notiDuple) pr=ve B Gerae < |
O 'm[.‘“"] P l .I were D@5 ki@ ¢ RETE < >
HIGFL "G, #{Separate Circuit, *3C7, |~ ¥ &0 £ - O

For the plan view, nest in one or more Generic Annotation families. Generic Annotation

families respond to the scale of the view.

This will allow the graphics in the nested family

to adjust with the project view's scale. You can add as many custom shared parameters
as required for the desired text labels (see Figure 60).

Select parameters o 3dd to the label. Parameters will be combined inta 2 single label.
Enter sample values to represent this label in the family environment.

Category Parameters Label Parameters

X

<
I [
O)p Two sets of labels to

allow For horizontal and

[Iwrap between parameters only

Select available fields from:

Parameter Name Spaces| Prefix

Sample Value | Suffix |Break] vertical orientations.

Generic Annotations 1|Anne 1

KK

—_—

220 Label

H

H220

H AFF
Horizontal
Keep Readzble
Mounting H
Show 220v
Show Height

v

H

+

\

4

tE $E # &

oK

L—eo—

Cancel Apply |

Figure 60—2D symbols created from Generic Annotation families with custom labels

Using IF, AND, OR and NOT conditional

statements in the formula fields, you can control

when each label displays, and which combinations are allowable.

q~>> MIDWEST UNIVERSITY 2018
L

in open plan situations), but also means that these will not attach automatically to the
faces of walls and other geometry. If you want them to move when the wall moves, you
will need to use align and lock instead. So, like some many similar solutions, it is your job
as the family author to carefully weigh the pros and cons of each approach you implement
and be sure to clearly communicate the overall behavior and features to your team.

Parking Spaces

The out-of-the-box parking space family works well for simple layouts. It uses an angle
parameter to change the angle of the spaces. It does not have an accessible space
option. It also does not work especially well on curved layouts. Here | will show two
alternative parking space families that address these issues.

General Parking Space Features

The parking space family itself has parameters to control the length and width of the
space. There is also an angular parameter to control the angle of the space. In this family,
that angle is used in formulas that employ some trigonometry rather than being applied
directly to the geometry. The result is the same, but in many cases the trig can be more
stable. This is because the calculation is performed mathematically regardless of the
angle value. The space includes a stripe on both sides, but one of them is off by default. It
has an instance parameter to control it. You can toggle this at just the ends that need it.

There is also a reference plane and parameter to control the minimum backup distance.
You can use the align tool or dimensions with this reference plane to assist in placement.
There is an accessibility symbol that can be toggled on and off in the accessible space. All
families use type catalogs to manage the various types. Out-of-the-box subcategories
were preserved. So certain parts of the families like guidelines and striping can have
separate visibility settings. In coarse level of detail, striping changes to single line display
(see Figure 61).

MIDWEST UNIVERSITY 2018

Counts show on the schedule

This view is set to Medium and shows the double line
parking stripes. They defautl to 4" wide. In Course, they
display single lines. The sweep is hidden. Open the Site
plane to see an example.

There is a checkbox to show the stripe on
the right. This is instance, so you must
ungroup the array. Do this after quantities
are pinned down.

il
\

I
The family has a parameter that displays this
/—dislance, but it is just info. It does not control how
far apart the spaces are placed. You must do this
\

L
\

\\ v

|

|

\ F
Leave them as arrays if you want to change the guantities

|

Currently, this line has a toggle to turn
it on or off. There is not a 3D stripe
here currently. It is easy to add if
desired. Just make a new sweep in the
family along this line.

\
r

/
. \

/ |
All three families have options for

\) | ADA spaces. Ungroup arrays to

\ | change the type of just some of them. -

®%?‘=11'~(T
The families all use type catalogs to load various
types.

Farking Sobedie » Most overall dimension parameters are type
Fam Ty avd Type Cont [conmaik | based.
o —S . + All angular parameters are calculated fio:
FathaSpane AOAT T T TEdeg % automatically.]
o Tooltips appear for most parameters to explain 'f’

CParkha space_Gorcate o ¥ 15

Fatkig Spac:_Cowex. 83 1% 11

Farhiig Spacs.Cowes ADA VAR 73 17 T |]

Lot St : L their function and use. {
Instance parameters control some of the \\

graphical settings.
Out of the box sub-categories are used to stay
compatible with the OTB template and families for

This view shows Course level of detail (Single line sfriping).

the Parking category.
Families can be flipped, but there might be a need

.

for a few more variations to accomodate the

Site
T=20T

accessible aisle and symbol.

Figure 61—Parking space families

Parking Accessible Aisle
The parking space family has the two stripes, controlled by visibility toggles and simple trig
formulas for the angles. The accessible aisle is a separate nested family (see Figure 62).

R
L MIDWEST UNIVERSITY 2018
g

| AN .
| I pw= 9 -3 1318" |
[Eorily Typts - *® Nested
| Accessibility
| Tivenane: [ana o 1 - 75 deg ~ oE Alsle Family
| [soarch parsmerers Q
| Parameter | Value | Formnula | Lecka |
! |Constraints W\
| Vi ackout Dtance [—— O
| |aripeT o onE = O |
1 |sripew L =] |
Graphics |
Show Beth Stripes (defaul) O . |
[Show Curb Line = Options
Shcrey Surighe Stige [delalt] [=] |
Materials and Finishes |
| [Material Farking Stripe 3 |
| Dimensions E |
| [Acees uste Wit 5T [N -
Angle 7500 = o |
Parking Length 1 (=] = |
Parking Width ¥ = W |
General o |
Include Access Aisle =
Inchade Accesibility Symbeol = Options |
|
= and(Show Both Stapes, notiindude Aces i |
: T & = Parking Length - Seripe W ' |
pa R = Perking Length * costingle) =]
¥l 17 4 = Patking Length * sniAngle) =] 1 |
| ‘ . EF T = Parkirg Wielth | sen{fnglr) = | \ |
< 3 | Vol
&ty ¥y 1s 3 4 & Trig Formulas Manage Lookun Tables ' I
. controlling the Iy I I
How do [mensas famdy tros!] \
angled stripes [] coen Aoply o= 472002 | o= 4 72002 |
& PRF St mll ’ 7 / 7

Figure 62—Parking space in the family editor

The real complexity in this family is buried inside the accessibility aisle nested family. The
diagonal stripes in the aisle are at a fixed 4'-0" distance apart from one another and locked
at a 45° angle to the sides of the aisle. However, when the angle of the parking space
changes, the stripes near the top (particularly stripes 2 and 3) can terminate either on the
opposite parallel side or on the horizontal. This condition necessitated some extra
parameters, and conditional formulas (see Figure 63).

| opwz5-2im | ; : ‘ =7- |
/'p"“%/ Stripe 3 ends on the vertical edge =7 0275
ea L Eo with an Angle of 15° and ends on e | E0

the horizontal with an Angle of 45°

oo
oo

=}
W K
= B
N " 3Y: o . _ I " .
R ZaT
o - @ D
g . 2 2
& o 5 &
=
&
T
=3
@ .
B
&
@
&
™
I &~
ﬁ "
= =
- . -
" =
= Other =
StripeZa = (Parking Length - 12' 4") * Mult W w
Stripedh = (Stripe2a * sin(45°) * sin(Angle]) / sin(180° - 45° - Angle) I
StripedV = if(Stripe2h < pw, 0', Stripe2s - Parking Width) |/ z
Stripesshib = Stripe3b - (Parking Width / sin(457)) N
- Stripeda = (Parking Length - 8 4"] * Muit
\ = R B = Stripe3h / 5in(45%) |
\ >] E:mpsih |
\ =Y = ripesV
A g s |
' [fzmb = Barking Width * sin(Angle) |
e == 3, 9ps = Parking Length ~ cos(Angle) |
@ p = PBarking Length * sin{Angle) |
5 fow = Parking Width / sin(Angle)
yi = (Parking Width - 3' 2 * Mult smh=3'-5 718"
Wit i =1 gl

| ' | | |
pa=4-67/8" | v : pa=12'-5 26/32" |/
pa=4'-(7/8" ’W‘ f ' pa=12'-5 20/32"

3—Parking aisle family with complex trig formulas ensuring that all sweeps terminate properly when

e

BaMIDWEST UNIVERSITY 2018

<

Everything is driven by the Angle, Parking Length and Parking Width parameters. The
stripe geometry are sweeps. These use the Pick Path option and the paths are the model
lines that are used for the coarse level of detail display. Therefore, the formulas are
constraining these model lines (which are the centerlines of the sweeps). The collection of
parameters at the bottom of the Other grouping (sma, smb, pa, pl and y1) are just like the
ones in the parent family and shape the overall aisle.

The rest of the parameters and formulas serve the two IF formulas: (one for Stripe2V and
the other for Stripe3V). Let’s dig into the formulas for Stripe3V (see Table 1). Stripe3V
sets the location of the right endpoint of the third stripe.

Table 1—Stripe 3 Formulas

Parameter Formula

Stripe3V if(Stripe3h / sin(Angle) < pw, 0', Stripe3SMb * sin(180° - 45° - Angle))
pw Parking Width / sin(Angle)

Stripe3h (Stripe3a * sin(45°) * sin(Angle)) / sin(180° - 45° - Angle)

Stripe3a (Parking Length - 8" 4") * Mult

Mult 1

Stripe3SMb Stripe3b - (Parking Width / sin(45°))

Stripe3b Stripe3h / sin(45°)

I've colored the parameters in the table to make it easier to follow their relationships to
each other. Trigonometry is about triangles3. We need to create these triangles
strategically to help us figure out what we need from what we know. As noted above, the
user inputs are the Angle, the Parking Width and the Parking Length parameters. We
can use those in the formulas to form triangles and derive the other values we need.

Let’s start with the value of pw. It is the same as Parking Width when the Angle is 90°.
But when you rotate the aisle to another angle, pw becomes the hypotenuse of a triangle
where we know a side and the angle. Thus, the SIN function helps us solve it.

Next, we have Stripe3h. If you take the third stripe and extend it to the right to make a
triangle with the top edge and then consider the height of that triangle with the left side as
the base, we are calling this height: Stripe3h. Since Stripe3h is non-horizontal for any
value of Angle other than 90°, the first part of the formula uses the SIN function to find the
g horizontal of component of this small triangle and compares to see if it is less

: end of this paper, I've provided a copy of the trigonometry cheat sheet for Revit that will assist you in
aper formulas based on what parts of the triangle you know.

TS
s‘hbMIDWEST UNIVERSITY 2018
o>

than the value of pw. If so, then Stripe 3 attaches to the horizontal and the value of
Stripe3V is zero. Otherwise, it calculates how far to shift the endpoint down. This formula
has other parameters nested in it. So, let’s look at those next.

The height of the main triangle is called: Stripe3h. This parameter’s formula refers to
another parameter: Stripe3a and some other trig functions derived from the law of sines.
The law of sines can be used when you do not have a right-triangle, but you know all the
angles and at least one side. This is what we have here. We know that one of the angles
is 45° (this is fixed), and the other is the input value of the Angle parameter. And since we
know that triangles are a total of 180° we can calculate the third angle as well. The law of
sines says that the ratio of the angle to the side opposite the angle is equal for each such
pair around the triangle. (The ratio of side a to angle A equals side b to angle B and side ¢
to angle C).

We have the base of this non-right triangle (Stripe3a). Stripe3a is determined using
simple arithmetic. It takes the length of the parking space (one of our inputs) and subtracts
a fixed value from the constraints locked into the family with the dimensions noted above.
The Mult parameter is used to prevent accidental edits. You can make a parameter a
permanent constant by putting the value you want in the formula field. In this case, this is
just a value of: 1. This allows us to multiply this by any other value and make the result
read only. This is like the strategy noted in the “Version Identifier” topic above in Part 1 to
add a read-only version ID to families.

With the length of Stripe3a and the angles, we can construct a formula using the law of
sines, simplify it and use it to find Stripe3h. With that value, we can find the final values
we need with simple trig functions again (see Figure 64).

Angle at: 90- Angle at: 75- Stripesh / sin{Angle) Angle at: 45-

iure 64—nderstanding parking aisle formulas

"}MIDWEST UNIVERSITY 2018
o

Parking space following a curve

To create a parking space that follows a curve, the math is a little different. Here the goal
is to have the stripes follow the radius of the curve. It is possible to create one family for
this that you can toggle from concave to convex. | considered this, but | am always
cognizant of creating families that are too complex. There is a fine line between complex
functional families and so-called “super” families. Many of the families | have showcased
in this session are right on the border to be sure. And some of you might argue that |
missed the mark and have in fact created super families or excessively complex ones.
However, even though the line between functional but complex and super is not
empirically defined, a good way to remove complexity in a family is to simply make two
families. If a toggle switch makes a major change to the family’s behavior, you might
consider just doing a “save as” instead. That is what | did here. | have a convex version
and a concave version. They are quite similar to one another, but since the formulas and
trig already added a good deal of complexity, making two helped keep them manageabile.

Comparing these two families to the straight one, there are a few major differences: The
edges are not parallel to each other. They do not have the angle parameter, so they are
always 90° relative to the curve. And their insertion point is centered on the parking space
rather than being at the edge. Here is a look at the family (see Figure 65).

Famnily Types x

Tyme rame: | ADA VAN 1Y x 1 ~| @ |
Connectors Datum Werk Flane Famnily Editor

Parsmeter | Value | Formula [~

e P e o A — = = :
\-'::':"al\ wut Distance (info; ‘ Z_ ; [! = ! Sagitta sets the
Stripe W v . | i, distance between
Sagitta controls twé the top two
rise” of the arc. | ~ reference planes
: - i =

Graphics
Shaw Bath Stripes (default) [
Shaw Curb Line

=]
Show Single Stnpe (defaull) ||

Faeking Stripe

50

W

Parking Width mnao o

Curb Radius 00 0 - ~ Inputs
Girneral

Include Aecess Aisle

Inchude Accessibility Symbol | [

Insertion
point

=180

notfinclude Access Aisle)

Zacking Lenglh

. Display of
the aisle is
optional

Doth Stripes, notlinchude Access Aishe])
nigth

w o

The Curb Radius
drives most
parameters.
Divide the space
in half and create
long thin triangles.

ng Length)

Farking Lengthi)
nter ¥ Absle Fromd = 7' - 11
rile v Angle Hall Anle

=

er parking family, the user has a few inputs like: Parking Length and
. This time however, instead of an Angle parameter, there is Curb Radius.
eference planes at the top. In the case of the space pictured, the top one is

You_heed two

“’}M IDWEST UNIVERSITY 2018
L

the insertion point and the one below it sets the end points of the stripes. (It would be
reversed in the convex version). You have a shallow arc passing between these two
locations. The distance between these two, the rise of the arc, is called “Sagitta” in
mathematics. You can calculate the Sagitta from a chord length and the radius. Both of
which we have since these are the user inputs (see Figure 66).

Chord Length

Formula:

sagitta =1 + r? —[?

Revit format:
; Curb Radlus - sqri((Curb Radius ~ 2 - (pw / 2) ~ 2))

Figure 66—Understanding the formula for finding the “rise” of the curve known as the Sagitta

If you look carefully at that formula, it is just a derivation of the Pythagorean theorem. The
endpoints of the stripes at the other end of the parking space form easy to identify
triangles. If you refer back to the previous figure, you will see that those calculations are
all based on the user inputs for parking length and width and deriving triangles from half
the width of the parking space. When you add the accessible aisle, it gets slightly more
complicated and we must calculate a few additional angles.

| am showing the concave curve here. The convex version is very similar. Everything is
just reversed.

Shower Family

This topic will feature a shower family. There are several features built into this family that
| would like to showcase here. These include graphics, cutable behavior, controlling
options parametrically and a work around for creating a list of options.

bV isibility (Cutable or non-cutable)

start withithe graphics. We wanted the shower pan to show as cut in sections (with a
yrofile lin€ around it). Trouble is, the Plumbing Fixture category is not cutable. So

TS
s‘hbMIDWEST UNIVERSITY 2018
o>

what to do? If you insert a nested family that IS a cutable category, it will happily display
as cut even while its host displays in projection. In this example, the solution was to nest
in a Generic Model for the shower pan (see Figure 67). You can see which categories are
cutable in Object Styles.

+ This is solid geometry
o directly in the Family. Tt [
does not show cut since

Flumbing Fixtures is not
a cutable category.
/ }j Make this a }3
nested generic
model family

Level 1 "
Ol _ Oll

Figure 67—To make part of the family cutable, nest in a family in a cutable category

Nested Family Visibility (Shared vs Non-Shared)

When building the shower family, | had another challenge. When you cut through the
shower and look in the opposite direction from the fixtures, they would still show in
elevations even though the fixtures were behind the cut plane of the section line.

This is another manifestation of the same issue described in the previous tip. Remember,
the Plumbing Fixture category is non-cutable. This means that when the object displays,
the entire object will display (using the projection settings) regardless of whether it
intersects the cut plane or not. The cut plane location does matter for cutable and non-
cutable elements alike, but how the cut plane is used for each is quite different. In the
case of a cutable element, if the cut plane is outside the element, but looking at it, the
object will display in projection. If the cut slices through the element, then the part that is
sliced will be profiled with the cut line weight from Object Styles and any part beyond the
cut will display in projection. Any part behind the cut will not show at all. However, if the
object is a non-cutable category, then the element will not be sliced. It will display as if you
are seeing it in elevation regardless of where the cut line falls. For non-cutable categories,
if any part of the object intersects the view extents, the entire object displays. Even if it is
behind the cut plane.

The part that is potentially confusing is that the fixtures of the shower are a separate
nested family. You might be left to assume that the nested family would use its own
extents to determine if it should display. This is not the case. The host family’s extents are
used. That is unless the nested family is set to “Shared.” In that case, it does use its own
extents to determine if it displays (see Figure 68)! Confused yet?

EE - MIDWEST UNIVERSITY 2018

&

% v

/ v/

v v

| IS
. N

/\/\ \\ \\

\——- Shared nested Family

non-shared nested Famllg Shared non-Shared

Figure 68—Shared nested families will not display if they are behind the cut plane

The bottom line is, if you use nested families and if you want the extents of the nested
family (not the host) to be used when determining if it (the nested family) should display,
then set the nested family to shared.

Invisible Shared Parameters

This is one of my favorites! Ever wanted to hide a parameter? Maybe you are creating a
custom family and you have some detailed nested formulas (like the parking above).
Parameter A is used in the formula of parameter B, which might in-turn drive parameter C.
Wouldn't it be nice to not have to rely on just stashing the parameter in the “Other”
grouping and hoping that your users don’t mess with it? Well, guess what? You can make
a parameter that shows in the family environment, can be used to drive formulas, but is
hidden in the project environment!

To do this, you just perform a simple manual edit to your shared parameter file. Of course

this means the parameter you want invisible must be a shared parameter. | like to create a
special group in my shared parameter file just for my invisible parameters called: “Invisible
Parameters.” Further, | always name my invisible parameters with the prefix: INV_

There are two important steps to creating an invisible parameter. First, you must make the
parameter invisible before you add it to a family. Second, you must make it invisible
outside of Revit by manually editing the shared parameter TXT file4. Therefore, you might
want to begin in a project instead of a family.

1. Open a project file (or create a temporary one) and create one or more shared parameters (Manage tab).
Repeat for as many invisible parameters you need to create.

2. Close the project and do not save it.

4 Since we are here at Midwest University, | should mention the wonderful tool that is part of the Revit
gbls: Shared Parameter Manager. With this tool, you can create and modify shared parameters

R
L MIDWEST UNIVERSITY 2018
g

3. Run Windows Notepad, browse to and open the shared parameter file.

The first two lines in the file will read:
This 1s a Revit shared parameter file.

Do not edit manually.

Well, we are going to ignore that. The group information comes first. Skip over that. Next
you will see column headers. Look for the position of the VISIBLE column. This is the one
we need to edit. Depending on your Revit version, VISIBLE might be the last column or
the third column from the right. VISIBLE is a yes/no toggle and take values 0 and 1. Zero
means the parameter is invisible and one means it is visible. All parameters default to: 1.
Simply change any that you want to make invisible to: O (see Figure 69).

File Edit Format View Help

This is a Revit shared parameter file.
Do not edit manually.
*META VERSION MINVERSION

META 2 1

*GROUP ID NAME

GROUP 1 Invisible Parameters

GROUP 2 Length Parameters

GROUP 3 Material Parameters

GROUP 4 Yeslo Parameters

*PARAM GUID NAME DATATYPE DATACATEGORY GROUP VISIBLE DESCRIPTION USERMODIFIABLE

PARAM bal25d5@-f46c-4389-a757-277a6e2clbbb Depth LENGTH 2 1 1

PARAM 1fe@b703-d17d-45ca-a9f6-fbba7c2bb933 Height LENGTH 2 1 1

PARAM bl@57ddf-fb52-461le-997b-87165608388d INV_Center FAMILYTYPE -2002000 1 2] 1

PARAM d585e@ec-cf35-4868-8372-91458b89a38d INV_Integer@l INTEGER 1 2] 1

PARAM 81828f36-9126-434b-a7d6-280badlacb3d INV_Integer@2 INTEGER] 1

PARAM B00161b8-de58-4e7d-a200-71F79e97df3c INV_Left FAMILYTYPE -2002000 1 a 1

PARAM 6fdbl906-c30f-4338-af@1-f91bb5cledla INV_Lengthel LENGTH 1] 1

PARAM ef8df365-6c23-48a2-b7%e-4ee80570241e INV_Length82 LENGTH 1] 1

PARAM 1¢752f84-3bab-4f26-98d0-414a6%9cdbadf INV_Numbero@ NUMBER 1] 1

PARAM 14e@3731-3104-4cbf-95¢7-2ea67550ce73 INV_Number@l NUMBER 1] 1

PARAM dbbeBade-8260-4514-286c-bfdd5a757c81 INV_Right FAMILYTYPE -2002000 1 a 1

PARAM 77660d69-b8bc-4664-208f-830a2fafdafsd INV_SH_C YESNO 1 2] Invisibile Parameter - Sets shower head to center position 1
PARAM f53844a0-480a-4f12-bcb®-1d19dd5f8113 INV_SH_ L YESNO 1 2] Invisibile Parameter - Sets shower head to left position 1
PARAM @7aflbbc-7d38-4e%e-92e2-bd4bd30ad762 INV_SH R YESNO 1 @ Invisibile Parameter - Sets shower head to right position 1
PARAM d1fd563d-2083e-43c8-%9e2a-90f2deBlfEF4 Width LENGTH 2 1 1

Figure 69—Set parameters you want invisible to zero in the VISIBLE column

4. When finished, close and save the shared parameter file.

Limit your edits to the VISIBLE column only® and you will not risk breaking the shared
parameters in the file. Avoid editing the GUID or parameter names.

5. Now you can open a family and add the parameter(s) to the family.

6. Finish the family and then load it into a project.

5 Depending on your Revit version, you might see a column called: USERMODIFIABLE. This is also a
yes/no toggle with 1 equals yes and 0 equals no. If you want to create a parameter with a fixed value that
cannot be edited, you can change to a 0 here. Just be sure that you create the parameter and set it the
desired value first. The easiest way to do this is to create a Family parameter first. Then after you have
desired value to it, you can edit the parameter and swap it out with the non-user modifiable

MIDWEST UNIVERSITY 2018

Family Editor In a Project

Properties

Name: 48" x 36" Door Left 4
% BATH_Shower-Frameless Family: BATH_Shower -Frameless v Load...
Parameter | Value [Formula 5| 48"x36" Door Right
= Type: 48" x 36" Door Right v Duplicate. ..
onhraats e :
Drain Location Z o1z - Plumbing Fixtures (1) v, B edit Rename...

Constraints
Level Tevel1 Type
Host Tevel : Level 1 Parameter | Value B

Door Centerline Location

INV_Center<Detail ftems> = <
INV_Left<Detal freme Lett z Offset 00 ¢
— Drain Location oz |

INV_Right<Detail ftems> Right

INV_SH_C (defauif) = Shower Head Location o) Deerenteinelecation L B2
iR S L (defani ZShower Head Location 2:”""5' EI”; i“"‘"g 9;0.000 : B
iNV_SH R (defult] v = Shower Head Location | 2120 2 ocations.. Center Shower Door< Generic Models> BATH_Shower Door-Frameless|D |
Shower Door Swing (default) 90.000° = — L A Show Door

Shower Door<Generic Models> BATH_ Shower DoorfFrameless : -
Shower Head Location<Detail ltems Right - System Classification
Show Daor - System TypE

Flip Door (default) 0O N
"

Shower Head Material 148_Metal - Steel, Polished
Shower Base Material 180_Porcelain - Ivory

= Properties help Ap -
- Mechanical

Figure 70—In the Family Editor (left) the parameters show, but in the project, they are invisible (right)

I know that you might be nervous about manually editing your shared parameter file. Well
of course you will want to make a backup of it first. This way if something goes wrong,
you're covered. One more note about this procedure. While the invisible parameters do
not show in projects on the Properties palette, they do show in the list of available fields
for schedules. There is no way to hide them from that list. This is one of the reasons | like
to prefix the names with INV_. It makes them less appealing for users to add to schedules.

Make a “List” Parameter

| noted above that | have always wanted Revit to add a “list” parameter. By this | mean a
parameter that will give a drop-down list of user-editable choices. Well, read on! Because
by following this procedure you can! Sort of. For this example, | will continue with the
shower family and add three possible mounting positions for the shower head and
controls. You can use this technique any time you need three or more choices for an item.
However, it does start to become a bit impractical if you need say five or more items, but
your results may vary.

In this example, the shower head was copied to make three copies and positioned for left,
right and center mounting options. We then want a list where the user can choose their
mounting option. We want the list to read: Left, Right and Center. When they make their
choice, we want only the selected option to appear and the other to be invisible.

Select each shower head family instance and associate a family parameter to its visibility.
| used invisible parameters for these (see the previous tip). This is not required, but | think
it ultimately makes a nicer solution. This is because you will not have to worry about users
messing with the visibility parameters or being confused by them (see Figure 71).

R
}MIDWEST UNIVERSITY 2018
"
o>

Properties X

_SHARED_Shower_Head J &\{? @//@ 4’—\
Right
\ Associate Family Parameter u

P a 0
| BR Edit Type
Plumbing Fixtures (1) yP Famiy pa\:meher: Visible
Constraints LR \
Level Ref. Level Parameter| ’:ype: Yes /Mo
Host Level: Ref. Level N Existing fafnily parameters of compatible type:
Offset oo f_
Moves With Nearby Ele... {[]

Graphics 2 N E]
Visibility/Graphics Over...: Edit... [AN

<none >
CW Confiection
Flip Do
HW Cgfnection

N, [src
™ INV SH L
v SH R

Visible Y

Mechanical o \
Systern Classification w
- N \

System Type

Show Door
Vent Connection

Waste Connection

&

System Name

]
-

Project Browser - BATH_Shower-Frameless x A - Add parameter...
:D: Views (all) P

Sheets (all) - b oK Cancel
-2 Families]

Annotation Symbaols

Detail ltems

[=}-- Generic Models

Figure 71—Assign a visibility parameter to each instance

Properties help Apply -~

Now that we have the three instances each controlled by its own Yes/No visibility
parameter, it is time to move on and create the list. This will be achieved with <Family
Types> parameters. We need three choices. So, we will need four <Family Types>
parameters. One for the actual list, and the other three used for “comparison” in the
formulas. This is how it works:

We make a <Family Types> parameter for each condition: Left, Right and Center. You set
the value of each one permanently to one of these values. Then you have a fourth one
that users can manipulate. In that fourth one, is where the list will appear. By choosing
one of the options from the list, the formulas will do a comparison and thereby determine
which item to chose and set the visibility parameters accordingly. | recommend invisible
parameters for the comparison <Family Types> parameters. This will greatly reduce the
possibility that an end user will inadvertently break the family. We can even use the
feature (noted in the footnote above) that allows for the parameter to not be modifiable.

One last point. It doesn’t really matter what category of <Family Types> parameter you
use. But | recommend something that is not likely to be used elsewhere in the family. This
is because the list of choices for the <Family Types> parameter will include all items
loaded for that category. So, if you don’t want extraneous items showing on the list,
choose carefully. | chose Detail Items for this example.

The nice thing is that all Revit looks for is the presence of a family in the chosen category.

In other words, you don’t even need any geometry in the family. Just create a new Detalil

Item family (or whatever category you selected) and then save it. Repeat for as many

items as you need on your list. In my case, | made three empty Detail Item families called:

Right, Left and Center. If you only name the family and do NOT make any types in those

amilies, the list will show just the family names. Otherwise, it will display both family and
e.in this: Shower:Right, Shower:Left and Shower:Center.

e three empty families get loaded into the shower family. Then, following the
dures aqutlined in the previous topic, | made three invisible: Family Types:Detail

>})'\/\IDWEST UNIVERSITY 2018

Items shared parameters. | called mine: INV_Right, INV_Left and INV_Center.

Important: Remember to make them invisible by editing the TXT file before adding
them to the shower family.

After making them invisible by editing the shared parameter file, add each of the invisible
shared parameters to the shower family. You then want to assign the values: Set INV_Right
to: Right. INV_Left to: Left and INV_Center to: Center (see Figure 72). Optionally replaced
these with version of the shared parameters set to non-user modifiable.

These need to be set permanently to these values, or it will not work. That is why |
recommend invisible parameters and/or non-modifiable. You can set it and forget it that way.

n] Family Types x|
Name: 438" x 36" Door Left he
Family Types
Parameter ‘ Value | Foermula | Lock
New...
Constraints]
Drain Location [2 012" 1= i Rename...
Door Centerline Location 261/ i r
: : Delete
‘Graphics %
INV_Center<Detail ltems> Center -) - "m"‘arlsoﬂ W /“"_: R Parameters
INV_Left<Detail ltems> Left -~ - \
; ; ; arameters Add...
INV_Right=Detail ltems> Right B P = 1
INV_SH_C {default) = Shower Head Location = INV_Center Moadify...
INV_SH_L (default) = Shower Head Location = INV_Left
TN SH R {default) v = Shower Head Location = INV_Right femove
Shower Door Swing (default) 90.000° = 1 r el
Shower Door<Generic Models> BATH_Shower Door-Frameless : Door 36" Right Panel SM = ’
Shower Head Location < Detail [tems> (default) Right S = / Move Down
Show Door _—N"'--...______ = _/
Flip Door (defautt) 0O e e———— Sorting Order

Figure 72—Set up family types to evaluate the choice from Shower Head Location and use it to set visibility

Almost there. We need one more parameter. This will be another <Family Types> that is
not invisible and is modifiable. This is the one that will have the list from which the user will
make their selection. For this | created another Family Types:Detalil Iltems parameter
called: Shower Head Location.

All four <Family Types> parameters will show a list of the three detail items we loaded into
the file. The three invisible ones we permanently set to the values we needed as indicated
above. When the user chooses one of the three values from the list in the Shower Head
Location parameter, it will make that parameter equal to one of the three invisible
comparison parameters. Using simple formulas, we can have this condition evaluated by
each of the three Yes/No visibility parameters. In the formula field next to each checkbox
parameter input the following:

INV_SH_C: Shower Head Location = INV_Center
INV_SH_L: Shower Head Location = INV_Left
INV_SH_R: Shower Head Location = INV_Right

We need the comparison parameters because we cannot specify the value we are looking
[pin the formula. So instead, we are simply asklng is the value the user’s chose

"}MIDWEST UNIVERSITY 2018
o

There you have it! You can make list parameters after all! It is a little tedious | grant you
that. But | find it incredibly powerful. However, | would certainly prefer if the factory just
adds a proper list parameter sometime soon.

As | noted, finding a good choice for the category of these list parameters is a challenge.
This is particularly true if the nested families are shared. In that case, you will see all
families of that category appear on the list once loaded into a project. Therefore, I highly
recommend that if you use this trick, do not use a category where you are likely to have
shared families. Often folks will use a category from another discipline, so if you are
Architectural, try an MEP category for example.

In those casework items | discussed at the start of this paper, the client had lots of options
that users can specify for their content. They wanted them to appear in lists where
possible and the choices to appear on schedules. So we made shared parameters and
looked for unused categories for <Family Types> lists. It turns out that some of the
annotation categories were viable options (see Figure 73).

General
1/4" Security Panels (default) Mone —
Locks (default) [l =
Door Catches<Generic Annotations= Elbow Catch =
Hinges<Level Heads> =
Lock Type 3K Black Epoxy Coated =
Shelf Clips<Section Marks> 5K Stainless Steel (Satin Finish) -
Shelf Edge Banding«<Grid Heads> Heli =
Label Hoglclers ’ podmat 300 =
Concealed 170 Degree
MNumber Plates T =
Cabinet Levelers] =
Rubber Bumpers [l =
Yermin Control [l =

Figure 73—Using annotation categories for lists

In the figure you can see that the lists are being formed by the Generic Annotations, Level
Heads, Section Marks and Grid Heads categories.

Datasets

Since most of the content showcased in these sessions was built specifically for my
clients, I am not able to provide the files for download. The exception is the Volterra
dataset. That project is hosted on C4R. If you are interested in taking a closer look at the
file and the families it contains, please contact me after class via email. | will be happy to
add you as a viewer to the C4R project.

paubin@paulaubin.com

mailto:paubin@paulaubin.com

R
L MIDWEST UNIVERSITY 2018
g

Further Study

You can find more information and tutorials in:

Renaissance Revit: Creating Classical Architecture with Modern
Software. This book can be thought of as a “deep dive” into the
family editor. It starts with the basics, but gets very advanced as well.
The entire book is on family creation using classical architectural
examples. Both the traditional and
massing family editors are covered.

RENAISSANCE
\

REVIT
ARCHITECTURE

The Aubin Academy Revit Architecture:
2016 and beyond. Chapter 11 is devoted
to the subject of the family editor.

The Aubin Academy Master Series: Revit MEP. Chapters 12
and 13 are devoted to the subject of the family editor.

Autodesk University courses: | have taught a family editor lab for several years at AU. |
have also taught an advanced follow-up lab. Both class have papers and materials
available for download from my website: www.paulaubin.com/au

Lynda.com’

A LINKEDIN COMPANY

If you prefer video training, | have several Revit video courses at:
www.lynda.com/paulaubin. Check out: Revit Essential Training, Revit Family Editor,
Revit Family Curves and Formulas and Revit Advanced Modeling.

If you have any questions about this session or Revit in general, you can use
the contact form at www.paulaubin.com to send me an email.

ji e¢ Follow me on Twitter: @paulfaubin

i, Thank you for attending. Please fill out your evaluation.

http://paulaubin.com/books/the-aubin-academy-master-series-revit-architecture-2012/
http://paulaubin.com/books/the-aubin-academy-master-series-revit-architecture-2012/
http://www.paulaubin.com/au
http://www.lynda.com/paulaubin
http://www.paulaubin.com/

Trigonometry Cheat Sheet for Revit

Which parts are known?

Two Sides

Known: a ¢ b Knhown: a & ¢

8,

-
}/// &)

5

b

¢ =sgrt(@2 +b™2)
A= atan(a / b)
B =atanb / a)

b = sqrt(c™2 - a"2)
A=asin(a/c)
B=zacos(a/c)

Orne Side ¢ One Angle

Known: a ¢ A Known: b & A
R s
Y "y
o// v 7
O % ©
/// //
/’§ [] /§ []
b b
b =a /tan(a) a=b *tan(a)
c=a/sin(A) ¢ =b /cos(A)
B =90° - A B=zd90°- A
Known: a ¢ B Known: b ¢ B
A A
v /// v
e [[
/ ///
% S
//'3}7 [] /"i')’ [
b b
b=a*tanB®) a=b /tanB)
c=a/cosB) c=b/sinB)
A=90° - B A=d0°-B

Known: b & ¢

Q0
: ’><MIDWEST UNIVERSITY 2018
]

: r
b
a=sqrt(c™2 -b"2)
A=acoslb /c)
B =zasinb / ¢)
Known: ¢ ¢ A
S,

¥

—

a=c*sin(d)
b=c*cos(A)

b

B=90°-A

Known: ¢ & B

a=c *cosB)
b=c *sinB)
A=d0° - B

	Family Editor—Beyond the basics 411-Part 1
	511-Part 2
	Class Description
	Learning Objectives
	Introduction

	411—Family Editor—Beyond the basics, Part 1
	Geometry
	Pick Path

	Making Smooth Corners

	Face-based and Work Plane-based Families
	Voids and Always Vertical
	Preview Orientation
	Lighting Families
	2D Symbols
	Grid Modules
	Optional Void Cutting Ceiling
	Version Identifier
	Square or Round?
	Wall Washer

	Complex Specialized Models
	Point Clouds in Revit
	Chandelier

	Imported Geometry
	Get a mesh
	Make the edges of the Mesh invisible
	Import into Revit
	Detailed Procedure to Process and Import Models
	ReCap Workflow
	ReCap Photo Workflow
	3ds Max Workflow
	Alternative with Downloaded Meshes
	Revit Workflow

	511—Family Editor – Beyond the basics, Part 2
	Casework
	Solid vs Void
	Internal Construction
	Zero and Negative Values
	Options Lists
	Controlling Reveals with Formulas

	Profile Family Rotation
	Window Families
	Electrical Fixtures
	Face-based or Freestanding
	Nested 2D Components

	Parking Spaces
	General Parking Space Features
	Parking Accessible Aisle
	Parking space following a curve

	Shower Family
	Nested Family Visibility (Cutable or non-cutable)
	Nested Family Visibility (Shared vs Non-Shared)
	Invisible Shared Parameters
	Make a “List” Parameter

	Datasets
	Further Study
	Trigonometry Cheat Sheet for Revit

