

Session 3.3

The Architect’s Dynamo: Getting Non-Revit Users
Involved!
Paul F. Aubin, www.paulaubin.com
Zach Kron, Autodesk

Class Description

This class is designed to show architectural offices how they can utilize Dynamo to
involve their non-Revit users in a Revit environment. The class will cover how Revit
can extract data from external software for use in manipulating an architectural
building design. Let’s do some Dynamo!

About the Speakers:

Paul F. Aubin is the author of many Revit book titles including the widely acclaimed: The
Aubin Academy Series, Renaissance Revit and Revit video training at
www.lynda.com/paulaubin. Paul is an independent architectural consultant providing
Revit® for Architecture implementation, training, and support services. Paul’s involvement
in the architectural profession spans over 25 years, with experience in design, production,
CAD management, mentoring, coaching and training. He is an active member of the
Autodesk user community, an Expert Elite and is a top-rated repeat speaker at Autodesk
University, Revit Technology Conference and Midwest University. His diverse experience in
architectural firms, as a CAD manager, and an educator gives his writing and his classroom
instruction a fresh and credible focus. Paul is an associate member of the American
Institute of Architects and lives in Chicago with his wife and three children.

Zach Kron is a Senior Product Manager at Autodesk, focused on Dynamo. Since 2007 he
has researched, strategized and helped implement parametric design tools and workflows.
In addition to internal teaching and curriculum development at Autodesk, Zach has
helped create and run workshops at Massachusetts Institute of Technology, the Association
for Computer Aided Design in Architecture, Autodesk University, and many other venues.
Before joining Autodesk, Zach worked as a designer in several Boston-area architectural
offices on projects ranging in scale from furniture to bridges. He has more than 16 years of
professional experience in design.

http://www.lynda.com/paulaubin

The Architect’s Dynamo
Paul F. Aubin, Zach Kron

 Page 2 of 24

Introduction
In this handout, I have detailed one of the workflows that we will be discussing in the
live session. There will be other workflows discussed that will not appear here in the
paper. We are treating the paper as a follow-up resource. This will allow you to revisit
the logic as you read through this detailed workflow and either attempt to recreate
it, or simply apply the logic to your own needs and workflows back at the office.

Data Sharing with Excel
In the following scenario, we will look at using Dynamo to access a collection of
data stored in an Excel file and use that data to create Revit elements. Specifically,
the Excel file contains a building program with a list of each type of room required,
the quantity of rooms needed for each type and their required areas. We will read
this list into Dynamo, process the data as required by Dynamo and use it to create
Revit elements (both 3D space-planning blocks and Revit room elements).

Read an Excel file
The first step required is to access our Excel file. Here is a look at what the file
contains:

Name Qty. SF Each Space Type
Enclosed Executive Office 0 180 Office Spaces
Enclosed Large Office 0 150 Office Spaces
Enclosed Small Office 0 120 Office Spaces
Open Large Office 4 180 Office Spaces
Open Small Office 15 120 Office Spaces
Open Workstation 100 80 Office Spaces
Reception Desk 1 80 Office Spaces
Reception Seating 1 120 Support Spaces
Conference Large 1 600 Support Spaces
Conference Small 5 150 Support Spaces
Informal Breakout Center 12 80 Support Spaces
Printer/Copier/Fax Center 3 80 Support Spaces
Break Room Service Unit 1 340 Support Spaces
Information Reference Center 3 180 Support Spaces
Supply Center 4 40 Support Spaces
Work Center 1 200 Support Spaces
File Area 2 144 Support Spaces
Documents Room 1 240 Support Spaces
Server Room 1 176 Support Spaces

The Architect’s Dynamo
Paul F. Aubin, Zach Kron

 Page 3 of 24

Dynamo – the “basic” basics

If you have never used Dynamo before, here are the bare essentials:
you use the library pane on the left to locate nodes (browse or
search). These nodes contain predefined snippets of code that

perform a single discreet action. Nodes have inputs on the left and
outputs on the right. Click on any port (input or output) to create a

“wire.” Attach this wire to other ports to wire up a graph. Graphs and
data flow and read from left to right with the output of one node

feeding the input(s) of the next. Use your wheel mouse to navigate.

We will access the Excel information using the Excel.ReadFromFile node. This node is
on the Office branch in the library (see Figure 1). It requires three inputs. The file
input points to the actual file on the hard drive. The sheetName input tells Dynamo
what sheet in your Excel file to read and the readAsStrings input is a toggle
switch. If you toggle it on, it will convert all of the incoming data to text (strings), if
you leave it toggled off, it will not change the data at all and read it in as-is.

Figure 1

To pass in the path name, we need two nodes: File Path has a browse button that
you can use to locate the Excel file. To convert this to the proper format required by
the Excel.ReadFromFile node, use a File.FromPath node. (I don’t know why
converting the file path is required, but if you don’t want to get an error, make sure
you use both nodes).
The sheetName input accepts string (text) data. So a String node is appropriate. You
can type anything you want into a String node. Simply type in the name of the
Excel sheet that contains your data. This is case-sensitive, so type carefully.

Many would argue that a Code Block node would be a better
choice here, but please don’t get me started on that…

The Architect’s Dynamo
Paul F. Aubin, Zach Kron

 Page 4 of 24

Many node inputs have default values. The readAsStrings input is one such input.
If you don’t want the data converted to text as it is input, leave this toggle set to its
default of “False.” To force all input data to be converted to text (strings), use a
Boolean node and choose the “True” option. As you can see, you can also use the
Boolean node regardless and leave it set to “False” as well if you wish.
When you finish wiring up these nodes, if execution of your graph is set to
Automatic (see Figure 2), it will immediately launch Excel and load up the
spreadsheet you indicated. (If Excel launches and loads your document, then you
wired everything up correctly).

Figure 2

If this does not happen, check your wires and the spelling of the Worksheet name in
the String node.

It is not a bad idea at this point to select all of the nodes, press CTRL +
G to group them and then double-click on the name and type in a

description. This helps keep the graph organized and provides a
degree of documentation for future reference.

Process The Data
Now that we have the data loaded into Dynamo, it is time to begin processing it.
For starters, most Excel data will contain headers. You will typically want to strip
those out. This is easy to do with the List.Deconstruct node. This node will remove the
first item from a list and output it to one port, and then output the rest of the items
on the list separately on another port (see Figure 3).

The Architect’s Dynamo
Paul F. Aubin, Zach Kron

 Page 5 of 24

Figure 3

There is a single input: list. This gets connected to the Excel.ReadFromFile node
output. To check the data coming out of the List.Deconstruct node, connect a
Watch node to each output. Watch nodes display the results of any output.
Take a look at the format of the data coming out of the Excel file in the Watch
nodes.
First, these lists are numbered using a zero-based numbering system. So the first item
on the list is number 0. This is how all lists in Dynamo are formatted. So get used to it!
Second, if we study how the data is organized, we see that we have a list which
contains other lists. Each sub-list contains one row of data from Excel. So the data is
read row by row, not column by column. Sometimes you will prefer the data to be
formatted by columns instead of by rows. This is easy to accomplish with the
List.Transpose node (see Figure 4).

Figure 4

So feed the output of the rest Watch node into the input of the List.Transpose
node and the result is still a list of lists, but they are now reversed to show the data
by column instead of by row. From these lists, we want to grab the quantities of

The Architect’s Dynamo
Paul F. Aubin, Zach Kron

 Page 6 of 24

rooms required. Scrolling through the Watch node we see this is the second list
(which is index [1]).
A List.GetItemAtIndex node will let us pull out a single item from the list. This is done
by feeding in a Number node (yes Number, but if you really want you can use a
Code Block) into the index port. Feeding this to another Watch node gives us a
nice tidy list of just the required quantities.

Repeat Items
So now that have separated out our quantities, we can use them to create a new
list that contains the desired quantity of each type of space. The node for this is
called: List.OfRepeatedItem (see Figure 5). It has two inputs: item (this is the item
you want repeated) and amount (this is how many times you want to repeat it).

Figure 5

So we’ll feed the rest output from the original list of items (from Figure 3 above)
into this node. Then we’ll feed the quantities we extracted in Figure 4 into the
amount input. A Watch node here will reveal a list of lists. However, we now run into
an issue of data matching. When you have two datasets coming together,
Dynamo must decide how to interweave the information. This is called: “Lacing.”
The default is: “Shortest” which matches the first item with the first item and on
down the list throwing out any extras. “Longest” will match up the extra items by
matching some items more than once. There is also “Cross Product” which finds
every possible combination. In this case, Longest will give us the result we need. So,
right-click on the List.OfRepeatedItem node and choose: Lacing > Longest. Once
complete, we will have a list for each type of space required, and then nested sub-
lists for the repeated items within each list (see the left side of Figure 5).

The Architect’s Dynamo
Paul F. Aubin, Zach Kron

 Page 7 of 24

Take a close look at this data. Notice that there are some “Empty Lists.” If you look
back at the quantities, these are the items whose quantity was zero. We can
remove these and the top level of lists with a List.Flatten node. Here you input the list
and a Number (with value of: 1) to tell it how many steps of hierarchy to remove
(see the right side of Figure 5).
Now we have a nice tidy list containing each required space. A List.Count reveals
that there are 155 total items. Sounds reasonable from the original data… Cool!

Extract Required Values
We will eventually want to create rooms and place families that have the
properties from the original Excel file. So using the same technique covered above
in Figure 4, we can extract the: Room Names, Required Areas and Space Types
from the Excel data with List.Transpose and List.GetItemAtIndex (see Figure 6).

Figure 6

The Architect’s Dynamo
Paul F. Aubin, Zach Kron

 Page 8 of 24

You will notice that the names of the Watch nodes have been
edited. To do this, simply double-click on a node title and edit the

name. I like to leave the original title in the new name just to remind
myself what kind of node it was originally. But this is just my

preference. You can name the nodes anything you like. Other ways
to document your graph include grouping the nodes (as suggested
above) and adding notes. To group nodes, select several, and then

press CTRL + G. To add a note, press CTRL + W.

Chop the lists
Let’s go back to processing our list. Above we created a list of all of the rooms
required based on the quantities from the Excel file. Our next step is to break this list
up into more manageable pieces. Ultimately, we want to have a series of shorter
lists that will be used to place these elements in a Revit file in a logical way. For
example, how about placing items in a grid pattern where the columns are the
kind of room required and the rows are the quantities. However, since some of our
quantities are large, we also want some logic that says if the quantity exceeds a
certain amount, to break it into more columns (see Figure 7).

Figure 7

I settled on a quantity of 10 as the maximum number of rows. This gets fed into a
Number node. (Note that I renamed the node to indicate that it controls the
Maximum List Size, see the left side of Figure 8). To make the lists, we use List.Chop.
This is sort of like the opposite of Flatten that we used above. Flatten reduces the

The Architect’s Dynamo
Paul F. Aubin, Zach Kron

 Page 9 of 24

hierarchy in the lists where List.Chop adds hierarchy to the list creating a list of lists.
Here the main list will be a list for each column and then the sub-lists will contain
each of the rows.
You will notice that in Figure 8 there is also a List.Map after the List.Chop. So what
does this do and why do we need it?
List.Map allows you run an operation on the nested list instead of the top level list.
So why not just run the List.Chop on the flattened list from above? Well remember
that we want to preserve the hierarchy and have a column of items for each type
of room required. If we use the flattened list, we would just get 10 items per column
with no break per room type. With the List.Map, we get a column of rooms of the
same type up to ten. If there are more than ten, then List.Chop will give us a second
column of up to ten and so on. For example, back in the diagram shown in Figure 7,
there are several columns of Workstations, each with a maximum of ten items.

Figure 8

Almost there. On the right side of Figure 8 we first have a List.Count just for
verification purposes. This is applied to the nested list using another List.Map. This
helps to ensure that List.Chop did its job as expected. (So, item [1] has a value of 2
and item [3] a value of 10. This means that we will end up with two columns of
Open Small Offices and ten columns of Workstations). Beyond this, there is another
flatten because List.Chop gave us an extra level in the hierarchy that we don’t
need. There are two flatten nodes in Dynamo: Flatten and List.Flatten. Flatten will
remove all hierarchy from the list giving a completely flat list. List.Flatten has an amt
input (which takes a number) and allows you to designate how many levels of
hierarchy to remove. This is more flexible and works well in this case.

The Architect’s Dynamo
Paul F. Aubin, Zach Kron

 Page 10 of 24

Determine how many columns and rows in the Layout
The final list in the previous step contains 27 lists of lists. The quantity 27 was
determined by List.Chop. So we need 27 columns. The number of rows in each
column will vary by how many sub-lists each column list contains. If all we needed
was this quantity, a simple List.Count would do the trick. But we will also be setting
parameters on Revit elements, so we need to extract other information such as the
required area of each room. So we’ll take a different approach.
List.FirstItem takes the first item from a list. If we use it with another List.Map, we can
apply it to the nested lists and get the first item from each of the 27 nested lists! That
first item in this case will be another list that contains the name, required quantity,
required area and space type for each kind of room. (This is data that came from
the original Excel file).
Using one more List.Map combined with a List.GetItemAtIndex, we can ask for a list
of all of the required areas for each of our 27 columns. All we need to do is use a
Number node to feed in the appropriate index value; [2] in this case (see Figure 9).

Figure 9

As you can see in the figure, I also grabbed index [1] as a check to make sure that
everything is mapping properly. This is optional of course, but it is helpful to do these
checks along the way to be sure everything is working. The final group of nodes on

The Architect’s Dynamo
Paul F. Aubin, Zach Kron

 Page 11 of 24

the right side in the figure goes back to the original chopped list and using another
List.Map with List.Count tells us how many rows are in each column.

Create the Layout
Now that we have imported, sliced and diced the Excel data, we are ready to use
it to begin making Revit elements. In this example we will place a series of families
using the data from above and also, taking advantage of some custom nodes we
will place room elements as well. Let’s begin with some inputs and an assumption.
The original Excel file gave us the required area, but did not say the width and
depth of the rooms. So for simplicity, we will simply divide each required area by a
constant value. This will be one of our inputs. The other input will be just a constant
value to add to each item to provide a little padding between the elements as
they are created (see Figure 10).

Figure 10

I used Number inputs for both of these. If you want something more interactive, try
a Number Slider. The number that I am dividing into the areas I am using as the Y
dimension. That means that all elements will be the same height and we will
calculate the widths (X). The padding value will be used in both directions.

The Architect’s Dynamo
Paul F. Aubin, Zach Kron

 Page 12 of 24

Performing Calculations
Simple math is easily performed with nodes in the Operators branch (see Figure 11).

Figure 11

For example, to calculate our X value, we go back to the list of required areas
(Figure 9) and feed it into the x input of a / (division) node and feed the Number
node containing our constant from Figure 10 above into the y input. Then using a +
node, feed this result into the first port and the padding value constant into the
other port. A Watch will help verify the results (see the left side of Figure 12).

Notice that the operator nodes use the generic names of x and y for
the inputs. These can take any kind of input. The names “x” and “y”

are just variable names like you had in algebra class…

oops, sorry for the painful flashback…

The Architect’s Dynamo
Paul F. Aubin, Zach Kron

 Page 13 of 24

Calculate the X Values

Figure 12

In the X direction, we need a “running total” of all the X values. Remember that
above we determined that we needed 27 columns. The first column will start at
zero. The next column needs to start at a distance equal to the width of the first
column plus the padding constant. Then the column after that needs to add the
next width plus the padding and so on. This can be accomplished with the List.Scan
node. List.Scan will start at a number fed into the seed port. Then using whatever
operator you feed into the reducer port, it will build a running list from the values
fed into the list port. Since we want to do a running total, we will feed in a + node
into reducer and the list of values from the + node calculated earlier.
Since we are starting at zero, we will end up with one item too many. So a
List.DropItems with a value of -1 will drop the last item on the list. (A positive number
input will delete that quantity from the start of the list, a negative number deletes
the items from the end of the list).

The Architect’s Dynamo
Paul F. Aubin, Zach Kron

 Page 14 of 24

Calculate the Y Values
This gives us our X values for our points. Onto the Y values next.

Figure 13

Initially, the Y values seem as though they will be simpler. Since we are using a
constant value for Y, just add this to the padding and then repeat for as many
items as needed right? Well, since we have a different quantity of items in each
column, we have to perform this calculation several times and at different
quantities of rows. So let me sneak in a little shorthand here. In Figure 13, notice that
the first node is a Number node, but that it looks a little different than other Number
nodes. Typically, Number nodes only have outputs, but this one has an input
labelled cnt (see Figure 14).

Figure 14

Also take notice of the value typed into this node. It is: 0..cnt. That is zero dot dot
cnt. When you use the dot dot nomenclature, you are indicating that you want a
range of values. So 0..10 would yield a list of values from zero to ten. By typing in:
cnt instead, (short for “count”) this becomes a variable and creates an input. (It
does not have to be: cnt; you can type any variable name you wish). By making it
a variable, you are saying I want a range of numbers between zero and some
variable fed into this input. This way we can feed our list into it and get our
quantities from elsewhere in the graph. Cool right?
OK, so we have a range from zero to some variable amount. What can we do with
that? Looking back at the Watch node in Figure 9 that gave us our quantities
required for each column, we will feed this list into the cnt input. This will give a list

The Architect’s Dynamo
Paul F. Aubin, Zach Kron

 Page 15 of 24

of lists whose quantities vary based on the values in that previous Watch node. So
list zero will have values from zero to four and list one will have values from zero to
ten and so on. But to convert these sequences of numbers to actual Y values, we
then simply multiply them by our constants from Figure 10 above (see the +
(addition) and * (multiplication) nodes in Figure 13.
One last step to complete all of the required Y values. We now have 27 lists of Y
values, but each one contains one item too many. So using List.DropItems with a
value of -1 again will remove the last item. However, we want the last item
removed from each sub-list, not the main list, so List.Map to the rescue again!

Create Points
With our X and Y values now calculated, we are ready to create points. A
Point.ByCoordinates node will work nicely here. Simply feed in the X and y values
calculated above into the appropriate ports. You can leave the z port empty and
it will default to zero (see the left side of Figure 15)

Figure 15

By default, placing family instances and later rooms will end up centering the
elements on the points created here. I preferred to shift everything over to end up
with the equivalent of “left justified.” The rest of the nodes in Figure 15 accomplish
this. Using Points.DeconstructPoint, the X and Y values are extracted. I then went
back to the original widths calculated for each item and divided it by 2. I then
added this result to the X values and passed the Y values unchanged back into
another Point.ByCoordinates node. The result is two sets of points.

Placing Family Instances
With all of the points in place, you can now create geometry at those points. You
can create Dynamo geometry that exists only in your Dynamo graph, or you can
use the Dynamo geometry and points to create Revit elements. This is the point
where your non-Revit users could leverage the power of Dynamo to process data

The Architect’s Dynamo
Paul F. Aubin, Zach Kron

 Page 16 of 24

from other programs and use it to interface with the Revit team. For this next portion
of the example, I created a simple generic model family. It contains a box with
adjustable length, width and height. We will leave the height alone and focus on
only the length and width. Using the values in our graph so far, we can place and
size instances of this family in the model to represent each required room. This could
be useful for the space planning team to visualize and create 3D bubble diagrams.
I have already included the family in the sample file. So we are just placing it here.
The Family Types node gives a list of all loaded families in the project. Choose the
family desired from the drop-down. Feed this to the familyType port of a
FamilyInstance.ByPoint node. For the point port, use the output from the second
Point.ByCoordinates node.

Figure 16

Sizing each Family Instance
When completing the previous step and running the graph, you will have an
instance of the family placed at each point, but they will all be sized using the
default values in the family. To size each family to the sizes required by our original list
of data, use two Element.SetParameterByName nodes. This node and the similar
Element.GetParameterByName node are two of the most useful and frequently used
Revit nodes. The “get” node reads parameter values from elements in your model
and the “set” node writes values to the elements. So you can use these nodes to
interact with the elements in a model and have Dynamo apply the appropriate
parameter values. All you have to do is indicate which parameter by feeding its
name into the parameterName port. Do this with a String (or, if you must, a Code
Block) node. Be sure to type the parameter name exactly as it appears in Revit. This
is case-sensitive. So here we just use one Element.SetParameterByName node to set
the Width and another to set the Depth. The values for Width come from the original
calculation made back in Figure 12 (before adding the padding). The values for Y
come from the constant (in the inputs area in Figure 10) again without the padding.

The Architect’s Dynamo
Paul F. Aubin, Zach Kron

 Page 17 of 24

Packages
If you want to create rooms instead, or in addition to the families already placed,
you will need to download some custom nodes. Dynamo is “open source” this
means that its source code is publically available and this also means that there is a
vast community of members working to create custom nodes. Custom nodes are
grouped into “packages” and are free to download. To access them, use the
Packages menu. You can search for a package and install it and it will add a
branch to your Dynamo library. Just be aware that if you build a graph that uses a
custom node, you will want to communicate this to anyone you share the graph
with so they can download the required packages as well. Without the required
packages installed, any custom nodes in the graph will not function.

Creating Rooms
There are some very popular packages available that contain custom nodes for
doing all sorts of things in Revit. We will showcase nodes from two of these
packages here: Clockwork and Steamnodes.
The first custom node is from the Clockwork package and lets us create room
separation lines. With Clockwork installed, search for “room” and you will have
access to the RoomSeparation.fromCurve node. Steamnodes gives you the
Tool.CreateRoomAtPointAndLevel node. You can often double-click these
package nodes to look inside (the ones that have a titlebar that looks like a stack
of paper). But they often use Python code inside. So unless you know Python, it will
look like so much colorful gibberish. Best to just not look…

Figure 17

The Architect’s Dynamo
Paul F. Aubin, Zach Kron

 Page 18 of 24

Since rooms need boundaries, the strategy outlined here will be first to create room
separation lines, then create rooms within those boundaries.

Create Room Separation Lines in Revit
Let’s work backwards through Figure 18. The RoomSeparation.fromCurve node has
three inputs: curve, sketchPlane and view.
For the view input, the easiest thing to do is use the Views node. This allows you to
select from a list of views in the project.
The sketchPlane input is a little puzzling; I would think the view would automatically
assign a sketchplane, but the easiest thing to do here is use the Plane.XY node and
feed this into the SketchPlane.ByPlane node. Since I am choosing the Level 1 floor
plan view, drawing on the XY plane makes the most sense.

Figure 18

For the curve input, the first thing you need to know is that “curve” in programmer
speak is any linear path, be it “straight” or “curvy.” So curve does not necessarily
mean “curvy.” A straight line is considered a curve. (Sorry to bring it up again, but if
you think back to High School Algebra one more time, you will recall that this is
so…) OK, so we can put straight lines in the curve input; anything with endpoints
really.
So my strategy here is to draw rectangles first, and then use those rectangles to
provide the required curves and create the room separation lines. Dynamo is
capable of creating individual lines, polycurves and closed shapes like rectangles. I
chose to start with rectangles here because we already have the point locations
and widths and heights from above. So with just two nodes, we can feed all of that
in and make our rectangles.
The two nodes are pictured on the left side of Figure 18 and are the
Rectangle.ByWidthLength and the CoordinateSystem.ByOrigin nodes. (These are
both standard nodes). A coordinate system is exactly like it sounds. It defines the
location and direction of a custom X,Y,Z coordinate system. Since its only input is
origin, we can simply feed in the points we already have from before (the same

The Architect’s Dynamo
Paul F. Aubin, Zach Kron

 Page 19 of 24

ones we used to place the families). Next we feed this into the cs port of
Rectangle.ByWidthLength (cs is short for coordinate system) and grab the width and
length from earlier in the graph as well. Use the same inputs that fed into the family
set parameters above.
This creates rectangles in Dynamo but not in Revit. Dynamo geometry can be used
to create Revit geometry but this is not automatic. Think of Dynamo geometry as
more abstract. But you have to tell it what specific kind of Revit element you want it
to create. This is where we use these rectangles to shape the required curves of our
RoomSeparation.fromCurve node.

BUT, there is one more step…
Dynamo can create a rectangle as an element. But in Revit you would actually be
creating four separate lines. Revit does not have polylines or continuous linear
elements. All such elements are always separate lines (or curves). So, we need to
convert these rectangles to individual lines, then feed them into the curve port.
The node for this is called: Geometry.Explode. One input and one output so it is a
simple pass through.

BUT, if you try to pass this directly into the curve input on
RoomSeparation.fromCurve it will fail… <sigh>

One mode node. Geometry.Explode created a complex list. We need to flatten it to
make it a simple list. Recall above that we have two types of flatten nodes, well here
a simple Flatten will do the job since we want to remove all hierarchy from this list.
When you flatten the list and feed it into the curve port, you should finally have
success. Room Separation Lines will be created in Revit!

Wow, that was a lot of complexity packed into a small group of nodes…

Create Rooms in Revit
Now that we have room separation lines, we are ready to create rooms.
Steamnodes will give us the node we need. So once again, this being a package
node, you must download it from the package manager and install it first.
You can search your library after installing it for “room” and the node should
appear. We want the Tool.CreateRoomAtPointAndLevel node. This has just two
inputs: Point(s) and Level. The points are no problem. We have those already.
Just feed the same set of points in that we used for the families and rectangles. For
the level, just grab the Levels node from the library and select Level 1 from the
drop-down list (see Figure 19).

The Architect’s Dynamo
Paul F. Aubin, Zach Kron

 Page 20 of 24

That’s it! Instant rooms. And since we have the separation lines already, they will all
conform automatically to the correct size. Very cool!

Figure 19

On the right side of the figure we are taking it a step further. Having a bunch of
rooms is nice, but you probably want them numbered following a certain pattern
and you might want to set the names or even include the required areas or other
properties. So let’s look at each group of nodes.
Way back in Figure 6, we extracted a list of properties from the processed Excel
data. Among those were the room names, space types and the required areas. So
here (at the top right and bottom right) we are simply using
Element.SetParameterByName again to feed those properties into the new rooms.
Remember that a String node is required with the name of each parameter we
want, typed exactly as it appears in Revit.
The fourth parameter to set is room Number. This takes a little more work as numbers
were not part of our existing Excel data.
Using the trick we saw earlier, we can create a range inside of a Number node with
a variable by typing: 101..cnt. 101 is our desired starting room number and “cnt” is
just a variable name that we assign for the input. Into this input, we feed the count
from our list of rooms (see Figure 20).

The Architect’s Dynamo
Paul F. Aubin, Zach Kron

 Page 21 of 24

Figure 20

Next you see a String from Object node. This is necessary because we need to
convert the series of numbers we just created into simple text data so that it is
compatible with the data format of Revit’s room number field. Data types are very
important in any kind of programming; including Dynamo. So often, errors you see
will be related to incompatible data types. This node converts for us. The rest is
accomplished with another Element.SetParameterByName node.

Eye Candy
A picture speaks a thousand words they say. And I am not sure if they said it, but
typically a color picture speaks louder than a black and white one. So let’s add
some color. For coloring the rooms, you cannot do better than a Revit Color
Scheme. Simply duplicate the view, on the Properties palette, click the Edit button
next to Color Scheme and set one up. Choosing colors by Room Names give a nice
result (see Figure 21).

Figure 21

The Architect’s Dynamo
Paul F. Aubin, Zach Kron

 Page 22 of 24

(Be sure to hide the generic models in this view so that the solid elements in the
families don’t cover the rooms and colors).
If you want to color the 3D families, you can do this with Dynamo. Open a 3D view
in Revit first. Then add a couple mode nodes to the graph.
The key nodes are: Color.ByARGB and Element.OverrideColorInView. If you want
different colors, you will also want to feed some sort of range into the r, g and/or b
inputs. I did a count again, and fed that into a number range in a couple of these
inputs. This will give a smooth gradient from 0 to 255.

Figure 22

In order to apply the colors by column group, I did the List.OfRetpeatedItem node
again (see Figure 23).

Figure 23

Unfortunately, with 27 total columns, there is not that much contrast from column to
column when done this way.
If you want to use specific colors instead, there are other nodes both in the
standard library and in package nodes to create specific colors. You can then

The Architect’s Dynamo
Paul F. Aubin, Zach Kron

 Page 23 of 24

feed these into a List.Create which lets you build a static list of a set number of items
(see Figure 24).

Figure 24

Conclusion
In the workflow showcased in this paper, I have taken the approach to read the
Excel file as-is and process the data in Dynamo. An alternative approach to simplify
the Dynamo graph is to process the data (including potentially repeating the rows)
directly in Excel. Then simply read it into Dynamo and create geometry directly.
So which is correct? Well either of course!
If your team is more talented in Excel than Dynamo, they can certainly slice, dice,
repeat and parse data in Excel first. Alternatively, they can certainly take the
approach we have here and process in Dynamo. Or even do a little of each. It is
really up to you and your team. I believe it is important to set your team up for
success in the best way possible. So don’t force a talented Excel user to do things in
a program that is foreign to them unless there are clear downstream benefits to the
team and vice-versa.
As I have been learning Dynamo, my singe biggest epiphany has been realizing
that having tunnel vision is not good for productivity. Use the right tools in the right
way for the right job. So a workflow that includes Dynamo as one of its tools can be
very beneficial to the team. But if we try to make Dynamo our only hammer, then
sadly we will have no choice but to see all problems as if they were nails. So be sure
to look at the whole problem and fit Dynamo in where it makes the most sense and
can provide the most benefit and by all means, if you can do something easier
directly in Revit or in Excel, please do so!

The Architect’s Dynamo
Paul F. Aubin, Zach Kron

 Page 24 of 24

Further Study
You can find more information and tutorials in my books and video
training.
Please visit my website at: www.paulaubin.com for more information on my books.
I also have Revit video training available at: www.lynda.com/paulaubin. I have

several courses at lynda.com including: Revit Essential Training, Revit
Family Editor and Revit Architecture Rendering, Advanced Modelling in

Revit Architecture, Formulas and Curves and many more.
While not one of my courses, if you are new to Dynamo, I highly
recommend: Dynamo Essential Training with Ian Siegel in the

Lynda.com library. This course is just what you need to get up and
running quickly.

If you have any questions about this session or Revit in general, you can use the
contact form at www.paulaubin.com to send me an email.
Follow me on twitter: @paulfaubin

Zach can be found on the web at: http://buildz.blogspot.com/
While Zach has not been as active in blogging recently, there are enough previous
posts in his archive to keep you busy learning about Dynamo and the Revit massing
environment for quite some time! Do check it out if you do not already subscribe.

Zach is on Twitter as: @ZachKron

Thank you for attending. Please fill out your evaluation.

http://www.paulaubin.com/
http://www.lynda.com/paulaubin
http://www.paulaubin.com/
http://buildz.blogspot.com/

	Session 3.3
	The Architect’s Dynamo: Getting Non-Revit Users Involved!
	Paul F. Aubin, www.paulaubin.com Zach Kron, Autodesk
	Class Description
	About the Speakers:
	Introduction
	Data Sharing with Excel
	Read an Excel file
	Process The Data

	Repeat Items
	Extract Required Values
	Chop the lists
	Determine how many columns and rows in the Layout

	Create the Layout
	Performing Calculations
	Calculate the X Values
	Calculate the Y Values
	Create Points

	Placing Family Instances
	Sizing each Family Instance

	Packages
	Creating Rooms
	Create Room Separation Lines in Revit
	Create Rooms in Revit

	Eye Candy
	Conclusion
	Further Study

