Deep networks work really well on the standard image data sets: large sample sizes, very low label noise, highly structured.

Questions
- Do they work in high noise, “small data” settings outside of image/speech recognition?
- Can they simultaneously memorize (noisy) training labels and still generalize well?
- We know “yes” to (1) and (2) for random forests - can we borrow insights?

Motivation

Ensemble Interpretation

- Ensemble components: deep layers serve to aid variance reduction
- Subnetwork decomposition: low bias + low variance → good generalization

Empirical Evaluation

- 116 UCI repository data sets (classification)
- depth 10 networks trained to 100% training accuracy (no regularization)
- hundreds of parameters per observation

Empirical Insights

- 116 multi-class data sets from UCI repository

 \((n \approx 600 \text{ observations on average}) \)

- fit unregularized deep networks, zero training error on all data sets

- test error comparable to a random forest!

Ensemble Interpretation

- networks decompose into sub-networks with low bias and relatively low correlation
- deep layers serve to aid variance reduction

Highlights

- Ensembling
 - A neural network with \(L \) hidden layers and \(M \) hidden nodes can be written
 \[
 z^{l+1} = W^{l+1}g(z^l) \quad l = 0, \ldots, L
 \]
 \[
 f(x) = \sigma(z^{L+1})
 \]
 where final hidden layer is a sum of sub-networks:
 \[
 z^{l+1}(x) = W^{l+1}g(z^l(x))
 = \sum_{k=1}^K \sum_{m=1}^M \alpha_{m,k}g(z_m^l(x))
 = \sum_{k=1}^K f_k(x)
 \]

- Ensemble Program
 - decompose final layer into sub-networks \(f_1, f_2, \ldots, f_K \)
 - search for sub-networks with low bias and low pairwise error correlation
 - construct \(f_1, f_2, \ldots, f_K \) from linear program
 - low bias + low variance → good generalization

- Ensemble Hunting via Linear Programming
 - Train a network with \(M \) hidden nodes, \(L \) hidden layers until zero training error
 - Find \(\alpha \in \mathbb{R}^{M \times K} \) satisfying the linear system (target \(K \) sub-networks):
 \[
 \sum_{k=1}^K \alpha_{m,k} = W_{L+1,m}^l \quad 1 \leq m \leq M \quad \text{(decompose the final hidden layer)}
 \]
 \[
 \alpha_{m,j,k} = 0 \quad 1 \leq j \leq M \quad 1 \leq k \leq K
 \]
 \[
 \left(\sum_{m=1}^M \alpha_{m,k}g(z_m^l(x_i)) \right) y_i \geq 0 \quad 1 \leq i \leq n, 1 \leq k \leq K \quad \text{(each sub-network has non-negative margin)}
 \]

- Ensemble Hunting: Simulated Example
 - Draw samples \((x_i, y_i) \in [-1, 1]^2 \times \{-1, 1\} \) from
 \[
 p(y = 1|x) = \begin{cases}
 1 & \text{if } \|x\|_2 \leq 0.3 \\
 0.15 & \text{otherwise}
 \end{cases}
 \]
 - 10% label noise (red points)
 - train 10 layer network until zero training error
 - influence of noise points localized
 - better test error than random forest

- Takeaways
 - high capacity networks can still generalize well on small data sets with non-trivial noise
 - ensemble interpretation of deep networks, deeper layers offer variance reduction

Training labels and still generalize well?

Draw samples \((x_i, y_i) \in [-1, 1]^2 \times \{-1, 1\} \) from

\[
p(y = 1|x) = \begin{cases}
1 & \text{if } \|x\|_2 \leq 0.3 \\
0.15 & \text{otherwise}
\end{cases}
\]

- 10% label noise (red points)
- train 10 layer network until zero training error
- influence of noise points localized
- better test error than random forest

Bayes rule

DNN

Random Forest

Subnetwork decomposition \(K = 9 \)

Cross-validated Accuracy

Subnetwork decomposition \(K = 9 \)

Subnetwork decomposition \(K = 9 \)

Subnetwork decomposition \(K = 9 \)