TRAFFIC ANALYSIS FOR ANCLOTE BLVD SITE RESIDENTIAL DEVELOPMENT REZONING PINELLAS COUNTY, FL

PREPARED FOR: LYVWELL COMMUNITIES, LLC

PREPARED BY:
GULF COAST CONSULTING, INC.
NOVEMBER 2021
PROJECT # 21-085

TABLE OF CONTENTS

T	T
	INTRODUCTION

- II. EXISTING CONDITIONS
- III. FUTURE CONDITIONS WITH DEVELOPMENT
- IV. CONCLUSIONS AND RECOMMENDATIONS

Robert Pergolizzi, AICP/PTP AICP # 9023 / PTP #133 Sean P- Cashen, PATE OF 1. Sean P- Cashen, PATE

I. Introduction

The applicant is seeking rezoning approval to R-4 in order to develop sixty six (66) single-family homes on a 16.58 acre site. The site is located on the south side of Anclote Blvd west of Blue Marlin Blvd. and also has frontage on Anclote Road in unincorporated Pinellas County. (See Figure 1) Access to both Anclote Blvd and Anclote Road is regulated by Pinellas County and access to each roadway is proposed to comply with Pinellas County standards. This traffic analysis was prepared to evaluate levels of service on adjacent roadways and access considerations for a Pinellas County ROW Use permit. This 66 unit subdivision is expected to generate 622 daily trips, 46 AM peak hour trips and 62 PM peak hour trips.

II. EXISTING CONDITIONS

The adjacent segment of the Anclote Blvd is a 2-lane undivided collector roadway with a posted speed of 45 MPH. This segment is relatively free-flow and is controlled by a traffic signal at Pinellas Avenue (Alternate US 19) which is 1.75 miles east of the site. Anclote Road is a 2-lane undivided roadway with a 35 MPH posted speed that serves several local neighborhoods on the north side of the Anclote River. To establish existing conditions, AM peak period (7-9 AM) and PM peak period (4-6 PM) intersection turning movement counts were conducted at the following locations in November 2021.

Anclote Blvd / Blue Marlin Blvd Anclote Road / Meyers Cove Rd

Raw traffic counts were adjusted to peak season equivalents using FDOT seasonal adjustment factors. The peak hour/peak season traffic volumes are shown in Figure 2. The intersections were analyzed using the HCS7 software. The existing operating conditions are shown in Table 1 and the HCS7 printouts are included in Appendix A.

TABLE 1 - EXISTING INTERSECTION CONDITIONS (2021)

Intersection Location	AM LOS	DELAY (SEC/VEH)	PM LOS	DELAY (SEC/VEH)
Anclote Blvd/Blue Marlin Blvd		7.7/12.3	A/B*	8.0/11.7
Anclote Road/Meyers Cove Dr	A/A*	7.6/9.2	A/A*	7.4/NA

^{*} LOS for major street left turn / minor street approach

According to the Forward Pinellas <u>2020 Level of Service Report</u> the adjacent segments of both Anclote Blvd and Anclote Road operate at LOS C. Based on the adjusted traffic counts, the segment of Anclote Blvd east of Blue Marlin Blvd of carries 423 vehicles during the AM peak hour and 479 vehicles during the PM peak hour, which represents LOS C conditions on a 2-lane road. Anclote Road east of Meyers Cove Drive carries 170 vehicles during the AM peak hour and 281 vehicles during the PM peak hour which is also LOS C conditions. The recently conducted adjusted traffic counts confirm the LOS C operations reported by Forward Pinellas.

PROJECT NO:

21-085

FIGURE:

Gulf Coast Consulting, Inc.

Land Development Consulting

DATE:

11/2021

DRAWN BY:

GJS

1

III. FUTURE CONDITIONS WITH DEVELOPMENT

Trip generation estimates for the proposed expansion were made using ITE <u>Trip Generation</u>, 11th <u>Edition</u> rates for Land Use Code 210 (Single-Family Detached Housing). The trip generation is shown below in Table 2.

TABLE 2 – TRIP GENERATION ESTIMATES

Land Use	ITE LUC		AM PEAK HOUR TRIPS (IN/OUT)	
66 single-family homes	210	622	46 (12/34)	62 (39/23)

The proposed 66 home subdivision is expected to generate 622 daily trips of which 46 would occur during the AM peak hour (12 entering/34 exiting) and 62 would occur during the PM peak hour (39 entering/23 exiting). The project is proposed to have full access to Anclote Blvd (Drive A) approximately 400 feet west of Blue Marlin Blvd. The project is proposed to have full access to Anclote Road (Drive B) to align with Meyers Cove Drive. Project traffic was distributed to the surrounding roadway system based on the following percentages.

10% west on Anclote Blvd (+4 AM trips, +7 PM trips) 45% east on Anclote Blvd (+21 AM trips, + 28 PM trips) 5% west on Anclote Road (+2 AM trips, +3 PM trips) 40% east on Anclote Road (+19 AM trips, + 24 PM trips

The intersections and both project driveways were analyzed to consider future operations with the 66 home subdivision in-place. Expected future traffic is shown in Figure 3, intersection conditions are shown in Table 3 and the HCS7 printouts are included in Appendix B.

TABLE 3 - FUTURE INTERSECTION CONDITIONS WITH PROJECT

Intersection Location	AM LOS	DELAY (SEC/VEH)	PM LOS	DELAY (SEC/VEH)
Anclote Blvd/Blue Marlin Blvd	A/B*	7.7/12.6	A/B*	8.0/12.0
Anclote Blvd/Drive A	A/B*	7.9/10.3	A/B*	7.7/10.2
Anclote Road/Drive B/Meyers Cove Drive	A/A*	7.6/9.4	A/B*	7.4/12.2

^{*} LOS for major street left turn / minor street approach

As shown above, traffic impact of the project is minimal and all movements at the nearby intersections and driveways would operate at LOS B or better, which indicates acceptable levels of service with minor delays.

With the project traffic added, the segment of Anclote Blvd east of Blue Marlin Blvd would continue to operate at LOS C with a traffic volume 444 vehicles during the AM peak hour and 507 vehicles during the PM peak hour. Anclote Road east of Meyers Cove Drive would continue to operate at LOS C with a traffic volume of 189 vehicles during the AM peak hour and 305 vehicles during the PM peak hour.

Due to low turning volume into the site, an EB right turn lane or a WB left turn lane is not necessary at the Anclote Blvd/ Drive A intersection per NCHRP Report #279 graphs. Due to low turning volume a WB right turn lane or an EB left turn lane is not necessary at the Anclote Road/Drive B intersection. These graphs are shown in Appendix B.

IV. CONCLUSIONS AND RECOMMENDATIONS

The proposed 66 unit subdivision would generate 622 daily trips with 46 trips occurring in the AM peak hour and 62 trips during the PM peak hour. This is minimal impact to both Anclote Blvd and Anclote Road. At the proposed driveways to Anclote Blvd and Anclote Road, all movements would operate at LOS B or better with minimal delays and turn lanes are not warranted at the driveways. The adjacent segments of both Anclote Blvd and Anclote Road would continue to operate at LOS C with the project traffic impacts.

2020 PEAK SEASON FACTOR CATEGORY REPORT - REPORT TYPE: ALL CATEGORY: 1500 PINELLAS COUNTYWIDE

WEEK	DATES	, ; , ;	SF	MOCF: 0	.90	
	DATES 01/01/2020 - 01/0 01/05/2020 - 01/1 01/12/2020 - 01/1 01/19/2020 - 01/2 01/26/2020 - 02/0 02/02/2020 - 02/0 02/09/2020 - 02/1 02/16/2020 - 02/2 03/01/2020 - 03/2 03/01/2020 - 03/2 03/01/2020 - 03/2 03/08/2020 - 03/2 03/22/2020 - 03/2 03/29/2020 - 04/1 04/15/2020 - 04/1 04/12/2020 - 04/1 04/12/2020 - 04/1 04/12/2020 - 04/1 04/12/2020 - 04/1 04/12/2020 - 05/0 05/03/2020 - 05/1 05/17/2020 - 05/2 05/10/2020 - 05/2 05/13/2020 - 05/3 05/13/2020 - 06/2 06/21/2020 - 06/2 06/21/2020 - 06/2 06/21/2020 - 06/2 06/28/2020 - 07/1 07/15/2020 - 07/1 07/15/2020 - 07/1 07/15/2020 - 06/2 06/21/2020 - 06/2 06/21/2020 - 06/2 06/21/2020 - 06/2 06/21/2020 - 06/2 06/21/2020 - 06/2 06/21/2020 - 08/0 07/05/2020 - 08/0 08/09/2020 - 08/1 08/16/2020 - 08/2 08/30/2020 - 08/2 08/30/2020 - 09/1 09/13/2020 - 09/1 09/13/2020 - 09/1 09/20/2020 - 09/2 09/27/2020 - 09/2	4/2020 1/2020 8/2020 5/2020 1/2020 8/2020 6/2020 9/2020 9/2020 1/2020 1/2020 1/2020 1/2020 8/2020 1/2020 8/2020 1/2020 6/2020 6/2020 6/2020 1/2020 6/2020 1/2020 6/2020 6/2020 1/2020 6/2020 6/2020 6/2020 6/2020 6/2020 6/2020 6/2020 6/2020 6/2020 6/2020	SF 1.02 0.94 0.85 0.84 0.82 0.81 0.79 0.83 0.86 0.90 0.94 0.97 1.11 1.25 1.39 1.53 1.42 1.32 1.21 1.10 1.08 1.06 1.04 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02		THE STATE ST	\$Hv700WN
41 42 43 44 45 46 47 48 49 50 51 53	10/04/2020 - 10/1 10/11/2020 - 10/1 10/18/2020 - 10/2 10/25/2020 - 10/3 11/01/2020 - 11/0 11/08/2020 - 11/1 11/15/2020 - 11/2 11/22/2020 - 12/0 12/06/2020 - 12/1 12/13/2020 - 12/1 12/20/2020 - 12/2 12/27/2020 - 12/3	7/2020 4/2020 1/2020 7/2020 4/2020 1/2020 8/2020 5/2020 2/2020 9/2020	0.99 0.98 0.99 0.99 1.00 1.00 1.01 1.01 1.01 1.02 1.02 0.94 0.85	1.10 1.09 1.10 1.11 1.11 1.12 1.12 1.12 1.13 1.13 1.04 0.94	TMCS	

^{*} PEAK SEASON

27-FEB-2021 10:30:07

830UPD

7_1500_PKSEASON.TXT.

SOURCE: Quality Counts, LLC (http://www.qualitycounts.net) 1-877-580-2212

SOURCE: Quality Counts, LLC (http://www.qualitycounts.net) 1-877-580-2212

SOURCE: Quality Counts, LLC (http://www.qualitycounts.net) 1-877-580-2212

PSCF = 1.11

SOURCE: Quality Counts, LLC (http://www.qualitycounts.net) 1-877-580-2212

HCS7 Two-Way Stop-Control Report										
General Information Site Information										
Analyst	RP	Intersection	ANCLOTE BLVD/BLUE MARLIN							
Agency/Co.	GCC	Jurisdiction	PINELLAS COUNTY							
Date Performed	11/8/2021	East/West Street	ANCLOTE BLVD							
Analysis Year	2021	North/South Street	BLUE MARLIN BLVD							
Time Analyzed	AM PEAK HOUR	Peak Hour Factor	0.75							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description	EXISTING CONDITIONS									

Vehicle Volumes and Adju	ıstme	nts														
Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	\L \	Т	R	U	∴ <u>L</u>	1	R	U	L	Т	R	U	\L.	अंग के	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0	Visiti	1	0	14 11
Configuration		L	Т					TR						٦		R
Volume (veh/h)	MARINE.	1	213	3,000	13.52	STEER	159	18	Marin	SEE SEE		(Auth)	in Hy	33	VAHER	4
Percent Heavy Vehicles (%)		0												3		3
Proportion Time Blocked	1,515	343434	THE STATE		NAME:	Mari		Salai.			NAM	No.	13.3.53	1,1953	Marie 1	VERN
Percent Grade (%)															0	
Right Turn Channelized	NEXV	Market			atriat		Byreith:		Birt.	- Parties	Aview)		MARIA	, in the second	lo	Para Para
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)	W. H.	4.10	55,000,00	alle	100	T. Carlo		66)16	Mate:	NAME:	i jirinda.	134 145 (1	NAME OF	6.43	VIII.	6.23
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)	12.141	2.20	VALUE		Ville.		WAS:		N. H.	14.3.E.			Marie N.	3.53		3.33
Delay, Queue Length, and	Leve	l of S	ervice													
Flow Rate, v (veh/h)		1												44		5
Capacity, c (veh/h)	Vinij.	1343	Victoria		15,41	10.15	NAME.	i jeyanî	HARA	12/15		A Date	1606	513	MEE	813
v/c Ratio		0.00												0.09		0.01
95% Queue Length, Q₃₅ (veh)	1, 1, 1, 2, 2	0.0	1000		13.00		1,514.1	VMA			shiring.		inde:	0.3		0.0
Control Delay (s/veh)		7.7)											12.7		9,5
Level of Service (LOS)	W. S.	Α	/ 100	AVAID.	ţii:		1885			MARKET STATE				В	Mag	Α
Approach Delay (s/veh)		(0.0	·		***************************************								/ 1	2,3	
Approach LOS	19.00	al table			. 100.00		Hilbert	Halani			Vince (PA)		N. S.	= (<u>.</u> , .	в /	(Trick)

HCS7 Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	RP	Intersection	ANCLOTE BLVD/BLUE MARLIN							
Agency/Co.	GCC	Jurisdiction	PINELLAS COUNTY							
Date Performed	11/8/2021	East/West Street	ANCLOTE BLVD							
Analysis Year	2021	North/South Street	BLUE MARLIN BLVD							
Time Analyzed	PM PEAK HOUR	Peak Hour Factor	0.88							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description	EXISTING CONDITIONS									

Approach		Eastb	ound			West	oound			North	oound			South	bound	
Movement	U	L	T	R	U	L	T	R	U	L	, 1	R	U	L.	,4 L ;;;	Ŕ
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0	Things.	0	0	0	Mag	1	0	1
Configuration		L	T					TR						L		R
Volume (veh/h)	3.1.1	7	142	NAME	7500	N.S.	248	63	1881	AT HEAV	4,515	11 N N	144.55	26	4,5000	[:] 6
Percent Heavy Vehicles (%)	· · · · · · · · · · · · · · · · · · ·	0												0		0
Proportion Time Blocked			11111		N. 3 (1)	1.1.15	4)4/4	1888	434,545	540,50	9414,73	4.111.11	NORTH	5/353.	Adda.	N. 1
Percent Grade (%)															0	
Right Turn Channelized	15,753	.03. 14044	100 HHZ HZ	F. S. J. S. 4443,	SAMA		ina dag via.	1141111	48,500		(Marka			N	lo	1000
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys													6 % S.	
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)	43.440	4.10	1317	1115	1886	11.513	44.54	47.443	4,7414,771	1.1-1.1.11	5,414,4		1,111,11	6.40	1,500	6.20
Base Follow-Up Headway (sec)		2,2												3.5		3.3
Follow-Up Headway (sec)	MHH	2.20	143.15	14.434	NAME:	MAG	47:45	gritter.			14/12	13)42		3.50	BEE.	3.30
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)		8												30		7
Capacity, c (veh/h)	14.11.77	1217	Nami.		1888	1110	N. S. S. S. S.	SHEET.	N. S.	Mari.	1000		14.1423	533	1,511.15	728
v/c Ratio		0.01												0.06		0.01
95% Queue Length, Q ₉₅ (veh)	N. H	0.0	MAG	10.00	N. 2012.	1,1117	500000	Allini	1,7414.5	1,775.)	V24,343	NUMB		0.2		0.0
Control Delay (s/veh)	,	8.0	ì											12.2		10.0
Level of Service (LOS)	(A		1,5,5,5	13.5%					1, 1, 1, 1, 1, 1	\$ 1000.	74 (4.75)	11111	В	3	À
Approach Delay (s/veh)		0	.4				-							/1	1.7	
Approach LOS			111111111	DEPAR	22,834.22		. 1 1 1 1 1 1 1 1 1	44,4454,5	Terra.		. 5 1 1	era te te te eg	Section.		в /	

HCS7 Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	RP	Intersection	ANCLOTE RD / MEYERS COVE							
Agency/Co.	GCC	Jurisdiction	PINELLAS COUNTY							
Date Performed	11/8/2021	East/West Street	ANCLOTE RD							
Analysis Year	2021 ***********************************	North/South Street	MEYERS COVE DR							
Time Analyzed	AM PEAK HOUR	Peak Hour Factor	0.87							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description	EXISTING CONDITIONS									

Approach		Eastbound Westbound					Northbound				Southbound					
	3,, 3					1 1 1 1 1 1		1 m								<u> </u>
Movement	U	L	T	R	U	39 L 3	Τ	R	U	L	T	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0	14.2.2.2.	0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)	Minin	NEED AT A	131	0	5 (E) (C),	4	28	141111	e i sara	3		7	MARC	5315	(3456)	54.1.73
Percent Heavy Vehicles (%)						10				0		0				
Proportion Time Blocked	5.515	75.591.	N. 420	Maria.	NAME:	188		13/11/	Ç. S	500000	21224	5.5.005	5,54,1	54721	8,13,31,	9,57,13
Percent Grade (%)	·									()					
Right Turn Channelized	3.000		Milde		.1			in i i i ni i i	1411111	74,534,733	, 1,515.Fusi.	144 G.M.	distr			
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)	141111	78.45.3	5,542	5,500	14.000	4.20	5444	NASA.		6.40	10,50	6.20		5441	ASSESS.	7999.
Base Follow-Up Headway (sec)						2,2	ì			3.5		3.3				
Follow-Up Headway (sec)		1.45			MAR	2.29	43.50	A, Maria	sinysi,	3,50		3,30				1333
Delay, Queue Length, and	Leve	l of S	ervice													
Flow Rate, v (veh/h)						5					11					
Capacity, c (veh/h)	MARKE	3, 3, 5	12 (12.4)	14.4.4.2	19000000	1383	1000	5(5,44)	1340	NAME.	867	100.00	10.000	34534		
v/c Ratio						0,00			1		0.01					
95% Queue Length, Q ₉₅ (veh)	55.117	54.4.7	13.5	14.53		0.0	(1)	19.33	12.14.7	1.3 1.57	0.0	544.11	54 (1444)	111144	Note	500
Control Delay (s/veh)					,	7.6	7				9.2	<u> </u>				
Level of Service (LOS)	13.41	7,576	3.1.1.	1,343	3334	Α	/ ****	4, 5, 4,	14.14.11.	MH).	A.		i e i k k de k	100	11,533	14. 14.
Approach Delay (s/veh)						1	.0			/9	.2			•		
Approach LOS	****		190, 50, 10		10.14				1		4	15.0000	*****		1,111.	*******

HCS7 Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	RP	Intersection	ANCLOTE RD / MEYERS COVE							
Agency/Co.	GCC	Jurisdiction	PINELLAS COUNTY							
Date Performed	11/8/2021	East/West Street	ANCLOTE RD							
Analysis Year	2021	North/South Street	MEYERS COVE DR							
Time Analyzed	PM PEAK HOUR	Peak Hour Factor	0.64							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description	EXISTING CONDITIONS									

Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	Ļ	Ť	R	U	L	11 ii.	R	U	L	Т	R	U	L	T	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0	wa M	0	1	0		0	0	0
Configuration				TR		LT	***************************************				LR					
Volume (veh/h)	William	100000	64	1		4	213	jaha.	13.33	0	(1.1.5.)	0	544.54	5.55	Vieta	5.77
Percent Heavy Vehicles (%)						1				0		0				
Proportion Time Blocked	Alle.	1714.131	10110	1335	1,1,1,1	5,12	1,154.00	N.N.E. (2)	Nation	4274, 243	Service	50000	533	10.00		11.11.
Percent Grade (%)										(Ò					
Right Turn Channelized	May a	(j. s. s. s. s. s.)	lining a se	11,7,11,13	74(0.84)	Militar	:::::::::::::::::::::::::::::::::::::::	: Partier	MAR.				1.771.3			
Median Type Storage	Undivided															
Critical and Follow-up Hea	adwa	ys														
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)	14.15	14,500		10.00	Addition,	4.11	N. Villa et	1,144,144	Váda	6.40	:134 44.	6.20	3.3.2	NEW ZE,	15.13	74.1.7
Base Follow-Up Headway (sec)			······································			2.2				3.5		3.3				
Follow-Up Headway (sec)	NEAR	1992,940	N. TESS	3. A.	1:14:	2.21		1311		3.50	1996	3.30	A A A A A A	10.53	1814	1000
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)						6					0					
Capacity, c (veh/h)	7. N. S.	NAME:	188	18.11	15.50	1497	1315	: * : * : * : ; : ; : : : * : ;	14,114,1	:::::::	423,423	14,75.23	515-7	14.54	535.50	gara.
v/c Ratio						0.00										
95% Queue Length, Q ₉₅ (veh)	NAM	55.63	10,000	53.55	15.33.5	0.0	45.743	34,414,	1941 (1)	455.55	1,100,	112		1.50	Alvini.	1.11
Control Delay (s/veh)					/	7.4	\									
Level of Service (LOS)	N. J. C.	22.444.4	4,11,74,13	5.45	133	A		1,535	1747.11	Palesta.	Sect.	144,54	10000	1444	MONEY.	
Approach Delay (s/veh)	· '	•		-		0	.2	•		_		•			•	•
Approach LOS	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		1, 3, 1 : 13, 4				, see en de d		4.1.4.4.4.1	MC	North Age	94. N. J. 4. 3	1.7%	eria difeji		

Generalized Peak Hour Two-Way Volumes for Florida's Urbanized Areas¹

TABLE 4

12/18/12

INTERRUPTED FLOW FACILITIES	UNINTERRUPTED FLOW FACILITIES
STATE SIGNALIZED ARTERIALS	FREEWAYS
Class I (40 mph or higher posted speed limit) Lanes Median B C D B 2 Undivided * 1,510 [1,600] ** 4 Divided * 3,420 3,580 ** 6 Divided * 5,250 5,390 ** 8 Divided * 7,090 7,210 ** Andre Class II (35 mph or slower posted speed limit) Class II (35 mph or slower posted speed limit) Lanes Median B C D B 2 Undivided * 660 [1,330] 1,410 4 Divided * 1,310 2,920 3,040 6 Divided * 2,090 4,500 4,590 8 Divided * 2,880 6,060 6,130 Anclos II 200 Por (200 1200) Non-State Signalized Roadway Adjustments (Alter corresponding state volumes by the indicated percent) Non-State Signalized Roadways (10%)	Lanes B C D E 4 4,120 5,540 6,700 7,190 6 6,130 8,370 10,060 11,100 8 8,230 11,100 13,390 15,010 10 10,330 14,040 16,840 18,930 12 14,450 18,880 22,030 22,860 Freeway Adjustments Auxiliary Lanes Ramp Present in Both Directions Metering +1,800 +5%
Median & Turn Lane Adjustments Exclusive Exclusive Adjustment Lanes Median Left Lanes Right Lanes Factors 2 Divided Yes No +5% 2 Undivided No No -20% Multi Undivided Yes No -5% Multi Undivided No No -25% Yes +5% One-Way Facility Adjustment Multiply the corresponding two-directional volumes in this table by 0.6	UNINTERRUPTED FLOW HIGHWAYS Lanes Median B C D E 2 Undivided 770 1,530 2,170 2,990 4 Divided 3,300 4,660 5,900 6,530 6 Divided 4,950 6,990 8,840 9,790 Uninterrupted Flow Highway Adjustments Lanes Median Exclusive left lanes Adjustment factors 2 Divided Yes +5% Multi Undivided Yes -5% Multi Undivided No -25%
BICYCLE MODE ² (Multiply motorized vehicle volumes shown below by number of directional roadway lanes to determine two-way maximum service volumes.) Paved Shoulder/Bicycle Lane Coverage B C D E 0-49% * 260 680 1,770 50-84% 190 600 1,770 >1,770 85-100% 830 1,770 >1,770 ***	Values shown are presented as peak hour two way yolumes for levels of survice and are for the automobile/truck modes unless specifically stated. This table does not constitute a standard and should be used only for general planning applications. The computer models from which this table is derived should be used for more specific planning applications. The table and deriving computer models should not be used for coundor or intersection design, where more refined techniques exist. Calculations are based on planning applications of the Highway Capacity Manual and the Transit Capacity and Quality of Service Manual. Level of service for the pieyele and pedestrian modes in this table is based on number of motorized vehicles, not immber of bicyclists or pedestrians using the facility. Buses per hour shown are only for the peak hour in the single direction of the higher traffic
PEDESTRIAN MODE ² (Multiply motorized vehicle volumes shown below by number of directional roadway lanes to determine two-way maximum service volumes.) Sidewalk Coverage B C D B 0-49% * * 250 850 50-84% * 150 780 1,420 85-100% 340 960 1,560 >1,770	flow. Camot be achieved using table input value defaults. The amomedite mode, Volumes greater than level of service letter grade. For the amomedite mode, volumes greater than level of service D become F because interaction capacities have been reached. For the bloyde mode, the level of service letter grade (including F) is not achievable because there is no maximum vehicle volume threshold using table input value defaults.
BUS MODE (Scheduled Fixed Route) ³ (Buses in peak hour in peak direction) Sidewalk Coverage B C D B $0-84\%$ > 5 ≥ 4 ≥ 3 ≥ 2 $85-100\%$ > 4 ≥ 3 ≥ 2 ≥ 1	Sowee: Fixida Department of Transportation Systems Planning Office www.dot.state.fl.us/planning/systems/sn/los/default.shkm

Single-Family Detached Housing (210)

Vehicle Trip Ends vs: Dwelling Units On a: Weekday

Setting/Location: General Urban/Suburban

Number of Studies: 174 Avg. Num. of Dwelling Units: 246

Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
9.43	4.45 - 22.61	2.13

66 8 9.43 = 622

Data Plot and Equation

X = Number of Dwelling Units

- Fitted Curve

1000

Fitted Curve Equation: Ln(T) = 0.92 Ln(X) + 2.68

× Study Site

2000

3000

- Average Rate

R2= 0.95

Single-Family Detached Housing (210)

Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 192 Avg. Num. of Dwelling Units: 226

Directional Distribution: 26% entering, 74% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.70	0.27 - 2.27	0.24

Single-Family Detached Housing (210)

Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 208 Avg. Num. of Dwelling Units: 248

Directional Distribution: 63% entering, 37% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.94	0.35 - 2.98	0.31

Data Plot and Equation

HCS7 Two-Way Stop-Control Report									
General Information		Site Information							
Analyst	RP	Intersection	ANCLOTE BLVD/BLUE MARLIN						
Agency/Co.	GCC	Jurisdiction	PINELLAS COUNTY						
Date Performed	11/9/2021	East/West Street	ANCLOTE BLVD						
Analysis Year	2024	North/South Street	BLUE MARLIN BLVD						
Time Analyzed	AM PEAK HOUR	Peak Hour Factor	0.75						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description	FUTURE CONDITIONS WITH PROECT								

Vehicle Volumes and Adju	ıstme	nts														
Approach		Eastb	ound			Westl	bound			North	oound			South	bound	
Movement	U	L	T	R	U	L	ा	R	U	L	1	R	U	L	ा	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	11	0	Marij.	.0	0	0		1	0	1
Configuration		L	Т					TR						L		R
Volume (veh/h)	NESS	1	229	170		10.00%	164	18	HINN	4791147		HAN	NEEN	33		4
Percent Heavy Vehicles (%)		0												3		3
Proportion Time Blocked	118.73.434	104113	44.	N. A.	100	Will		13.35	NAS:		13.15	*(1:11:1);	Anim,			With
Percent Grade (%)						•								(0	
Right Turn Channelized	2552233			HAPAH.	SERVE		Maria de la compansión de La compansión de la compa	V BESTELLER	MARK!		ESSENTES.				lo	40,00
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)	Maria	4.10	Thirtie.	H, M	gravita	Nation		Alter.	Virini (A)	1,31,520		Alderia.	NIMIE.	6.43	Meen	6.23
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)	NAME	2.20	NAME:	Name (40.114	i iini			String.		N. San	3,53		3.33
Delay, Queue Length, and	l Leve	l of S	ervice													
Flow Rate, v (veh/h)		1								·				44		5
Capacity, c (veh/h)		1336	Mady	16.5		15,755,000				Wall			N. E.W.	495		806
v/c Ratio		0.00												0.09		0.01
95% Queue Length, Q ₉₅ (veh)	1111111	0.0	NAME:	YEAR	Mari			NAM!	AMA F		MAGE	Neithi		0.3	1:100	0.0
Control Delay (s/veh)	/	7.7	L											13.0		9.5
Level of Service (LOS)	100	Α) sirsiii	Nasi		13,44	No. 20	133		1,111,111	14.1 H.		Adjusta di	В		A
Approach Delay (s/veh)		(.0											/1.	2.6	
Approach LOS	10.3.5.	ela legis di		atti i Mi	11544			holin	. 4.11.11				100		в	ANA S

HCS7 Two-Way Stop-Control Report									
General Information		Site Information							
Analyst	RP	Intersection	ANCLOTE BLVD/BLUE MARLIN						
Agency/Co.	GCC	Jurisdiction	PINELLAS COUNTY						
Date Performed	11/9/2021	East/West Street	ANCLOTE BLVD						
Analysis Year	2024	North/South Street	BLUE MARLIN BLVD						
Time Analyzed	PM PEAK HOUR	Peak Hour Factor	0.88						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description	FUTURE CONDITIONS WITH PROJECT								

Approach		Eastb	ound	:		West	oound			North	bound			South	bound	
Movement	U	L	÷∷ _T ∷	R	U	լ	π	R	U	14 L N	Ţ	R	U	H.	ोंग ें	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	11.	0		0	0	0		1	0	1
Configuration		L	Т					TR						Ĺ.		R
Volume (veh/h)	N. 2 (1.72)	7	152	19450000	\$35 E.J	Value	266	63	11444	SENTE	Shirt	305940	Nitra	26	HHAV	6
Percent Heavy Vehicles (%)		0												0		0
Proportion Time Blocked	10.00	Notes	Validi.	1900	VER	基础		ANN	EN.	335	11320	Links	SME			1.00
Percent Grade (%)		•		•			•)	
Rìght Turn Channelized	1838				14.55		ageni	Barkir	(Main	Harring.	Harry	94446	120.00	V	lo	
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys						3 4 5 5 4 5								
Base Critical Headway (sec)		4.1				·								7.1		6.2
Critical Headway (sec)	10700	4.10	New	Park III.	dian	vinn.	STANIS!	1000000	12.4425	al Vaca	denta.	MESS	sinua.	6.40	Ment	6.20
Base Follow-Up Headway (sec)		2,2												3.5		3.3
Follow-Up Headway (sec)	13,335	2.20	18.820	15000	44.15	15140	4,747,454	15.5	48.33	131111	11.50	14.15	10.00	3.50	NEER	3.30
	1 .	2,20.											1			
Delay, Queue Length, and	Leve	VI 100 HINDSHIP DE	ervice													
Delay, Queue Length, and Flow Rate, v (veh/h)	Leve	VI 100 HINDSHIP DE	ervice											30		7
	Leve	l of Se	ervice									\		30 511	Accessed	7 709
Flow Rate, v (veh/h)	Leve	of Se	ervice									\			\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.	
Flow Rate, v (veh/h) Capacity, c (veh/h)	Leve	8 1196	ervice									\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.		511	100 (100 (100 (100 (100 (100 (100 (100	709
Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio	Leve	8 1196 0.01	ervice											511 0.06		709 0.01
Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh)	Leve	8 1196 0.01	ervice											511 0.06 0.2		709 0.01 0.0

HCS7 Two-Way Stop-Control Report									
General Information		Site Information							
Analyst	RP	Intersection	ANCLOTE BLVD/ DRIVE A						
Agency/Co.	GCC	Jurisdiction ************************************	PINELLAS COUNTY						
Date Performed	11/9/2021	East/West Street	ANCLOTE BLVD						
Analysis Year	2024	North/South Street	DRIVE A CHANGE A SECOND AND A SECOND						
Time Analyzed	AM PEAK HOUR	Peak Hour Factor	0.75						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description	FUTURE CONDITIONS WITH PROJECT								

Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	T	R	U	F	T	R	U	L	ं ।	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0	NAM	0	ं व े	0	18.11	0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)		Political)	214	1	VERE!	5	163	15/15/	531.53	3		16	14,000	1440	MAN	N11 N2
Percent Heavy Vehicles (%)						3				3		3				
Proportion Time Blocked	Marie,	MAG.		10.00	Parity		55344	SA BIL		HALL	NAMED	A PART		1004	(3000)	
Percent Grade (%)										(0					
Right Turn Channelized	Maria	<u>Halle</u>	jilova (1	Alamah.	NAM.	Çê Hêrê			Link	idin bar	Harris,			1014 000		
Median Type Storage				Undi	vided											
Critical and Follow-up He	adway	/S														
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)	1:4141:4	in in in in	NAME	NAME OF	SAME	4.13	MAM	19,377	Arrian,	6.43	134500	6.23	NAME	Made	1,111,111	Medial.
Base Follow-Up Headway (sec)						2,2				3.5		3.3				
Follow-Up Headway (sec)	A STATE	15.00	\$ (18 A) A	Mark		2,23	43.55	MAR		3.53		3.33	Side			MA
Delay, Queue Length, and	l Leve	of Se	ervice													
Flow Rate, v (veh/h)						7					25					
Capacity, c (veh/h)	THE STATE	Novik,		A Mil	NEW	1270	Milit.	(1111)	, Rinds	William !	700	411.441	Ning		i Bish	1.11
v/c Ratio		:				0.01					0.04					
95% Queue Length, Q ₉₅ (veh)	NAME		N, Mari	1471144	3,330	0,0	Alterial (28 (1872)	N. S.	13.15.15	0.1	V. Line	100	1,000	1310-741,	N.
Control Delay (s/veh)	· ·				/	7.9)				10.3					
Level of Service (LOS)	: Establish	14.1111	H.N	14,13		Α	/		147414	واد مدر. المتراجع	В	5,777	8. E-1	3.14		4, 3 , 3
Approach Delay (s/veh)				•	,	(.3			/ 10	0.3)				
Approach LOS	3.55			1047,344	1941;1						В				A-1003-14	

HCS7 Two-Way Stop-Control Report									
General Information		Site Information							
Analyst	RP	Intersection	ANCLOTE BLVD/ DRIVE A						
Agency/Co.	GCC	Jurisdiction (Marie Lands)	PINELLAS COUNTY						
Date Performed	11/9/2021	East/West Street	ANCLOTE BLVD						
Analysis Year	2024	North/South Street	DRIVE A						
Time Analyzed	PM PEAK HOUR	Peak Hour Factor	0.75						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description	FUTURE CONDITIONS WITH PROJECT								

Vehicle Volumes and Adju	2531116000000	00900900000											5 11				
Approach	Eastbound					Westbound				North			Southbound				
Movement	U	L.	Т	R	U	i L	Т	R	U	L	(1.0	R	U	L	T	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0	13/31/20	0	0	0	
Configuration				TR		LT					LR						
Volume (veh/h)		- Alexandra	149	4		18	254	HANN)	KWHI.	3		10		11111)(Alteri	Sant	
Percent Heavy Vehicles (%)						3				3		3					
Proportion Time Blocked	TABLE OF	50.00	N. S.	Mari	North	N. S.		Stiriti	Maria.		NOTE: N	10.5		153.545	4444	15.11.2	
Percent Grade (%)										()						
Right Turn Channelized	páva			Territor del					MAN	A CHARLES	Maria	W.E.M.	Situati, 1			Maria	
Median Type Storage				Undi	vided												
Critical and Follow-up He	adwa	ys															
Base Critical Headway (sec)						4.1				7.1		6.2					
Critical Headway (sec)	15055144	N. Sept. 1	NAME	Bar.	Marine)	4.13	(Minis	May All	\$5.00 t)	6.43	425454.54	6.23		No.	MAME	1965	
Base Follow-Up Headway (sec)						2,2				3.5		3.3					
Follow-Up Headway (sec)	N. S.			100	U.S.	2,23			The second	3.53	34.00 V 374.00 V	3.33	E-March			Baka	
Delay, Queue Length, and	Leve	l of Si	ervice														
Flow Rate, v (veh/h)						24					17						
Capacity, c (veh/h)	HAIM	Mark	Nig	YMEA	1,5 E. S.	1362	155.5	10.000	151000	18.65	705	N41.4	Nik	1,555			
v/c Ratio						0.02			4		0.02						
95% Queue Length, Q ₉₅ (veh)	N2:03:			1/3/44	NEW Y	0.1	3,560	Share		in sec	0.1	VALUE OF THE STATE	i i i i i i i	5544	N.	N. H. H.	
Control Delay (s/veh)						7.7	1				10.2						
Level of Service (LOS)		1000	Ville	4.5		, A	/	VANA	\$25 x 23	10 mgs	В	i ijana.	1000	10.00	i, and	51.1	
Approach Delay (s/veh)					0.7					10	0.2					• =•••••	
Approach LOS	1421443			12154	5,111						в /						

Generated: 11/9/2021 3:52:12 PM

HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	КЪ	Intersection	ANCLOTE RD / MEYERS COVE								
Agency/Co.	GCC HERE VERNER VERNER HERE	Jurisdiction	PINELLAS COUNTY								
Date Performed	11/9/21	East/West Street	ANCLOTE RD								
Analysis Year	2024	North/South Street	MEYERS COVE DR / DRIVE B								
Time Analyzed	am peak hour	Peak Hour Factor	0.87								
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25								
Project Description	FUTURE CONDITIONS WITH PROJECT										

Vehicle Volumes and Adju	istme	nts															
Approach		Eastb	ound		Westbound					North	bound		Southbound				
Movement	U	L	T	R	U	L	1	R	U	L	ा ः	R	U	L	ा े	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	ं भ	0	0	0	1	0	HAND.	0	1	0	atha)	0	1	0	
Configuration			LTR				LTR				LTR				LTR		
Volume (veh/h)	Mili	1	131	0	MARIA	4	28	5	(ANY)	3	0	7	RESE	14	0	9	
Percent Heavy Vehicles (%)		3				10				0	3	0		3	3	3	
Proportion Time Blocked	N. A.	N. S.	NA SE	HEER!									N. I				
Percent Grade (%)											0				0		
Right Turn Channelized	Market		Mark Wi		50550	obsident Tables			AMEN'S								
Median Type Storage		Undivided															
Critical and Follow-up He	adwa	ys															
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2	
Critical Headway (sec)	Only	4.13	HAN	HEAL	MARK	4.20		EERS	1303	7.10	6.53	6.20	MARI	7.13	6.53	6.23	
Base Follow-Up Headway (sec)		2.2				2,2				3.5	4.0	3.3		3.5	4.0	3.3	
Follow-Up Headway (sec)	10,113	2.23	1500	13.4%	N. S.	2.29		Malini	WES	3.50	4.03	3,30	MARK	3.53	4.03	3.33	
Delay, Queue Length, and	Leve	l of Se	ervice				5 5 5	5 5 S									
Flow Rate, v (veh/h)		1				5					11				26		
Capacity, c (veh/h)		1566				1383			1313	SEAR	849		Mah	Male	836	1983	
v/c Ratio		0.00				0.00					0.01				0.03		
95% Queue Length, Q ₉₅ (veh)	U, SEE	0.0	NAME	VARE	Marini:	0.0	NEEE.	0316	13113	VIII.	0.0		MAN.	VER	0.1	NA	
Control Delay (s/veh)		7.3		0.0		7.6	\	0.0			9.3				9.4		
Level of Service (LOS)		Α		Α		A	/ <u>Bari</u>	Α	\$16.5	55.5	Α	13.55	VALE	MA	Α	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	
Approach Delay (s/veh)		Ó	.1		0.8					9	.3		9.4				
Approach LOS									Maria		A		A STATE OF THE STA				

HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	RP	Intersection	ANCLOTE RD / MEYERS COVE								
Agency/Co.	GCC ***************************	Jurisdiction	PINELLAS COUNTY								
Date Performed	11/9/2021	East/West Street	ANCLOTE RD								
Analysis Year	2024	North/South Street	MEYERS COVE DR / DRIVE B								
Time Analyzed	PM PEAK HOUR	Peak Hour Factor	0.64								
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25								
Project Description	FUTURE CONDITIONS WITH PROJECT										

Vehicle Volumes and Adju	ıstme	nts																
Approach		Eastb	ound			Westl	oound	1		North	bound		Southbound					
Movement	U	L	Т	R	U	L	т	R	U	ાં	T	R	U	L	ंक ः	R		
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12		
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0	1333	0	11	0		
Configuration			LTR				LTR				LTR				LTR			
Volume (veh/h)	52743	2	64	1	No.	4	213	15	MARIA.	0	0	0	341140	9	0	11		
Percent Heavy Vehicles (%)		3	<u> </u>			1				0	3	0		3	3	3		
Proportion Time Blocked	11.13	34.53	144.41.	5 (C)	Hiller	N. State (N. (1975)	VS:	NA	Silia.	Maria	Mili	Nai ja				
Percent Grade (%)										0				0				
Right Turn Channelized	94.755	Harris	AMADE.		MAN.				A SANTA			Handi						
Median Type Storage	Undivided																	
Critical and Follow-up He	adwa	ys																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2		
Critical Headway (sec)	33 F-1-35	4.13	14.114.2.2	************	1671 (17)	4.11	W. Call	Nilis	(33/4)	7.10	6.53	6.20	34.500	7.13	6.53	6.23		
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3,3		
Follow-Up Headway (sec)	VES	2.23		Viig		2.21		55.5	121111 1211111	3.50	4.03	3.30	Align	3.53	4.03	3.33		
Delay, Queue Length, and	Leve	l of Se	ervice															
Flow Rate, v (veh/h)		3				6					0				16			
Capacity, c (veh/h)	sin il	1197	1,550	1303	William.	1497	4141444	Maria.	8.1347	Sand	Millian in	NASS	strati.	10000	515	Valle		
v/c Ratio		0.00				0.00					···············				0.03			
95% Queue Length, Q ₉₅ (veh)	67.75	0.0	250,200,000	8412.	4400	0.0	HÜM		WH				43/43		0.1	NA 30		
Control Delay (s/veh)		8.0)	0.0		7.4)	0.0							12.2			
Level of Service (LOS)		A		Α	(1:1:1:	A		Α	1972	54250	N. (N. (N.)	414,7525	1504-110	19. (1. (4.) Ping	В	5.1.1		
Approach Delay (s/veh)		0.	3		0.2					direction and		1	/ 12.2					
Approach LOS									4, 3, 5, 4,	F10.151			B /					

Figure 4-23. Traffic volume guidelines for design of right-turn lanes. (Source: Ref. 4-11)

Figure 4-12. Volume warrants for left-turn lanes at unsignalized intersections. (Source: Ref. 4-7)

a partially shadowed left-turn lane, as illustrated in Figure 4-14. With partially shadowed left-turn lanes, the offset created by the approach taper does not entirely protect or "shadow" the turn lane.

Length of Lane

The left-turn lane length is among the most important design element of left-turn lanes. Its design is directly tied to the particular function of the lane, which is based on prevailing speeds, traffic volumes, and traffic control. The design basis for length can be deceleration, storage, or a combination of both.

Left-turn lanes on high-speed highways should be designed to accommodate vehicle deceleration and braking. The channelization principle of removing slow or decelerating vehicles from through traffic applies at such locations. Figure 4-15 illustrates the functional basis for design of deceleration-based left-turn lanes according to AASHTO. The assumed "reasonable" driver behavior includes deceleration in gear for 3 sec., followed by comfortable braking completely within the turning lane. Where constraints exist and speeds are moderate, an al-

Figure 4-23. Traffic volume guidelines for design of right-turn lanes. (Source: Ref. 4-11)

Figure 4-12. Volume warrants for left-turn lanes at unsignalized intersections. (Source: Ref. 4-7)

a partially shadowed left-turn lane, as illustrated in Figure 4-14. With partially shadowed left-turn lanes, the offset created by the approach taper does not entirely protect or "shadow" the turn lane.

Length of Lane

The left-turn lane length is among the most important design element of left-turn lanes. Its design is directly tied to the particular function of the lane, which is based on prevailing speeds, traffic volumes, and traffic control. The design basis for length can be deceleration, storage, or a combination of both.

Left-turn lanes on high-speed highways should be designed to accommodate vehicle deceleration and braking. The channelization principle of removing slow or decelerating vehicles from through traffic applies at such locations. Figure 4-15 illustrates the functional basis for design of deceleration-based left-turn lanes according to AASHTO. The assumed "reasonable" driver behavior includes deceleration in gear for 3 sec., followed by comfortable braking completely within the turning lane. Where constraints exist and speeds are moderate, an al-