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Abstract

Average realized returns equal average expected returns plus average unexpected returns. If
anomalies are driven by risk, average expected returns should be close to average realized re-
turns. If anomalies are driven by mispricing, unexpected returns should be more important. We
estimate accounting-based expected returns to zero-cost trading strategies formed on anomaly
variables such as book-to-market, size, composite issuance, net stock issues, abnormal invest-
ment, asset growth, investment-to-assets, accruals, earnings surprises, failure probability, return
on assets, and short-term prior returns. Our findings are striking. Except for the value premium,
expected return estimates differ dramatically from average return estimates. The evidence sug-
gests that mispricing, not risk, is the main driving force of capital markets anomalies.
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1 Introduction

We ask whether risk or mispricing is the main driving force behind capital markets anomalies, which

are empirical relations between average returns and firm characteristics not explained by standard

asset pricing models. Over the past three decades, anomalies have become important in asset alloca-

tion, capital budgeting, security analysis, hedge fund strategies, and many other applications. Un-

derstanding their driving forces is one of the most important questions in capital markets research.

Two competing schools of thoughts have proposed an array of economic explanations for cap-

ital markets anomalies (see Appendix A for a brief review). Behavioral finance contends that

investors make systematic mistakes in pricing assets, and that anomalies are driven by predictable

pricing errors (mispricing) (e.g., Barberis, Shleifer, and Vishny (1998), Daniel, Hirshleifer, and Sub-

rahmanyam (1998), and Hong and Stein (1999)). In contrast, retaining the assumption of rational

expectations, new classical finance argues that risk and expected returns vary with firm characteris-

tics in a systematic way, and that anomalies are driven by time-varying expected returns (risk) (e.g.,

Cochrane (1996), Berk, Green, and Naik (1999), Zhang (2005), and Liu, Whited, and Zhang (2009)).

We aim to further the risk versus mispricing debate by estimating accounting-based expected re-

turns to anomalies-based trading strategies. The basic idea is simple. Average realized returns equal

average expected returns plus average unexpected returns. If anomalies are driven by risk, average

expected returns should account for the bulk of average realized returns. If anomalies are driven

by mispricing, average unexpected returns should account for the bulk of average realized returns.

Building on the latest accounting literature on expected return estimation, we use the residual in-

come model to estimate expected returns for zero-cost trading strategies formed on a comprehensive

list of anomaly variables. Under the model, the expected return can be calculated as the internal

rate of return that equates the present value of expected future residual incomes to the current stock

price (e.g., Gebhardt, Lee, and Swaminathan (2001)). Using accounting-based models has the added

advantage that accounting identities always hold regardless of investor rationality or lack thereof.
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Our key message is that expected return estimates differ drastically from average return esti-

mates for most anomalies, suggesting that mispricing, not risk, is the main driving force behind

anomalies. In particular, the expected return estimate of the value-minus-growth quintile is 6.3%

per annum, which is close to the average return estimate of 5.2% in terms of economic magnitude.

The expected return estimate, which is about 12 standard errors from zero, is also more precise

than the average return estimate, which is slightly more than two standard errors from zero. The

expected return estimate of the small-minus-big quintile is 3.1%, which is close to the average

return estimate of 3%. The expected return estimate is more than 7.5 standard errors from zero,

whereas the average return estimate is within one standard error of zero.

However, for all the other anomaly variables, the average return estimates and the expected

return estimates differ dramatically in terms of economic magnitude. In the data, the high-minus-

low quintiles formed on Sloan’s (1996) accruals, Titman, Wei, and Xie’s (2004) abnormal corporate

investment, Daniel and Titman’s (2006) composite issuance, and Fama and French’s (2008) net

stock issues all earn negative average returns, which range from −4.0% to −7.5% per annum. These

average returns are at least 2.4 standard errors from zero. In contrast, the expected return estimates

of these zero-cost quintiles are all between −0.1% to zero (and insignificant), meaning that these

anomalies are mostly driven by unexpected returns. Although the high-minus-low quintile formed

on Cooper, Gulen, and Schill’s (2008) asset growth has an expected return estimate of −0.6%

(t = −3.0), its magnitude does not come close to its average return estimate of −5.6% (t = −2.8).

What makes matters worse is that the expected return estimates even have the opposite signs

as the average return estimates for the high-minus-low quintiles formed on Jegadeesh and Titman’s

(1993) prior six-month returns (momentum), Chan, Jegadeesh, and Lakonishok’s (1996) earnings

surprises, Campbell, Hilscher, and Szilagyi’s (2008) failure probability, and Chen, Novy-Marx, and

Zhang’s (2010) return on assets. The high-minus-low earnings surprises, return on assets, and mo-

mentum quintiles have average returns of 4.9%, 6.5%, and 6.4% per annum, respectively, all of which

are at least three standard errors from zero. However, their expected return estimates are all sig-
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nificantly negative, ranging from −0.1% to −1.7%. The high-minus-low failure probability quintile

has an average return of −8.1% (t = −5.0), but its expected return is significantly positive, 3.8%.

We also address several recent critiques on the Gebhardt, Lee, and Swaminathan (2001) estima-

tion of expected returns. First, because the baseline procedure uses analysts earnings forecasts that

are limited to a small sample and that are likely even biased, we modify this procedure to avoid the

use of analysts forecasts. Instead, we forecast future profitability using cross-sectional regressions

similar to those in Fama and French (2006) (see also Hou, Dijk, and Zhang (2009)). We find that our

basic inferences are robust to the use of profitability forecasts based on cross-sectional regressions.

Second, in a stream of influential articles, Easton, Taylor, Shroff, and Sougiannis (2002), Easton

(2006, 2007), and Easton and Sommers (2007) criticize the Gebhardt, Lee, and Swaminathan (2001)

procedure on the ground that the assumed growth rates beyond the short forecast horizon can be

inconsistent with the actual growth rates in the data. This inconsistency can introduce bias in the

expected return estimates. These authors propose methods that can estimate the expected returns

and the expected growth rates for a portfolio simultaneously. To evaluate the impact of the growth

rate assumption, we implement these alternative estimation methods on our testing portfolios. We

find that these methods often predict growth rate spreads that go in the opposite direction as the

growth rate spreads in the data. These counterfactual predictions cast serious doubt on the validity

of these alternative methods for estimating expected returns. While we do not improve on the treat-

ment of growth rates in the Gebhardt et al. procedure, our results suggest that their procedure is

probably among the best accounting-based expected return models in the contemporary literature.

The rest of the paper is organized as follows. Section 2 describes our data and expected return

estimation. Section 3 presents the expected return estimates for anomalies-based trading strategies.

Section 4 deals with recent critiques on the estimation methodology. Finally, Section 5 concludes.
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2 Empirical Design

We describe our data in Section 2.1 and delineate the expected return estimation in Section 2.2.

2.1 Data

The monthly data on stock returns, stock prices, and number of shares outstanding are obtained

from the Center for Research in Security Prices (CRSP). We obtain stock returns with and without

dividend for all NYSE, Amex, and Nasdaq stocks from CRSP. We use nonfinancial firms (excluding

firms with four-digit SIC codes between 6000 and 6999) listed on the CRSP monthly stock return

files and the Compustat annual industrial files from 1965 through 2008. The sample size varies

across anomaly variables due to data availability. Only firms with ordinary common equity are

included, meaning that we exclude ADRs, REITs, and units of beneficial interest.

Anomaly Variables

We examine an extensive list of anomaly variables. To facilitate comparison, we closely follow the

prior literature in defining these variables (see Appendix B for detailed variable definitions).

Book-to-market (B/M) and size (ME). High B/M stocks earn higher average returns than low

B/M stocks (e.g., Rosenberg, Reid, and Lanstein (1985), Fama and French (1993), and Lakonishok,

Shleifer, and Vishny (1994)). We follow Fama and French in measuring this anomaly variable.

Small firms earn higher average returns than big firms (e.g., Banz (1981)). We calculate ME as

the market equity (price per share times shares outstanding) from CRSP.

Composite issuance (CI) and net stock issues (NSI). Firms that issue new equity underperform,

and firms that buy back shares outperform matching firms with similar characteristics in the future

three to five years (e.g., Ritter (1991), Loughran and Ritter (1995), Ikenberry, Lakonishok, and

Vermaelen (1995), and Michaely, Thaler, and Womack (1995)). We use two variables to summa-

rize the external financing anomalies. From Daniel and Titman (2006), CI measures the part of

firm growth in market equity that is not due to stock returns. From Fama and French (2008),
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NSI measures the annual change in the logarithm of the number of real shares outstanding, which

adjusts for distribution events such as splits and rights offerings.

Abnormal investment (AI), asset growth (AG), investment-to-assets (I/A), and accruals (AC).

Titman, Wei, and Xie (2004) show that firms with abnormally high investment earn lower average

returns than firms with abnormally low investment. AI is the deviation of the current year’s in-

vestment from the benchmark investment, which is defined as the past three-year moving average

of investment. Cooper, Gulen, and Schill (2008) show that firms with high asset growth earn lower

average returns than firms with low asset growth. AG is measured as the annual percentage change

in total assets. Lyandres, Sun, and Zhang (2008) and Chen, Novy-Marx, and Zhang (2010) show

that high I/A firms earn lower average returns than low I/A firms. I/A is the annual change in

gross property, plant, and equipment (Compustat annual item PPEGT) plus the annual change

in inventory (item INVT) divided by the lagged total assets (item AT). Sloan (1996) shows that

high AC firms earn lower average returns than low AC firms. Following Sloan, we measure AC as

changes in non-cash working capital minus depreciation expense scaled by average total assets.

Standardized Unexpected Earnings (SUE) and return on assets (ROA). High SUE stocks earn

higher average returns than low SUE stocks (e.g., Ball and Brown (1968), Bernard and Thomas

(1989), and Chan, Jegadeesh, and Lakonishok (1996)). The definition of SUE for stock i in month

t is (eiq − eiq−4)/σit, where eiq is the most recently announced quarterly earnings per share (Com-

pustat quarterly item EPSPIQ) as of month t for stock i, eiq−4 is earnings per share announced four

quarters ago, and σit is the volatility of eiq−eiq−4 over the prior eight quarters. Chen, Novy-Marx,

and Zhang (2010) show that high ROA firms earn higher average returns than low ROA firms. We

measure return-on-assets, ROA, as income before extraordinary items (Compustat quarterly item

IBQ) divided by last quarterly’s assets (item ATQ).

Failure probability (FP). The financial distress anomaly says that more distressed firms earn

abnormally lower average returns than less distressed firms (e.g., Dichev (1998) and Campbell,
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Hilscher, and Szilagyi (2008)). Following Campbell et al., we measure distress as a linear function

of the ratio of earnings over the market value of the firm, monthly excess return relative to the S&P

500 index, market leverage, stock return volatility, relative size, the ratio of cash over the market

value of the firm, market-to-book equity, and log price per share.

Momentum (MOM). Jegadeesh and Titman (1993) show that stocks that perform well in the

recent six to twelve months continue to earn higher average returns in the future six to twelve

months than stocks that perform poorly in the recent six to twelve months. Following Jegadeesh

and Titman, we measure momentum as prior six-month returns.

Portfolio Construction

We construct one-way quintile portfolios based on the anomaly variables. In June of each year t

from 1965 to 2008, we sort all NYSE stocks on CRSP on book-to-market, size, composite issuance,

net stock issues, abnormal investment, asset growth, investment-to-assets, and accruals. We use the

NYSE breakpoints to split NYSE, Amex, and Nasdaq stocks into one-way quintiles, and calculate

annual value-weighted returns from July of year t to June of year t+ 1. Firms with negative book

equity for the fiscal year ending in calendar year t− 1 are excluded.

For each month from January 1977 to December 2008, we sort all NYSE stocks on their most

recent SUEs, and use the NYSE breakpoints to split NYSE, Amex, and Nasdaq stocks into five

groups. We hold the resulting portfolios for six months, and calculate value-weighted returns. The

sample starts from January 1977 due to the availability of quarterly earnings data.

Following Campbell, Hilscher, and Szilagyi (2008), for each month from January 1975 to De-

cember 2008, we sort all NYSE, Amex, and Nasdaq stocks on CRSP on failure probability into five

groups. We use Compustat accounting data for a fiscal quarter in portfolio sorts in the months

immediately after the quarter’s public earnings announcement dates (Compustat quarterly item

RDQ). We calculate the one-year buy-and-hold value-weighted returns of stocks with and without

dividends for each portfolio. The starting period of the sample is restricted by the availability of

7



quarterly data on total liabilities in the definition of failure probability.

To construct the ROA quintiles, we sort NYSE stocks based on the ranked values of quarterly

ROA, and use the NYSE breakpoints to split NYSE, Amex, and Nasdaq stocks into quintiles.

We use quarterly earnings in portfolio sorts only in the months immediately after the most recent

earnings announcement (Compustat quarterly item RDQ). For example, if the earnings for the

fourth fiscal quarter in year t are announced on March 5 (or March 25) of year t + 1, we use the

announced earnings to calculate ROA to form portfolios at the beginning of April and to calculate

the resulting portfolio returns over April of year t+1. In particular, monthly value-weighted returns

on the quintiles are calculated for the current month, and the portfolios are rebalanced monthly.

Finally, Following Jegadeesh and Titman (1993), for each month from July 1965 to June 2008,

we sort all NYSE stocks on CRSP on the prior six-month returns and use the NYSE breakpoints

to split NYSE, Amex, and Nasdaq stocks into quintiles. We hold the portfolios for six months, and

calculate the value-weighted returns with and without dividends.

2.2 Expected Return Estimation

The estimation method is from Gebhardt, Lee, and Swaminathan (2001, GLS hereafter). GLS

compute the expected return as the internal rate of return (implied cost of equity) that equates the

present value of expected future cash flows in the residual income model to the current stock price.1

The Baseline Procedure

We closely follow GLS’s procedure in our baseline estimation. We use the analyst earnings fore-

casts from Institutional Brokers’ Estimate System (IBES) as the proxy for the market’s earnings

1A large literature in accounting uses valuation models to estimate expected returns. Many studies calculate
expected returns from analysts earnings forecasts under the residual income model (e.g., Claus and Thomas (2001),
Gebhardt, Lee, and Swaminathan (2001), Gode and Mohanram (2003), Guay, Kothari, and Shu (2005), Hou, Dijk,
and Zhang (2009), and Lee, So, and Wang (2010)). Easton, Taylor, Shroff, and Sougiannis (2002), Easton (2006), and
Easton and Sommers (2007) implement the residual income model by estimating the expected returns and the implied
growth rates simultaneously at the portfolio level (see Section 4 for more discussion on these methods). Francis,
LaFond, Olsson, and Schipper (2004) and Brav, Lehavy, and Michaely (2005) use Value Line analysts expectations
to estimate expected returns. Pastor, Sinha, and Swaminathan (2008), Lee, Ng, and Swaminathan (2009), and
Chava and Purnanandam (2010) apply these estimation methods to address important questions in finance.
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expectations. We compute a finite horizon estimate of equity value for each firm:

Pt = Bt +
FROEt+1 − E0[R]

1 + E0[R]
Bt +

FROEt+2 −E0[R]

(1 + E0[R])2
Bt+1 + TV, (1)

in which E0[R] denotes the expected return estimate from the baseline estimation. Bt is the book

value from the most recent financial statement divided by the number of shares outstanding in the

current month. FROEt+τ is forecasted return on equity (ROE) for period t+ τ . For the first three

years, we compute it as FEPSt+τ/Bt+τ−1, in which FEPSt+τ is the mean forecasted earnings per

share (EPS) for year t+ τ from IBES, and Bt+τ−1 is the book value per share for year t+ τ − 1.

We use the mean analysts’ one-year and two-year ahead earnings forecasts (FEPSt+1 and

FEPSt+2, respectively) and the long-term growth rate estimate (Ltg) from IBES to compute the

three-year-ahead earnings forecast as FEPSt+3 = FEPSt+2(1 + Ltg). Beyond the third year, we

forecast FROE using a linear interpolation to the industry median ROE. To calculate the industry

median ROE, we sort all stocks into the 48 industries classified by Fama and French (1997). The

industry median ROE is the ten-year (at least five-year) moving median of past ROEs of all firms

in the industry. Loss firms are excluded from the calculation of the industry median.

Book equity per share is Bt+τ = Bt+τ−1 + FEPSt+τ − FDPSt+τ , in which FDPSt+τ is the

forecasted dividend per share for year t+τ , estimated using the current dividend payment ratio (k =

dividends for the most recent fiscal year divided by earnings over the same time period, 0 ≤ k ≤ 1),

i.e., FDPSt+τ = k × FEPSt+τ . For firms with negative earnings we divide the dividends by 0.06

times total assets to derive an estimated payout ratio. Payout ratios of less than zero are assigned a

value of zero, and payout ratios greater than one are assigned a value of one. We forecast earnings

up to 12 future years and estimate a terminal value TV for cash flows beyond year 12:

TV =
T−1
∑

i=3

FROEt+τ − E0[R]

(1 + E0[R])i
Bt+τ−1 +

FROEt+T − E0[R]

E0[R](1 +E0[R])T−1
Bt+T−1. (2)

We estimate the implied cost of equity, E0[R], for each firm in each month by substituting the
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forecasted future earnings, book values, and terminal values into equation (1) and solving for E0[R]

from the resulting nonlinear equation. For portfolios that are annually rebalanced at the end of

June of year t, we value-weight E0[R] measured at the end of December of year t−1 across firms

in each testing portfolio to obtain portfolio-level expected returns. This timing convention means

that we match the expected returns at the end of year t−1 with ex post returns from July of year

t to June of year t+1. The six-month lag between January and June of year t is imposed per Fama

and French (1993) to allow accounting information to be released to the market.

For the monthly rebalanced momentum portfolios, for each month we sort all NYSE stocks on

CRSP on the prior six-month realized returns and use the NYSE breakpoints to split NYSE, Amex,

and Nasdaq stocks into quintiles. We hold the portfolios for six months and value-weight the ex-

pected returns across firms in a given portfolio for each month. Although E0[R] is available monthly

because Pt and FEPSt are updated monthly, E0[R] is the expected future one-year return. The

procedure for the SUE portfolios is similar. For each month we sort all NYSE stocks on their most

recent past SUE, and use the NYSE breakpoints to split NYSE, Amex, and Nasdaq stocks into

quintiles. We hold the resulting portfolios for six months and calculate the value-weighted E0[R]

estimated for each month. For the monthly rebalanced ROA portfolios, we use NYSE breakpoints

to sort all stocks into quintiles based on the most recent ROA at the beginning of each month.

For the FP quintiles, we sort all NYSE, Amex, and Nasdaq stocks on the most recent FP into

quintiles in each month. We calculate the value-weighted E0[R] for each portfolio in each month.

Two Modified Estimation Procedures

The baseline estimation of the implied costs of equity uses analysts earnings forecasts from IBES

as expected earnings. Two potential issues arise with this procedure in our application. First,

analysts earnings forecasts tend to be overly optimistic (e.g., O’Brien (1988)), and as a result,

expected return estimates implied by these forecasts tend to be upward biased (e.g., Easton and

Sommers (2007)). If this bias varies systematically with anomaly variables (for example, analysts
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might be more optimistic toward growth firms, high accrual firms, and firms that issue equity), the

estimates of expected returns to zero-cost strategies will also be biased. Second, because analysts

tend to follow larger, more visible stocks, expected return estimates are limited to a small sample

of stocks that have analysts coverage. This limitation can affect the results for anomalies-based

trading strategies that often involve stocks that are not followed by analysts.

To address these issues, we use two modified procedures for estimating implied costs of eq-

uity. The baseline approach uses analysts earnings forecasts in forming forecasted return on equity,

FROEt+τ . We instead forecast future one-, two-, and three-year ahead ROEs using cross-sectional

regressions similar to those in Fama and French (2006). Specifically, we estimate Fama-MacBeth

(1973) cross-sectional regressions of future realized ROEt+τ = Yt+τ/Bt+τ−1, in which τ = 1, 2, 3,

and Yt+τ is τ -year ahead realized earnings per share. (Fama and French forecast Yt+τ/Bt, but we

forecast Yt+τ/Bt+τ−1 to provide inputs into the implied costs of equity estimation.)

In the first modified procedure, we use Fama and French’s (2006) full specification, including the

logarithm of book-to-market, the logarithm of market equity, a dummy variable that is one for firms

with negative earnings for fiscal year t (zero otherwise), Yt/Bt, −ACt/Bt with −ACt being accruals

per share for firms with negative accruals (zero otherwise), +ACt/Bt with +ACt being accruals per

share for firms with positive accruals (zero otherwise), asset growth for fiscal year t, a dummy vari-

able that is one for firms that pay no dividends for fiscal year t, and the ratio of dividends to book eq-

uity. The full list of predictors imposes data requirements such that the resulting sample size is sim-

ilar to that in the baseline procedure. To enlarge the sample size, in the second modified procedure

we use a simplified list of predictors to forecast ROE, including only the log book-to-market, the log

market equity, the negative earnings dummy, Yt/Bt, and the current asset growth. To avoid look-

ahead bias, we use ten-year rolling windows (at least five years) up to year t to forecast future ROE.

Because we forecast ROE directly, as opposed to earnings per share, the baseline estimation

of the implied costs of equity needs to be adjusted accordingly. To compute future book equity
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per share, we still use the clean surplus relation: Bt+τ = Bt+τ−1 + (1 − k) × FEPSt+τ , in which

k is the dividend payout ratio. However, the forecasted earnings per share FEPSt+τ is calcu-

lated as FROEt+τ ×Bt+τ−1, in which FROEt+τ with τ = 1, 2, 3 is the forecasted ROE from the

cross-sectional regressions. All other aspects of the estimation procedure remain the same as in

the baseline procedure. Our modified procedures are in the same spirit as Hou, Dijk, and Zhang

(2009), who use cross-sectional regressions to forecast the earnings of individual firms. However,

because earnings might appear nonstationary, we opt to forecast ROE directly. Comparing the

estimates across the baseline and modified procedures can shed light on whether biases in analysts

earnings forecasts cause any bias in the expected returns to anomalies-based trading strategies.

Descriptive Statistics

Panel A of Table 1 reports the descriptive statistics for the sample used in the baseline implied

costs of equity estimation. Because doing so requires analysts earnings forecasts from IBES, the

average numbers of firms in the cross-section for the B/M,CI, and AI quintiles are only 2,201,

1,393, and 1,513, respectively. Panel B reports the descriptive statistics for the sample used in the

implied costs of equity estimation in which we use the full ROE forecasting regressions from Fama

and French (2006). Although this procedure is immune to analysts forecasting bias, the sample size

is comparable with that based on IBES. In particular, the average numbers of firms in the cross-

section for the B/M,CI, and AI quintiles are 2,091, 1,134, and 1,540, respectively. The reason

is that the full Fama-French specification requires firms to have nonmissing observations for many

forecasting variables simultaneously. To increase the sample size, we also implement the simplified

Fama-French ROE forecasting regressions with a shorter list of variables. Panel C shows that doing

so substantially increases the sample size relative to that in Panel B. The average numbers of firms in

the cross-section for the B/M,CI, and AI quintiles increase to 2,893, 1,534, and 2,025, respectively.
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3 Expected Return Estimates as Implied Costs of Equity

After we discuss intermediate results on forecasting profitability in Section 3.1, we turn to our

central results on expected return estimation in Section 3.2.

3.1 Forecasting Profitability

Table 2 reports the average slopes and their t-statistics for annual cross-sectional profitability fore-

casting regressions using the Fama-MacBeth (1973) methodology. We report the regression results

from the full sample (although as noted, we use ten-year rolling windows to estimate the cross-

sectional regressions when estimating implied costs of equity to guard against look-ahead bias).

Lagged ROE is the strongest predictor of futureROE. In the full specification, the average slope

on lagged ROE for one-year ahead ROE is 0.63, which is more than 18 standard errors from zero.

The evidence shows considerable persistence in the ROE. The slope decays to 0.39 in forecasting

three-year ahead ROE, which is still more than 13 standard errors from zero. The evidence from

the short specification is similar. The average slope on lagged ROE for one-year ahead ROE is

0.61, which is more than 18 standard errors from zero. Size forecasts future ROE with significantly

positive slopes, meaning that big firms are more profitable than small firms. For the most part,

B/M forecasts ROE with significantly negative slopes. As such, growth firms are more profitable

than value firms. Firms that do not pay dividends are less profitable than firms that do pay

dividends. Firms with high dividends to book equity ratios are more profitable than firms with low

dividends to book equity ratios. The evidence is largely consistent with Fama and French (2006).

3.2 Expected Return Estimates

Table 3 reports the key message of the paper. The table shows the expected returns for all the

testing portfolios from the implied costs of equity estimation. To facilitate comparison, we also

report the average realized returns for the testing portfolios in the sample used for the baseline

estimation. Despite the fact that the IBES sample tilts toward big firms, the magnitude of the
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anomalies measured with average realized returns in the IBES sample are largely similar to those in a

broad sample without restricting firms to be covered by IBES (not reported). To preview the result,

Table 3 shows that for most anomalies, the average return and the expected return estimates differ

dramatically across the testing portfolios. This evidence suggests that most anomalies are driven

by predictable unexpected returns (mispricing), as opposed to time-varying expected returns (risk).

Panel A shows that the expected value premiums from different estimation methods are similar

in magnitude, and are all significantly positive. In the baseline procedure, the value quintile earns a

higher expected return than the growth quintile: 14.9% versus 8.6% per annum. The spread of 6.3%

is 12 standard errors from zero. This expected return spread is close to the average return spread of

5.2% across the book-to-market quintiles. However, the precision of the expected return estimate

is substantially higher than that of the average return spread, which is only 2.2 standard errors

from zero. In the two modified implied costs of equity procedures, the estimates of the expected

value premium are both 8.5%, which are also (relatively) close to the average return estimate. Both

of the expected return estimates are more than eight standard errors from zero. From Panel B,

the expected return estimates of the small-minus-big quintile range from 1.8% to 3.1% per annum,

which are close to the average return estimate of 3%. However, while the average return estimate

is insignificant, the expected return estimates are all more than five standard errors from zero.

The similarity between average return and expected return estimates ceases to exist for the rest

of the anomaly variables. From Panel C, the high-minus-low CI quintile earns an average return

of −4.2%, which is more than 2.5 standard errors from zero. In contrast, the expected return esti-

mates are substantially lower in magnitude, ranging from −0.1% to −1.1%. Although the estimates

from the modified procedures are significant, the estimate from the baseline procedure is not. The

results for the NSI and AI portfolios are largely similar to those for the CI portfolios. The three

anomaly variables produce significantly negative average returns for the high-minus-low portfolios,

but their expected return estimates are economically small and often statistically insignificant. In

particular, Panel D shows that the high-minus-low NSI quintile earns an average return of −7.5%
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per annum, which is three standard errors from zero. In contrast, the expected return estimates of

this zero-cost quintile range from −0.1% to −0.5%, which are all within 1.9 standard errors from

zero. From Panel E, the high-minus-low AI quintile earns an average return of −4.0%, which is

more than 2.4 standard errors from zero. However, the expected return estimates of this zero-cost

quintile range from −0.1% to −1.0%, and two of three estimates are insignificant.

For the AG and I/A portfolios, although the expected return estimates of the high-minus-low

quintiles are significantly negative, their magnitude is substantially lower than that of the average

return estimates. From Panel F, the average return of the high-minus-low AG quintile is −5.6% per

annum, which is 2.8 standard errors from zero. However, the expected return estimates range from

−0.6% to −1.5%, albeit significant. Panel G shows that the average return of the high-minus-low

I/A quintile is −3.4% (t = −1.8). In contrast, the expected return estimates only fall in the range

between −0.5% and −1.0%, and do not come close to matching the magnitude of the average return.

From Panel H, the high-minus-low AC quintile earns an average return of −4.8% (t = −3.6).

The baseline procedure yields a slightly negative expected return estimate. The two modified

procedures yield expected return estimates of −0.5% and −0.3%. Although at least marginally sig-

nificant, these estimates are substantially lower in magnitude than the average return estimate. Wu,

Zhang, and Zhang (2010) also document that the expected return spread across the extreme accrual

quintiles is too small in magnitude relative to the average return spread. Their estimates are based

only on the baseline implied costs of equity estimation. We show that the expected return estimates

from the modified procedures are largely similar to those from the baseline procedure, meaning that

bias in analysts forecasts is not important for estimating expected returns of the accrual portfolios.

The remaining four panels in Table 3 report that the expected return estimates for the

high-minus-low quintiles formed on earnings surprises, failure probability, return on assets, and

momentum deviate even more from their average return estimates. In particular, the expected

returns and the average returns have the opposite signs. The high-minus-low earnings surprises
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quintile earns an average return of 4.9% per annum, which is 5.5 standard errors from zero. In

contrast, the expected return estimates range from −0.1% to −1.0%, and are all significant. The

average return of the high-minus-low failure probability quintile is −8.1%, which is five standard

errors from zero. However, the baseline estimation shows that its expected return is positive, 3.8%,

and is highly significant. This evidence is consistent with Chava and Purnanandam (2010), who also

show that more distressed firms have higher implied costs of equity than less distressed firms in the

baseline GLS estimation. We add to their work by showing that their inferences are robust to their

use of analysts earnings forecasts because the two modified procedures deliver largely similar results.

From Panel K, the high-minus-low ROA quintile earns an average return of 6.5% per annum,

which is 3.3 standard errors from zero. In contrast, the expected return estimate from the baseline

procedure is −1.7%, which is highly significant. The estimates from the two modified procedures

are largely similar: −2.1% and −2.7%, which are again highly significant. Finally, Panel L shows

that the winner-minus-loser quintile earns an average return of 6.4% (t = 3.3). In contrast, the

expected return estimates for the winner-minus-loser quintile range from −1.7% to −2.3%, which

are all at least 17 standard errors from zero.

In summary, the central message from Table 3 is clear. The average return estimates and the

expected return estimates are drastically different across the testing portfolios, except for the value

premium. This evidence means that mispricing, not risk, is the main driving force behind most

anomalies. We also show that the expected return estimates from the modified estimation proce-

dures are largely similar to those from the baseline procedure. This evidence means that bias in ana-

lysts forecasts is not quantitatively important for estimating expected returns at the portfolio level.

4 Estimating Expected Returns and Expected Growth Rates

Simultaneously

The basic inferences are based on the GLS procedure of estimating expected returns. Easton, Tay-

lor, Shroff, and Sougiannis (2002, ETSS hereafter), Easton (2006, 2007), and Easton and Sommers
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(2007) argue that the assumed growth rates beyond the short forecast horizon in the GLS procedure

can be different from the growth rates in the data, and that this difference can introduce bias in the

expected return estimates. These authors propose methods to estimate the expected returns and

expected growth rates of a given portfolio simultaneously. To evaluate the impact of the growth

rate assumption on our basic inferences, we implement these alternative methods on our testing

portfolios. We find that these methods often yield counterfactual implications for the cross-section

of expected growth. In our view these results invalidate the use of these alternative methods. While

these results do not improve on the treatment of growth rate in the GLS estimation, they do suggest

that the GLS procedure is probably among the best that the latest accounting literature has to offer.

4.1 Methodology

To describe these alternative methods, we start with the residual income model:

Vit = Bit +
∞
∑

τ=1

Yit+τ − ri ×Bit+τ−1

(1 + ri)τ
(3)

in which Vit is the intrinsic value per share of firm i at time t, Bit is book value per share, Yit is

earnings per share, and ri is the cost of equity.

The Baseline ETSS Estimation

ETSS operationalize the residual income model by assuming that (starting from the period from t

to t+1) the residual earnings as a perpetuity grows at a constant annual rate of gi. This assumption

means that we can reformulate equation (3) as:

Pit = Bit +
Y IBES
it+1 − ri ×Bit

ri − gi
(4)

in which Pit is price per share of firm i at time t, Y IBES
it+1 is the IBES analysts forecasts (known

at time t) of earnings for time t+ 1, and gi is the expected growth rate in residual income beyond

time t+1 required to equate Pit −Bit and the present value of the infinite residual income stream.
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Some algebra shows that equation (4) is equivalent to:

Y IBES
it+1

Bit
= gi +

Pit

Bit
(ri − gi) (5)

We follow ETSS and implement this equation using Fama-MacBeth (1973) cross-sectional regres-

sions across all the firms within a given portfolio:

Y IBES
it+1

Bit
= γ0 + γ1

Pit

Bit
+ µit (6)

where γ0 = g with g being the implied (average) growth rate for the portfolio, and γ1 = r− g with

r being the expected return for the portfolio. We call this procedure the baseline ETSS estimation.

The Modified ETSS Estimation

Following the same idea as in the modified procedures for estimating implied costs of equity, we

also replace the left-hand side of equation (6) with the forecasted one-year ahead ROE from the

Fama-French (2006) ROE forecasting regressions. Doing so includes the sample observations not

covered by analysts and avoids potential bias in analysts forecasts. We call this procedure the

modified ETSS estimation. We use the forecasted ROE from the full Fama-French profitability

regressions. Using the simplified specification yields largely similar results (not reported).

The O’Hanlon-Steele Estimation

O’Hanlon and Steele (2000) and Easton (2006) reformulate equation (3) in a different way:

Pit = Bit +
(Yit − ri ×Bit−1)(1 + g′i)

ri − g′i
(7)

in which g′i is the perpetual growth rate starting from the current period’s residual income for the pe-

riod from t−1 to t. (In contrast, gi in equation (4) is the implied perpetual growth rate starting from

the next period’s residual income from t to t+1.) The implied growth rate, g′i, produces a residual

income stream such that the present value of this stream equals the difference between Pit and Bit.
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Some algebra shows that equation (7) is equivalent to:

Yit

Bit−1

= ri +
ri − g′i
1 + g′i

Pit −Bit

Bit−1

(8)

We follow O’Hanlon and Steele (2000) and Easton (2006) and implement this equation with the

following cross-sectional regression for a portfolio of stocks:

Yit

Bit−1

= δ0 + δ1
Pit −Bit

Bit−1

+ µit (9)

where δ0 = r with r being the portfolio-level expected return and δ1 = (r−g′)/(1+g′) with g′ being

the expected growth rate for the portfolio. We call this estimation the O’Hanlon-Steele procedure.

We estimate annual value-weighted Fama-MacBeth (1973) cross-sectional regressions in each

period using the Weighted Least Squares with the weights given by market capitalization. We use

value-weights to facilitate comparison with the results from the implied costs of equity estimation.

We implement the estimation procedures for all testing quintile portfolios. To test whether a given

high-minus-low quintile has an average return of zero, we estimate the cross-sectional regressions for

the two extreme quintiles in question jointly, and test the null hypothesis using the Fama-MacBeth

standard errors for the implied expected returns of the high-minus-low quintile. The test on whether

a given high-minus-low quintile has an implied growth rate of zero is defined analogously.

4.2 Estimation Results

Preliminaries

Panel A of Table 4 reports the descriptive statistics for the sample for the baseline ETSS estima-

tion. The average numbers of firms in the cross-section for the B/M,CI, and AI quintiles reduce

to 3,026, 1,649, and 1,753, respectively. Panel B reports the results for the sample used in the

modified ETSS estimation in which we use the full ROE forecasting regressions from Fama and

French (2006). Although this estimation is not subject to analysts forecasting bias, the sample size

is comparable with that based on IBES in the baseline ETSS procedure. The average numbers of
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firms in the cross-section for the B/M,CI, and AI quintiles are 2,851, 1,507, and 1,859, respec-

tively. Panel C describes the sample for the O’Hanlon-Steele estimation. Because this procedure

does not use IBES or require a long list of variables to be available to forecast ROE, the sample

size is larger. In particular, the average numbers of firms in the cross-section for the B/M,CI, and

AI quintiles increase to 3,369, 1,749, and 1,983, respectively.

Expected Growth Rate Estimates

Table 5 reports the estimated growth rates from the baseline ETSS method that uses the IBES

earnings forecasts, g0, the growth rates from the modified ETSS method that uses the Fama-French

(2006) ROE forecasts, g1, and the growth rates from the O’Hanlon-Steele method, g2. To facilitate

comparison, we also report the average dividend growth rates in the data, A[G]. We follow Hansen,

Heaton, and Li (2005) and Chen, Petkova, and Zhang (2008) in measuring dividend growth rates

at the portfolio level (see Appendix C for details). We find that implied growth rate spreads across

the testing portfolios often go in the opposite direction as those in the data. This counterfactual

pattern casts doubt on the validity of the alternative methods of estimating expected returns.

From Panel A, value firms have higher growth rates on average than growth firms in the data:

9.1% versus 5.0% per annum. The spread of 4.1% is 1.3 standard errors from zero. However, the

alternative methods all predict that value firms have significantly lower expected growth rates than

growth firms. In particular, the baseline ETSS procedure generates a negative growth rate spread

of −4.9% for the high-minus-low B/M quintile, which is more than 2.5 standard errors from zero.

The modified ETSS and the O’Hanlon-Steele procedures produce even larger spreads, −15.4% and

−13.9%, respectively, which are at least ten standard errors from zero. From Panel B, small firms

grow faster than big firms in the data, although the growth rate spread of 5.2% per annum is

insignificant. However, the alternative methods all predict that big firms grow faster than small

firms. The baseline and modified ETSS procedures predict that big firms grow faster than small

firms by 5%, which is at least four standard errors from zero. The O’Hanlon-Steele procedure implies
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that big firms grow faster than small firms by 10.9%, which is about 4.5 standard errors from zero.

The expected growth spreads are small, positive, and insignificant for the high-minus-low quin-

tiles formed on AI,AG, and I/A in the data. However, the alternative methods often produce

significantly positive implied growth rate spreads. In particular, the high-minus-low AI quintile in

the data has a growth rate of 1.2% per annum, which is within 0.5 standard errors of zero. How-

ever, the modified ETSS method implies a growth rate of 8.6%, which is more than six standard

errors from zero. The implied growth rate spread from the O’Hanlon-Steele method is even higher,

15.5%, which is more than nine standard errors from zero. The growth rate spreads are small,

negative and insignificant for the high-minus-low quintiles formed on CI and AC. However, the

ETSS methods often produce significantly positive growth rate spreads. The high-minus-low CI

quintile has a growth rate of −1.1% per annum in the data, which is within 0.5 standard errors

of zero. However, the baseline ETSS method implies a growth rate spread of 9.2% (t = 3.7). The

high-minus-low NSI quintile has an economically large growth rate of −6.6%, albeit insignificant.

However, the baseline ETSS estimation yields an expected growth rate of 3.6% (t = 2.1).

The expected growth rate spreads across the extreme SUE quintiles are mixed. The baseline

ETSS method implies a growth rate spread of 2.2% per annum, which is more than 4.5 standard

errors from zero. However, the two related methods imply growth rate spreads of −1.8% and −1.3%

that are more than four standard errors from zero. For comparison, the high-minus-low SUE quin-

tile has a positive growth rate of 4.1% in the data (t = 7.6). The high-minus-low momentum quintile

has a growth rate of 6.5% (t = 7.3) in the data. The implied growth rates for this portfolio from the

ETSS methods are all positive, but the magnitudes range from 0.4% to 3.3%, which are lower than

the observed growth rate. The high-minus-low FP quintile has a large positive growth rate of 17.8%

per annum, which is more than four standard errors from zero. In contrast, the ETSS methods all

forecast strongly negative implied growth rates around −20%, which are all more than 15 standard

errors from zero. The observed and the implied growth rates also diverge somewhat for the ROA

portfolios. The high-minus-low ROA quintile has a growth rate of 5.4% in the data (t = 4.6), while
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the ETSS methods forecast significantly positive growth rates ranging from 9.5% to 13.2%.

Why do these alternative methods deliver counterfactual implications of expected growth? In

our view the inherent specification errors within these methods are the likely culprits. For example,

the cross-sectional regression in equation (6) is derived under strong assumptions. The regression

assumes that there are measurement errors in Y IBES
it+1 and Pit/Bit and specification errors in equa-

tion (5). Specification errors can arise from two sources. First, the residual earnings might not

be a perpetuity that grows at a constant rate. Second, Pit/Bit and ri − gi might be correlated

cross-sectionally, meaning that the average of ri − gi cannot be treated as a constant slope in the

cross-sectional regression. The ETSS procedure assumes that all these errors have a mean of zero,

meaning that equation (5) can be estimated using linear cross-sectional regressions.

The cross-sectional regression in equation (9) also involves strong assumptions. In particular,

specification errors can arise from three sources. First, the residual earnings might not be a per-

petuity that grows at a constant rate. Second, (Pit −Bit)/Bit−1 and (ri − g′i)/(1 + g′i) might be

correlated cross-sectionally, so that the average of (ri − g′i)/(1 + g′i) cannot be treated as a con-

stant slope in the cross-sectional regression. Third, because (ri − g′i)/(1 + g′i) is nonlinear in ri

and g′i, Jensen’s inequality means that the average of (ri − g′i)/(1 + g′i) cannot be replaced with

(r− g′)/(1+ g′). The O’Hanlon-Steele procedure assumes that all these errors have a mean of zero,

so that equation (8) can be transformed into the cross-sectional regression in equation (9).

Expected Return Estimates

Table 6 reports expected return estimates using the alternative methods that determine expected

returns and growth rates simultaneously for the testing portfolios. Because of the counterfactual

results on expected growth rates reported in Table 5, it is not surprising that the expected return

estimates diverge from those obtained from the GLS procedure as well as average returns. Easton,

Taylor, Shroff, and Sougiannis (2002) show that their baseline procedure works well at the aggregate

level in that it delivers reasonable equity premium estimates. Table 6 shows that the ETSS proce-
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dure fails to provide reasonable expected return estimates for anomalies-based trading strategies.

Panel A shows that the average return of the high-minus-low B/M quintile is 4.2% per annum

(t = 1.7) in the sample for the baseline ETSS procedure. Unlike the positive average return, the

expected return estimates are all negative: −2.1% (t = −1.0) from the baseline ETSS estimation,

−12.7% (t = −12.2) from the modified ETSS estimation, and −9.4% (t = −6.0) from the O’Hanlon-

Steele estimation. Panel B shows that the average return of the small-minus-big quintile is 2.2%

per annum, which is within one standard error of zero. In contrast, the expected return estimates

from the baseline and modified ETSS procedures are −6.4% and −7.5%, respectively, which are

both more than 5.5 standard errors from zero. The estimate from the O’Hanlon-Steele procedure

is −11.8%, which is more than 4.5 standard errors from zero. From Panel C, although the average

return of the high-minus-low CI quintile is significantly negative, the expected return estimate from

the baseline ETSS procedure is significantly positive, 5.2%, which is three standard errors from zero.

Similar drastic differences between average returns and expected returns are also evident for the

NSI,AI,AG, I/A, and AC quintiles. The high-minus-low AI and I/A quintiles both earn insignif-

icantly negative average returns. However, the modified ETSS procedure and the O’Hanlon-Steele

procedure both produce significantly positive expected return estimates, which are more than six

standard errors from zero. The high-minus-low AG and AC portfolios both earn significantly neg-

ative average returns. However, the modified ETSS procedure and the O’Hanlon-Steele procedure

both show significantly positive expected return estimates, which are more than five standard errors

from zero. The baseline ETSS procedure generates insignificant expected return estimates for the

high-minus-low quintiles formed on all these anomaly variables. Without going through the details,

we observe from the remaining four panels of Table 6 that the average return estimates also diverge

from the expected return estimates for the rest of the anomaly variables.
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5 Conclusion

We use valuation models to estimate expected returns to anomalies-based trading strategies formed

on book-to-market, size, composite issuance, net stock issues, abnormal investment, asset growth,

investment-to-assets, accruals, standardized unexpected earnings, failure probability, return on as-

sets, and short-term prior returns. The central message is that except for the value premium,

expected return estimates differ dramatically from average realized returns. The evidence suggests

that mispricing, not risk, is the main driving force behind most capital markets anomalies.
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A A Brief Review of Explanations of Capital Markets Anomalies

Explanations of capital markets anomalies can be broadly categorized into two groups. Behavioral

finance argues that investors make systematic mistakes in pricing assets, and that these mistakes

give rise to predictable pricing errors manifested as anomalies. New classical finance argues that risk

and expected returns vary systematically with firm characteristics, and that time-varying expected

returns give rise to anomalous empirical relations between average returns and firm characteristics.

A decomposition of average realized returns into expected returns and unexpected returns can

disentangle the two competing schools of thought. In behavioral models, average realized returns

should equal average unexpected returns, whereas in new classical models, average realized returns

should equal average expected returns.

A.1 Behavioral Finance

To focus on predictable pricing errors, behavioral models typically shut down the channel of time-

varying expected returns by assuming constant discount rates. Barberis, Shleifer, and Vishny (1998)

propose a model of investor sentiment. In the model investors exhibit two types of psychological

biases, conservatism and representative heuristics. Conservatism means that investors are slow in

updating their beliefs in the face of new evidence. Barberis et al. argue that conservatism can

explain the underreaction evidence that security prices underreact to news over short horizons

between one to 12 months as in earnings momentum and price momentum. Representative

heuristics means that after a consistent history of earnings growth over several years, investors might

wrongfully believe that the past history is representative of future growth prospects. These investors

then overreact to past news and send stock prices to unsustainable levels. Barberi et al. argue that

this bias can explain the overreaction evidence that stocks that have had a long record of good news

tend to become overpriced and have low average subsequent returns, and that stocks that have had

a long record of bad news tend to become underpriced and have high average subsequent returns.

Daniel, Hirshleifer, and Subrahmanyam (1998) develop a model of investor overconfidence.

Overconfidence means that investors overestimate the precision of their private information sig-

nals, but not public information signals. Overconfident investors tend to overweight their private
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signals relative to their prior, and cause the stock price to overreact. Self-attribution means that

individuals too strongly attribute events confirming the validity of their prior actions to high abil-

ity and disconfirming events to extent noise or sabotage. When investors exhibit self-attributive

overconfidence, new public signals are viewed on average as confirming the validity of their private

signals, and cause continuous overreaction. The continuous overreaction explains the underreaction

evidence, whereas eventual correction in the stock price explains the overreaction evidence.

Hong and Stein (1999) construct a model populated by two sets of boundedly rational investors,

news-watchers and momentum traders. News-watchers observe private information, but fail to ex-

tract each other’s information from prices. Coupled with slow information diffusion across the

population, the stock price underreacts in the short run. Momentum traders exploit this effect by

trend chasing, but their activity eventually leads to overreaction in the stock price at long horizons.

A.2 New Classical Finance

New classical models focus on time-varying expected returns as the driving force of anomalies. By

retaining the assumption of rational expectations, these models shut down the channel of predictable

unexpected returns. Building on Cochrane (1991, 1996) and Berk, Green, and Naik (1999), a stream

of recent papers by Zhang (2005), Lyandres, Sun, and Zhang (2008), Li, Livdan, and Zhang (2009),

Liu, Whited, and Zhang (2009), Chen, Novy-Marx, and Zhang (2010), Liu and Zhang (2010), Wu,

Zhang, and Zhang (2010) elaborate a unified conceptual framework for understanding capital mar-

kets anomalies. In particular, Zhang argues that because of costly reversibility (higher costs in

cutting than in expanding the scale of productive assets), value firms are less flexible than growth

firms in scaling down to mitigate the impact of negative shocks. Because value firms have less

profitable assets than growth firms, value firms want to disinvest more, especially in recessions.

But because disinvesting is more costly, the cash flows of value firms are more adversely affected

by bad economic conditions than the cash flows of growth firms.

Based on the first principles of firms’ optimal investment decision, Liu, Whited, and Zhang

(2010) argue that expected stock returns are related to the ratio of expected next-period marginal

benefits of investment over current-period marginal costs of investment. Stocks with high book-

to-market, low investment-to-assets, low equity issues, and low asset growth earn higher expected

returns because their low investment levels imply low current-period marginal costs of investment.

Intuitively, all else equal, investment and the discount rate (the expected return) are negatively

correlated. Firms with low discount rates have more projects with positive net present value and

consequently invest more than firms with high discount rates. Lyandres, Sun, and Zhang (2008)

and Li, Livdan, and Zhang (2009) use this logic to explain the new issues puzzle of Ritter (1991)

and Loughran and Ritter (1995). Treating accruals as working capital investment, Wu, Zhang,

and Zhang (2010) apply this logic to explain Sloan’s (1996) accrual anomaly. This discount rate

channel makes sense of evidence interpreted as overreaction in behavioral finance.
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In addition, stocks with high earnings surprises, high short-term prior returns, low financial dis-

tress, and high return on assets have higher expected next-period marginal benefits of investment

and consequently higher expected stock returns than stocks with low earnings surprises, low short-

term prior returns, high financial distress, and low return on assets, respectively. In particular,

Chen, Novy-Marx, and Zhang (2010) show that controlling for profitability (a measure of expected

marginal product of capital) largely explains Campbell, Hilscher, and Szilagyi’s (2008) distress

anomaly. Liu, Whited, and Zhang (2009) and Liu and Zhang (2010) show that expected growth

of investment-to-capital and expected marginal product of capital are quantitatively important for

explaining earnings momentum and price momentum, respectively. This cash flow channel makes

sense of evidence interpreted as underreaction in behavioral finance.

B Variable Definitions

B/M is the book equity at the fiscal yearend divided by the market equity in December. The

book equity is the stockholders’ equity (Compustat annual item SEQ), minus preferred stock, plus

balance sheet deferred taxes and investment tax credit (item TXDITC) if available, minus post-

retirement benefit asset (item PRBA) if available. If stockholder’s equity value if missing, we use

common equity (item CEQ) plus preferred stock par value (item PSTK). Preferred stock is pre-

ferred stock liquidating value (item PSTKL) or preferred stock redemption value (item PSTKRV)

or preferred stock par value (item PSTK) in that order of availability. If these variable are missing,

we use book assets (item AT) minus liabilities (item LT). The market equity (ME) is price per

share times shares outstanding from CRSP.

The five-year composite issuance (CI) measure from Daniel and Titman (2006) is defined as:

ι(t− τ) = log

(

MEt

MEt−τ

)

− r(t− τ , t), (A1)

where r(t−τ , t) is the cumulative log return on the stock from the last trading day of calendar year

t−6 to the last trading day of calendar year t−1 andMEt (MEt−τ ) is total market equity on the last

trading day of calendar year t (t−6) from CRSP. In economic terms, ι(t−τ) measures the part of firm

growth in market equity that is not due to stock returns. This measure is not affected by corporate

decisions such as splits and stock dividends. However, issuance activities such as new equity issues,

employee stock options, or any other actions that trade ownership for cash or services increase

the composite issuance. In contrast, repurchase activities such as open market share repurchases,

dividends, or any other action that pays cash out of a firm decrease the composite issuance.

The net stock issues (NSI) are the annual change in the logarithm of the number of real shares

outstanding, which adjusts for distribution events such as splits and rights offerings. Following

Fama and French (2008), we construct the net stock issues measure using the natural log of the

ratio of the split-adjusted shares outstanding at the fiscal year end in t−1 divided by the split-
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adjusted shares outstanding at the fiscal year end in t−2. The split-adjusted shares outstanding is

shares outstanding (Compustat annual item CSHO) times the adjustment factor (item ADJEX C).

If the Compustat shares or adjustment factors for calculating net stock issues are missing, we set

the measure to be zero. NSI calculated in this way can be positive or negative.

Following Titman, Wei, and Xie (2004), we measure abnormal investment, AI, that applies for

the portfolio formation year t, as:

AIt−1 ≡
CEt−1

(CEt−2 + CEt−3 + CEt−4)/3
− 1 (A2)

in which CEt−1 is capital expenditure (Compustat annual item CAPX) scaled by its sales (item

SALE) in year t−1. The last three-year average capital expenditure aims to project the benchmark

investment at the portfolio formation year. Using sales as the deflator assumes that the benchmark

investment grows proportionately with sales. Asset growth, AG, for the portfolio formation year

t is defined as the percentage change in total assets (Compustat annual item AT) from fiscal year

ending in calendar year t−2 to fiscal year ending in calendar year t−1.

Following Sloan (1996), we measure total accruals, AC, for the last fiscal year ending in calen-

dar year t−1 as changes in non-cash working capital minus depreciation expense scaled by average

total assets, which is the mean of the total assets (Compustat annual item AT) for the fiscal years

ending in t−1 and t−2. The non-cash working capital is the change in non-cash current assets

minus the change in current liabilities less short-term debt and taxes payable.

TA ≡ (△CA−△CASH)− (△CL−△STD −△TP )−DEP, (A3)

in which △CA is the change in current assets (item ACT), △CASH is the change in cash or cash

equivalents (item CHE), △CL is the change in current liabilities (item LCT), △STD is the change

in debt included in current liabilities (item DLC), △TP is the change in income taxes payable

(item TXP), and DEP is depreciation and amortization expense (item DP).

Campbell, Hilscher, and Szilagyi (2008, the third column in Table 4) measure a firm’s failure

probability (FP ) as 1/[1 + exp(−Distresst)], in which the distress measure is constructed as:

Distresst = −9.164 − 20.264NIMTAAV Gt + 1.416TLMTAt − 7.129EXRETAGt

+1.411SIGMAt − 0.045RSIZEt − 2.132CASHMTAt + 0.075MBt − 0.058PRICEt (A4)

where

NIMTAAV Gt−1,t−12 ≡
1− φ3

1− φ12
(NIMTAt−1,t−3 + ...+ φ9NIMTAt−10,t−12)

EXRETAV Gt−1,t−12 ≡
1− φ

1− φ12
(EXRETt−1 + ...+ φ11EXRETt−12)
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The coefficient φ = 2−1/3 means that the weight is halved each quarter. NIMTA is net in-

come (Compustat quarterly item NIQ) divided by the sum of market equity and total liabilities

(item LTQ). The moving average NIMTAAV G is designed to capture the idea that a long his-

tory of losses is a better predictor of bankruptcy than one large quarterly loss in a single month.

EXRET = log(1+Rit)− log(1+RS&P 500,t) is the monthly log excess return on each firms equity

relative to the S&P 500 index. The moving average EXRETAV G is designed to capture the idea

that a sustained decline in stock market value is a better predictor of bankruptcy than a sudden

stock price decline in a single month. TLMTA is the ratio of total liabilities (item LTQ) divided

by the sum of market equity and total liabilities. SIGMA is the volatility of each firm’s daily stock

return over the past three months. RSIZE is the relative size of each firm measured as the log

ratio of its market equity to that of the S&P 500 index. CASHMTA, used to capture the liquidity

position of the firm, is the ratio of cash and short-term investments (item CHEQ) divided by the

sum of market equity and total liabilities. MB is the market-to-book equity. PRICE is the log

price per share of the firm. We also winsorize the market-to-book ratio and all other variables in

the construction of F -prob at the 5th and 95th percentiles of their pooled distributions across all

firm-months. Finally, we winsorize PRICE at $15.

C Measuring Portfolio Dividend Growth Rates

We measure portfolio dividend growth using returns with and without dividends, following Hansen,

Heaton, and Li (2005) and Chen, Petkova, and Zhang (2008). Consider portfolios that are annually

rebalanced. To describe our procedure precisely, we introduce additional notations: Pt = market

equity value at the end of June for year t of the stocks allocated to the portfolio when formed at the

end of June for year t; Pt,t+1 = market equity value at the end of June for year t+ 1 of the stocks

allocated to the portfolio at the end of June for year t; Dt,t+1 = dividends paid between portfolio

formation of year t and t+1 on the stocks allocated to the portfolio at year t; Rt,t+1 = return with

dividends at the end of June of year t+ 1 on a portfolio formed in year t; GP
t,t+1 = return without

dividends (rate of capital gain) observed at the end of June for year t + 1 on a portfolio formed

in year t. When there are two time subscripts on a variable, the first subscript indicates the time

when the portfolio is formed and the second subscript gives the time when the variable is observed.

Pt can be a shorthand for Pt,t as the market value of equity of a portfolio when formed in year t.

For each portfolio, we construct the dividend yield, Dt,t+1/Pt, from the value-weighted realized

portfolio returns with and without dividends:

Dt,t+1

Pt
= Rt,t+1 −GP

t,t+1. (A5)

Because monthly total returns are compounded to get annual returns in CRSP, the dividend yield

includes dividends and the reinvestment returns earned from the time a dividend is paid to the end
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of the annual return period. We measure portfolio dividend growth rates as:

Gt+1 =

(

Dt,t+1/Pt

Dt−1,t/Pt−1

)

(

GP
t−1,t + 1

)

− 1. (A6)

Because the right-hand side of equation (A6) equals
(

Dt,t+1/Pt

Dt−1,t/Pt−1

)(

Pt−1,t

Pt−1

)

− 1, the equation says

that the dividend growth rate is (dividends at t + 1 per dollar invested at t multiplied by dollars

invested at t)/(dividends at t per dollar invested at t− 1 multiplied by dollars invested at t− 1).

The reinvested capital gain embedded in equation (A6), Pt−1,t/Pt−1, is important: high Pt−1,t/Pt−1

means more dollars to invest at t and higher dividend growth rates.

For monthly rebalanced momentum, SUE, and ROA portfolios, we aggregate monthly portfolio

returns with and without dividends from July of year t to June of year t + 1 to annual returns

with and without dividends for year t. We then apply equations (A5) and (A6) on the aggregated

annual returns with and without dividends to construct annual dividend growth rates for the port-

folios. Aggregating over monthly returns with and without dividends to obtain annual returns with

and without dividends alleviates the effect of dividend seasonality on the calculation of portfolio

dividend growth rates. For the failure probability portfolios, monthly observations of returns are

already one-year buy-and-hold returns. As such, we apply equations (A5) and (A6) directly on the

monthly observations of returns to construct dividend growth rates for these portfolios.
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Table 1 : Descriptive Statistics, Samples for Estimating Implied Costs of Equity

We present descriptive statistics including the mean, standard deviation, min, 25% percentile,
median, 75% percentile, and max for all the anomaly variables. We also report the sample period
and average number of firms in the cross-section for each sample that corresponds to a given
anomaly variable. Book-to-market (B/M) is the book equity divided by the market equity at the
end of fiscal year, and the book equity is measured as in Fama and French (1993). Size (ME)
is market capitalization in millions of dollars. Composite issuance (CI) is the cumulative log
five-year growth rate of total market equity minus the cumulative log five-year stock return. Net
stock issues (NSI) are the natural log of the ratio of the split-adjusted shares outstanding at the
fiscal year ending in calendar year t−1 divided by the split-adjusted shares outstanding at the
fiscal year ending in calendar year t−2. Abnormal investment (AI) is the deviation of the current
year investment-to-sales ratio from the past three-year moving average investment-to-sales. Asset
growth (AG) is the percentage change in total assets from the fiscal year ending in calendar year
t−2 to the fiscal year ending in calendar year t−1. Investment-to-assets (I/A) is the annual change
in property, plant, and equipment plus the annual change in inventory divided by lagged total
assets. Accruals (AC) are changes in non-cash working capital minus depreciation expense (scaled
by average total assets) as in Sloan (1996). Earnings surprise (SUE) is the unexpected earnings
defined as the most recent quarterly earnings per share minus earnings per share four quarters
ago divided by the standard deviation of the unexpected earnings from the prior eight quarters.
The distress measure is constructed as in Compbell, Hilscher, and Szilagyi (2008) and the failure
probability (FP , in percent) is calculated as 1/[1+exp(−Distress)]. Return-on-assets (ROA) is the
most recent earnings divided by one-quarter-lagged total assets. Past five-year sales growth (SG)
is the sales growth from year t− 5 to t. Prior returns (MOM) are prior six-month returns at each
portfolio formation month. See Section 2.1 and Appendix B for detailed variable definitions.
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Sample # Firms Mean Std Min 25% 50% 75% Max

Panel A: The baseline implied costs of equity estimation

B/M 80–08 2201 1.51 5.48 0.07 0.40 0.66 1.01 59.67
ME 80–08 2201 2147.63 6225.35 9.53 132.02 413.53 1368.66 57017.85
CI 80–08 1393 0.00 0.41 −1.67 −0.19 −0.05 0.16 1.70
NSI 80–08 2200 0.04 0.10 −0.22 0.00 0.01 0.03 0.65
AI 80–08 1513 0.29 0.51 −0.81 0.06 0.21 0.41 3.77
AG 80–08 1812 0.18 0.36 −0.40 0.01 0.09 0.22 2.66
I/A 80–08 1912 0.10 0.17 −0.36 0.02 0.07 0.14 1.13
AC 80–08 1631 −0.03 0.08 −0.32 −0.07 −0.04 0.01 0.30
SUE 80–08 2006 −0.10 3.41 −77.89 −0.63 0.05 0.67 37.06
FP 80–08 2038 0.06 0.13 0.01 0.03 0.04 0.06 2.88
ROA 80–08 2161 0.04 0.12 −0.64 0.00 0.04 0.08 0.40
MOM 80–08 2317 0.08 0.33 −0.80 −0.10 0.05 0.22 3.79

Panel B: The modified implied costs of equity estimation
(the full Fama-French ROE forecasting regression)

B/M 75–08 2091 1.41 3.38 0.11 0.50 0.82 1.28 34.44
ME 75–08 2091 1073.27 2792.25 3.10 45.07 174.47 723.69 22248.26
CI 75–08 1134 −0.05 0.43 −1.84 −0.22 −0.07 0.12 1.61
NSI 75–08 2091 0.03 0.10 −0.24 0.00 0.00 0.02 0.69
AI 75–08 1540 0.26 0.48 −0.77 0.04 0.18 0.37 3.58
AG 75–08 2091 0.14 0.29 −0.35 0.00 0.08 0.19 1.94
I/A 75–08 2076 0.09 0.16 −0.37 0.02 0.07 0.14 0.96
AC 75–08 1951 −0.03 0.08 −0.31 −0.07 −0.03 0.01 0.29
SUE 77–08 2119 0.48 29.41 −63.94 −0.59 0.07 0.68 1369.95
FP 75–08 2121 0.07 0.14 0.01 0.03 0.04 0.07 2.77
ROA 77–08 2268 0.04 0.12 −0.68 0.00 0.04 0.08 0.40
MOM 75–08 3108 0.09 0.34 −0.77 −0.10 0.05 0.22 4.80

Panel C: The modified implied costs of equity estimation
(the simplified Fama-French ROE forecasting regression)

B/M 75–08 2893 1.38 3.03 0.11 0.53 0.86 1.30 30.93
ME 75–08 2893 1070.64 2811.91 3.08 44.16 167.96 705.14 22495.58
CI 75–08 1534 −0.05 0.44 −1.86 −0.23 −0.07 0.13 1.65
NSI 75–08 2891 0.03 0.10 −0.24 0.00 0.00 0.02 0.70
AI 75–08 2025 0.26 0.46 −0.73 0.04 0.19 0.37 3.40
AG 75–08 2396 0.14 0.29 −0.36 0.00 0.08 0.19 1.95
I/A 75–08 2556 0.09 0.16 −0.38 0.01 0.06 0.13 0.98
AC 75–08 2181 −0.03 0.09 −0.31 −0.07 −0.03 0.01 0.30
SUE 77–08 2844 0.29 26.57 −184 −0.58 0.08 0.69 1355.05
FP 75–08 2920 0.08 0.15 0.01 0.03 0.04 0.07 3.05
ROA 77–08 3128 0.04 0.12 −0.68 0.00 0.04 0.08 0.40
MOM 75–08 3109 0.09 0.34 −0.77 −0.10 0.05 0.22 4.67
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Table 2 : Multiple Regressions to Forecast Profitability

The table shows average slopes and their Fama-MacBeth t-statistics from annual cross-sectional
regressions to predict profitability, Yt+τ/Bt+τ−1, one, two, and three years ahead (τ = 1, 2, 3).
Yt,Dt, and ACt are earnings, dividends, and accruals per share for the fiscal year ending in calendar
year t. −ACt is accruals for firms with negative accruals (zero otherwise) and +ACt is accruals for
firms with positive accruals (zero otherwise). Bt is book equity per share at the end of fiscal year
t. MEt is market capitalization (price times shares outstanding) at the end of fiscal year t. Neg Yt

is a dummy that is one for firms with negative earnings for fiscal year t (zero otherwise), and No
Dt is a dummy that is one for firms that pay no dividends during fiscal year t. The sample is from
1963 to 2008. Int. is the regression intercept, and the R2 is adjusted for degrees of freedom.

τ Int. lnBt/Mt lnMEt Neg Yt Yt/Bt −ACt/Bt +ACt/Bt AGt No Dt Dt/Bt R2

Panel A: The full Fama-French (2006) specification

Average slopes

1 0.01 −0.03 0.01 −0.04 0.63 −0.10 −0.03 −0.03 −0.02 0.12 0.43
2 0.00 −0.02 0.01 −0.07 0.39 −0.09 0.01 −0.05 −0.02 0.38 0.21
3 0.01 −0.01 0.01 −0.07 0.27 −0.09 0.02 −0.05 −0.02 0.52 0.13

t-statistics

1 0.67 −4.09 3.26 −2.69 18.39 −5.80 −2.98 −4.60 −4.71 2.61
2 0.15 −2.65 3.18 −3.59 13.45 −3.51 0.42 −6.61 −4.70 8.10
3 0.29 −1.96 3.26 −3.27 9.67 −5.16 1.14 −5.60 −4.32 12.34

Panel B: The simplified Fama-French specification

Average slopes

1 0.00 −0.02 0.01 −0.05 0.61 −0.04 0.43
2 −0.00 −0.02 0.01 −0.07 0.40 −0.06 0.20
3 0.00 −0.01 0.01 −0.06 0.31 −0.06 0.13

t-statistics

1 0.23 −4.25 4.26 −2.88 18.33 −5.76
2 −0.09 −2.62 4.86 −3.48 11.25 −8.06
3 0.05 −1.78 5.15 −3.10 9.85 −8.72
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Table 3 : Average Realized Returns and Expected Returns, Implied Costs of Equity, Baseline and Modified

We report the average realized returns, A[R], the implied costs of equity from the baseline residual income model that uses the forecasted
earnings from IBES, E0[R], the implied costs of equity from the modified residual income model that uses the Fama-French (2006)
forecasted ROE, E1[R], and the implied costs of equity from the modified residual income model that uses the simplified Fama-French
forecasted ROE, E2[R]. In June of each year t from 1980 to 2008, we sort all NYSE stocks on book-to-market (B/M), size (ME),
composite issuance (CI), net stock issues (NSI), abnormal investment (AI), asset growth (AG), investment-to-assets (I/A), and total
accruals (AC) for the fiscal year ending in calendar year t−1 and use the NYSE breakpoints to split NYSE, Amex, and Nasdaq stocks
into five quintiles. Value-weighted portfolio returns are calculated from July of year t to June of year t+1. We also sort all NYSE stocks
each month on the prior six-month returns (MOM) and earnings surprises (SUE), and use the NYSE breakpoints to split all stocks
into quintiles. We hold the portfolios for six months and calculate value-weighted returns. Each month we use NYSE/Amex/Nasdaq
breakpoints to sort all stocks on Campbell, Hilscher, and Szilagzi’s (2008) failure probability (FP ) into quintiles and calculate one-year
value-weighted returns for each portfolio. Each month we also use NYSE breakpoints to sort all stocks on quarterly return-on-assets
(ROA) and calculate value-weighted returns for the current month. Earnings and other Compustat quarterly accounting data for a
fiscal quarter are used in portfolio sorts in the months immediately after its public earnings announcement month (Compustat quarterly
item RDQ). See Section 2.1 and Appendix B for detailed variable definitions. “H−L” is the high-minus-low portfolios and “[t]” is
heteroscedasticity-and-autocorrelation-consistent t-statistics testing a given H−L moment is zero. The sample periods are described
in Table 1. All entries other than [t] are in annualized percent.

A[R] E0[R] E1[R] E2[R] A[R] E0[R] E1[R] E2[R] A[R] E0[R] E1[R] E2[R] A[R] E0[R] E1[R] E2[R]

Panel A: B/M Panel B: ME Panel C: CI Panel D: NSI

Low 12.1 8.6 7.2 7.5 15.8 12.7 10.9 11.3 15.1 10.4 10.1 10.6 16.1 10.3 9.4 10.0
3 14.8 11.0 10.1 10.8 14.2 11.1 10.0 10.4 13.4 9.8 9.1 9.5 13.1 9.8 9.0 9.5
High 17.3 14.9 15.7 16.0 12.8 9.6 8.7 9.4 10.9 10.3 9.0 9.8 8.6 10.2 8.9 9.6
H−L 5.2 6.3 8.5 8.5 −3.0 −3.1 −2.2 −1.8 −4.2 −0.1 −1.1 −0.8 −7.5 −0.1 −0.5 −0.5
[t] 2.2 12.0 8.4 9.2 −0.8 −7.6 −6.0 −5.3 −2.8 −0.2 −4.2 −2.6 −3.0 −0.4 −1.6 −1.9

Panel E: AI Panel F: AG Panel G: I/A Panel H: AC

Low 15.0 10.0 9.1 9.4 16.1 10.2 9.6 9.8 14.2 10.5 9.6 9.9 13.9 9.9 8.9 9.1
3 14.2 9.9 9.6 10.2 13.2 9.7 9.6 10.0 13.2 9.7 9.3 9.7 14.4 9.8 9.1 9.4
High 11.1 9.9 8.1 8.9 10.5 9.6 8.1 8.5 10.8 9.9 8.6 9.1 9.1 9.8 8.4 8.8
H−L −4.0 −0.1 −1.0 −0.5 −5.6 −0.6 −1.5 −1.2 −3.4 −0.5 −1.0 −0.9 −4.8 −0.0 −0.5 −0.3
[t] −2.4 −0.2 −2.7 −1.1 −2.8 −3.0 −5.6 −4.4 −1.8 −3.0 −5.6 −4.5 −3.6 −0.1 −3.3 −1.8

Panel I: SUE Panel J: FP Panel K: ROA Panel L: MOM

Low 8.6 10.1 9.2 9.9 13.8 9.2 7.8 8.2 5.9 11.0 9.8 10.6 6.8 11.3 10.0 10.7
3 10.9 10.1 8.9 9.5 12.4 11.2 9.8 10.4 10.1 10.5 10.0 10.3 11.2 10.2 9.0 9.7
High 13.5 10.0 8.3 8.9 5.7 13.1 10.8 11.5 12.4 9.3 7.7 8.0 13.2 9.7 7.8 8.4
H−L 4.9 −0.1 −0.9 −1.0 −8.1 3.8 3.0 3.3 6.5 −1.7 −2.1 −2.7 6.4 −1.7 −2.2 −2.3
[t] 5.5 −3.1 −19.2 −18.5 −5.0 34.8 21.0 25.8 3.3 −22.0 −19.3 −35.1 3.3 −17.1 −23.7 −23.5
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Table 4 : Descriptive Statistics, Samples for Estimating Expected Returns and Expected

Growth Rates Simultaneously

We present descriptive statistics including the mean, standard deviation, min, 25% percentile,
median, 75% percentile, and max for all the anomaly variables. We also report the sample period
and average number of firms in the cross-section for each sample that corresponds to a given
anomaly variable. Book-to-market (B/M) is the book equity divided by the market equity at the
end of fiscal year, and the book equity is measured as in Fama and French (1993). Size (ME)
is market capitalization in millions of dollars. Composite issuance (CI) is the cumulative log
five-year growth rate of total market equity minus the cumulative log five-year stock return. Net
stock issues (NSI) are the natural log of the ratio of the split-adjusted shares outstanding at the
fiscal year ending in calendar year t−1 divided by the split-adjusted shares outstanding at the
fiscal year ending in calendar year t−2. Abnormal investment (AI) is the deviation of the current
year investment-to-sales ratio from the past three-year moving average investment-to-sales. Asset
growth (AG) is the percentage change in total assets from the fiscal year ending in calendar year
t−2 to the fiscal year ending in calendar year t−1. Investment-to-assets (I/A) is the annual change
in property, plant, and equipment plus the annual change in inventory divided by lagged total
assets. Accruals (AC) are changes in non-cash working capital minus depreciation expense (scaled
by average total assets) as in Sloan (1996). Earnings surprise (SUE) is the unexpected earnings
defined as the most recent quarterly earnings per share minus earnings per share four quarters
ago divided by the standard deviation of the unexpected earnings from the prior eight quarters.
The distress measure is constructed as in Compbell, Hilscher, and Szilagyi (2008) and the failure
probability (FP , in percent) is calculated as 1/[1+exp(−Distress)]. Return-on-assets (ROA) is the
most recent earnings divided by one-quarter-lagged total assets. Past five-year sales growth (SG)
is the sales growth from year t− 5 to t. Prior returns (MOM) are prior six-month returns at each
portfolio formation month. See Section 2.1 and Appendix B for detailed variable definitions.
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Sample # Firms Mean Std Min 25% 50% 75% Max

Panel A: The baseline ETSS estimation

B/M 80–08 3026 1.58 6.59 0.05 0.37 0.63 0.98 79.12
ME 80–08 3026 1899.10 5580.70 8.92 127.32 368.64 1195.65 50932.74
CI 80–08 1649 0.01 0.43 −1.68 −0.19 −0.04 0.18 1.76
NSI 80–08 2777 0.05 0.12 −0.22 0.00 0.01 0.04 0.80
AI 80–08 1753 0.32 0.58 −1.05 0.06 0.22 0.43 4.37
AG 80–08 2296 0.22 0.46 −0.42 0.01 0.10 0.25 3.58
I/A 80–08 2415 0.11 0.19 −0.36 0.02 0.07 0.15 1.32
AC 80–08 2061 −0.03 0.09 −0.33 −0.07 −0.03 0.01 0.33
SUE 80–08 2442 −0.10 3.42 −84.30 −0.63 0.05 0.66 39.43
FP 80–08 2222 0.07 0.15 0.01 0.03 0.04 0.06 3.41
ROA 80–08 2560 0.04 0.12 −0.80 0.00 0.04 0.08 0.40
MOM 80–08 2710 0.08 0.34 −0.82 −0.11 0.05 0.22 4.13

Panel B: The modified ETSS estimation
(the full Fama-French ROE forecasting regression)

B/M 75–08 2851 1.43 3.73 0.10 0.48 0.79 1.24 40.52
ME 75–08 2851 959.22 2509.42 2.64 46.09 164.44 645.51 20150.88
CI 75–08 1507 −0.05 0.45 −1.87 −0.22 −0.06 0.14 1.72
NSI 75–08 2850 0.04 0.12 −0.24 0.00 0.01 0.04 0.79
AI 75–08 1859 0.27 0.53 −0.88 0.03 0.18 0.38 3.90
AG 75–08 2851 0.17 0.35 −0.38 0.00 0.09 0.22 2.36
I/A 75–08 2824 0.10 0.17 −0.39 0.02 0.07 0.15 1.15
AC 75–08 2654 −0.03 0.09 −0.34 −0.07 −0.03 0.02 0.33
SUE 77–08 2579 0.31 25.18 −76.97 −0.61 0.06 0.68 1334.37
FP 75–08 2337 0.09 0.18 0.01 0.03 0.04 0.07 3.56
ROA 77–08 2564 0.00 0.16 −0.88 0.00 0.04 0.08 0.40
MOM 75–08 2805 0.09 0.37 −0.79 −0.12 0.04 0.23 4.64

Panel C: The O’Hanlon-Steele estimation

B/M 65–08 3369 1.55 5.14 0.04 0.48 0.79 1.22 64.94
ME 65–08 3369 973.60 3049.27 1.54 39.13 139.05 559.04 27092.75
CI 65–08 1749 −0.05 0.41 −1.64 −0.22 −0.07 0.12 1.60
NSI 65–08 3369 0.04 0.11 −0.23 0.00 0.01 0.03 0.88
AI 65–08 1983 0.25 0.47 −1.04 0.04 0.17 0.35 3.48
AG 65–08 2825 0.17 0.39 −0.49 0.00 0.09 0.21 3.19
I/A 65–08 2973 0.10 0.20 −0.47 0.02 0.07 0.14 1.50
AC 70–08 2431 −0.02 0.09 −0.41 −0.07 −0.03 0.02 0.37
SUE 77–08 3311 0.20 23.56 −195.56 −0.60 0.07 0.69 1341.16
FP 75–08 2975 0.09 0.19 0.01 0.03 0.04 0.08 3.89
ROA 77–08 3310 0.00 0.16 −1.00 0.00 0.04 0.08 0.40
MOM 65–08 3765 0.08 0.38 −0.84 −0.12 0.04 0.22 5.94
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Table 5 : Expected Growth Rates, the Baseline and Modified Easton Models, the O’Hanlon-Steele Model

We report the estimated growth rates from the baseline Easton et al. (2002) model that uses the forecasted earnings from IBES, g0,
the growth rates from the modified Easton et al. model that uses the Fama-French (2006) forecasted ROE, g1, and the estimated
growth rates from the O’Hanlon-Steele model, g2. For comparison, we also report the average dividend growth rates from the dividend
discounting model, A[G]. In June of each year t from 1980 to 2008, we sort all NYSE stocks on book-to-market (B/M), size (ME),
composite issuance (CI), net stock issues (NSI), abnormal investment (AI), asset growth (AG), investment-to-assets (I/A), and total
accruals (AC) for the fiscal year ending in calendar year t−1 and use the NYSE breakpoints to split NYSE, Amex, and Nasdaq stocks
into quintiles. Value-weighted portfolio returns are calculated from July of year t to June of year t+ 1. We also sort all NYSE stocks
each month on the prior six-month returns (MOM) and earnings surprises (SUE), and use the NYSE breakpoints to split all stocks
into quintiles. We hold the portfolios for six months and calculate value-weighted returns. Each month we use NYSE/Amex/Nasdaq
breakpoints to sort all stocks on Campbell, Hilscher, and Szilagzi’s (2008) failure probability (FP ) into quintiles and calculate one-year
value-weighted returns for each portfolio. Each month we also use NYSE breakpoints to sort all stocks on quarterly return-on-assets
(ROA) and calculate value-weighted returns for the current month. Earnings and other Compustat quarterly accounting data for a
fiscal quarter are used in portfolio sorts in the months immediately after its public earnings announcement month (Compustat quarterly
item RDQ). See Section 2.1 and Appendix B for detailed variable definitions. “H−L” is the high-minus-low portfolios and “[t]” is
heteroscedasticity-and-autocorrelation-consistent t-statistics testing a given H−L moment is zero. The sample periods are in Table 1.
All entries other than [t] are in annualized percent.

A[G] g0 g1 g2 A[G] g0 g1 g2 A[G] g0 g1 g2 A[G] g0 g1 g2

Panel A: B/M Panel B: ME Panel C: CI Panel D: NSI

Low 5.0 6.3 17.5 18.6 10.5 2.2 4.8 3.9 6.9 1.6 8.2 11.3 11.0 5.2 8.9 10.3
3 7.7 5.3 10.8 10.1 7.5 13.1 8.9 11.2 5.9 6.6 8.6 9.0 9.4 5.0 9.0 11.7
High 9.1 1.4 2.2 4.7 5.3 7.4 10.0 14.8 5.8 10.9 8.6 11.9 4.4 8.8 9.4 13.4
H−L 4.1 −4.9 −15.4 −13.9 −5.2 5.1 5.2 10.9 −1.1 9.2 0.4 0.6 −6.6 3.6 0.5 3.1
[t] 1.3 −2.6 −27.1 −10.7 −1.1 4.0 5.6 4.5 −0.4 3.7 0.4 0.5 −1.2 2.1 0.8 3.6

Panel E: AI Panel F: AG Panel G: I/A Panel H: AC

Low 7.3 8.3 3.4 4.2 8.8 10.3 5.4 4.9 7.4 6.2 5.9 8.9 8.2 8.8 8.1 9.5
3 6.5 6.1 8.5 9.2 5.8 6.8 9.7 10.6 5.7 6.9 10.0 11.6 7.3 9.3 9.9 12.0
High 8.5 8.4 12.1 19.6 9.4 15.1 11.6 18.8 8.5 14.1 11.1 16.1 7.1 8.2 11.5 17.6
H−L 1.2 0.1 8.6 15.5 0.6 4.8 6.2 13.9 1.1 8.0 5.2 7.3 −1.1 −0.6 3.5 8.1
[t] 0.4 0.0 6.1 9.7 0.1 1.3 5.8 11.0 0.4 2.2 7.6 8.4 −0.3 −0.2 4.9 6.5

Panel I: SUE Panel J: FP Panel K: ROA Panel L: MOM

Low 8.1 11.2 14.8 14.6 11.7 11.5 15.3 17.6 6.7 6.2 5.9 7.4 6.2 10.7 12.2 12.0
3 8.8 12.9 12.5 11.6 9.0 12.7 11.2 12.6 7.6 10.5 11.9 11.0 9.2 11.9 13.3 12.3
High 12.2 13.3 13.0 13.3 29.4 −8.6 −3.9 −4.4 12.1 15.7 19.1 19.8 12.6 14.0 12.7 13.3
H−L 4.1 2.2 −1.8 −1.3 17.8 −20.0 −19.2 −22.0 5.4 9.5 13.2 12.5 6.5 3.3 0.4 1.4
[t] 7.6 4.7 −10.1 −4.1 4.1 −15.8 −23.2 −15.3 4.6 16.1 34.0 20.9 7.3 8.3 1.7 4.6
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Table 6 : Average Returns and Expected Returns, the Baseline and Modified Easton Models, the O’Hanlon-Steele Model

We report the average realized returns, A[R], the expected returns from the baseline Easton et al. (2002) model that uses the forecasted
earnings from IBES, r0, the expected returns from the modified Easton et al. model that uses the Fama-French (2006) forecasted ROE,
r1, and the expected returns from the O’Hanlon-Steele model, r2. In June of each year t from 1980 to 2008, we sort all NYSE stocks on
book-to-market (B/M), size (ME), composite issuance (CI), net stock issues (NSI), abnormal investment (AI), asset growth (AG),
investment-to-assets (I/A), and total accruals (AC) for the fiscal year ending in calendar year t− 1 and use the NYSE breakpoints to
split NYSE, Amex, and Nasdaq stocks into quintiles. Value-weighted portfolio returns are calculated from July of year t to June of
year t+ 1. We also sort all NYSE stocks each month on the prior six-month returns (MOM) and earnings surprises (SUE), and use
the NYSE breakpoints to split all stocks into quintiles. We hold the portfolios for six months and calculate value-weighted returns.
Each month we use NYSE/Amex/Nasdaq breakpoints to sort all stocks on Campbell, Hilscher, and Szilagzi’s (2008) failure probability
(FP ) into quintiles and calculate one-year value-weighted returns for each portfolio. Each month we also use NYSE breakpoints to
sort all stocks on quarterly return-on-assets (ROA) and calculate value-weighted returns for the current month. Earnings and other
Compustat quarterly accounting data for a fiscal quarter are used in portfolio sorts in the months immediately after its public earnings
announcement month (Compustat quarterly item RDQ). See Section 2.1 and Appendix B for detailed variable definitions. “H−L” is
the high-minus-low portfolios and “[t]” is heteroscedasticity-and-autocorrelation-consistent t-statistics testing a given H−L moment is
zero. The sample periods are in Table 1. All entries other than [t] are in annualized percent.

A[R] r0 r1 r2 A[R] r0 r1 r2 A[R] r0 r1 r2 A[R] r0 r1 r2

Panel A: B/M Panel B: ME Panel C: CI Panel D: NSI

Low 12.7 10.7 18.6 19.6 15.4 4.9 5.3 5.0 15.3 8.1 12.4 14.6 17.0 10.5 12.4 13.2
3 15.2 9.9 11.7 11.8 14.1 14.0 10.8 12.6 14.1 10.5 12.1 12.5 14.2 9.3 11.7 13.8
High 16.9 8.6 5.9 7.9 13.2 11.3 12.8 16.4 12.1 13.2 10.8 14.0 9.7 11.2 10.8 14.6
H−L 4.2 −2.1 −12.7 −9.4 −2.2 6.4 7.5 11.8 −3.2 5.2 −1.6 −1.9 −7.3 0.8 −1.7 −0.2
[t] 1.7 −1.0 −12.2 −6.0 −0.6 5.6 5.6 4.7 −2.0 3.0 −2.1 −2.0 −2.7 0.7 −2.6 −0.2

Panel E: AI Panel F: AG Panel G: I/A Panel H: AC

Low 15.0 11.8 7.2 6.7 15.9 12.1 7.8 6.6 14.4 10.9 9.1 10.7 14.3 11.7 10.3 10.7
3 14.2 10.4 11.9 12.5 13.7 10.8 12.8 13.2 13.7 10.9 12.8 13.9 14.8 12.8 12.6 14.5
High 12.5 11.2 14.2 20.8 11.7 16.7 13.3 19.9 11.9 15.5 12.8 17.4 10.7 11.1 13.4 19.0
H−L −2.5 −0.6 6.9 12.8 −4.3 4.6 5.4 12.6 −2.5 4.6 3.7 6.2 −3.6 −0.6 3.1 8.4
[t] −1.4 −0.2 6.4 9.7 −2.2 1.9 5.8 9.3 −1.2 1.8 6.2 7.0 −3.7 −0.3 5.1 6.9

Panel I: SUE Panel J: FP Panel K: ROA Panel L: MOM

Low 9.2 13.9 17.0 17.1 14.3 14.8 17.0 19.1 6.6 6.8 6.7 7.0 7.2 13.7 14.2 13.8
3 10.9 15.9 14.5 13.6 12.6 15.3 13.0 14.3 10.4 13.6 13.6 12.5 11.5 15.3 15.6 14.5
High 13.9 16.3 14.6 14.9 7.2 −9.4 −4.5 −4.5 12.8 18.5 20.2 21.5 13.8 15.9 14.0 14.7
H−L 4.6 2.4 −2.5 −2.2 −7.2 −24.2 −21.6 −23.6 6.2 11.7 13.5 14.5 6.6 2.2 −0.2 0.9
[t] 5.6 7.5 −16.6 −8.1 −4.4 −16.8 −19.6 −17.0 3.4 21.9 30.8 24.9 3.4 6.6 −0.7 3.3
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