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Abstract

Dai and Singleton (2000) study a class of term structure models for interest rates that
specify the short rate as an affine combination of the components of an N -dimensional affine
diffusion process. Observable quantities in such models are invariant under regular affine
transformations of the underlying diffusion process. In their canonical form, the models in
Dai and Singleton (2000) are based on diffusion processes with diagonal diffusion matrices.
This motivates the following question: Can the diffusion matrix of an affine diffusion process
always be diagonalized by means of a regular affine transformation?

We show that if the state space of the diffusion is of the form D = Rm
+×RN−m for integers

0 ≤ m ≤ N satisfying m ≤ 1 or m ≥ N − 1, there exists a regular affine transformation
of D onto itself that diagonalizes the diffusion matrix. So in this case, the Dai–Singleton
canonical representation is exhaustive. On the other hand, we provide examples of affine
diffusion processes with state space R2

+×R2 whose diffusion matrices cannot be diagonalized
through regular affine transformation. This shows that for 2 ≤ m ≤ N−2, the assumption of
diagonal diffusion matrices may impose unnecessary restrictions and result in an avoidable
loss of generality.

Key words: affine diffusion processes, affine transformations, diagonal diffusion matrices.

1 Introduction

Continuous-time affine models have played a prominent role in both the term structure litera-
ture and the stochastic volatility literature. This prominence is no doubt largely due to their
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analytic tractability. The early literature focused on specific models; see, for example, Vasicek
(1977) and Cox et al. (1985) for single-factor term structure models, Chen (1996), Balduzzi et
al. (1996) for multiple-factor term structure models, and Hull and White (1987) and Heston
(1993) for asset price models with stochastic volatility. A more recent strand of the literature,
however, focuses on broad classes of models rather than specific cases. For the case of affine
term structure models (ATSMs), see, for example, Duffie and Kan (1996) and Duffie et al.
(2003) for systematic treatments, Dai and Singleton (2000) for an empirical investigation and
classification scheme, Duffee (2002) and Cheridito et al. (2007) for extended market price of
risk specifications, Collin-Dufresne et al. (2008) and Joslin (2006) for alternate classification
schemes, and Duffie et al. (2000) for additional applications of affine processes.

Dai and Singleton (2000) group ATSMs into families Am(N), where N ≥ 1 denotes the
dimension of the underlying state process, and 0 ≤ m ≤ N the number of linearly independent
components determining the conditional variances and covariances. The conditional variances
and covariances appear as the components of the diffusion matrix in the stochastic differential
equation that governs the dynamics of the state process. Any regular affine transformation
of the state process of an ATSM leads to another ATSM that produces the same short rates
and bond prices. That is, the observable implications of the model are invariant to regular
affine transformation of the state process. ATSMs that may thus appear to be distinct from
the stochastic differential equation of the state process and the interest rate specification, can
in fact generate identical term structure implications. Kwon (2007) provides a group theoretic
interpretation of this fact.

Dai and Singleton (2000) specify a canonical form for ATSMs and impose parameter re-
strictions to ensure that the underlying affine state variable process exists and that ATSMs
with the same observable implications have a unique canonical representation. In the canonical
form, the ATSMs in Dai and Singleton (2000) are based on affine diffusion processes with state
space D := Rm

+ × RN−m and diagonal diffusion matrix.
In this paper we investigate the question, whether any N -dimensional affine diffusion process

can be brought into this form through a regular affine transformation. Obviously, this is only
possible for affine diffusion processes defined on state spaces of the form ΛD + λ for a regular
N × N -matrix Λ and λ ∈ RN . Such state spaces are natural for affine processes. But there
also exist affine processes with different state spaces. Some examples are discussed in Section
12 of Duffie et al. (2003), and Gourieroux and Sufana (2006) provide a classification of two-
factor affine diffusion models with general state spaces. But until recently, such models have
not been common in applications; see, however, Da Fonseca et al. (2008) or Buraschi et
al. (2006). To answer the question for affine diffusion processes on state spaces of the form
ΛD + λ, it is sufficient to consider the case D because ΛD + λ can be mapped onto D with
the regular affine transformation x 7→ Λ−1(x− λ). We prove that for all 0 ≤ m ≤ N such that
m ≤ 1 or m ≥ N − 1, every affine diffusion process with state space D can be turned into an
affine diffusion process with diagonal diffusion matrix through a regular affine transformation
which leaves D invariant, and we provide two counter-examples in A2(4) which show that
these conditions cannot be weakened in general. Many of the early studies restrict attention
to the case N ≤ 3. Then at least one of our conditions is always satisfied, and every affine
diffusion process with state space D can be diagonalized. However, models with N ≥ 4 are
becoming more and more common in the literature; see, for example, Thompson (2008), Collin-
Dufresne et al. (2008), and Egorov et al. (2008). Four factor models also arise naturally when
the stochastic volatility model of Hull and White (1987) and Heston (1993) are extended to
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include two stocks. Requiring that the state variables have a diagonal diffusion matrix imposes
unnecessary restrictions on these models that may impede their ability to match important
features of the data. By comparing the ATSMs of Dai and Singleton (2000) to the maximal
representations in their own paper, Collin-Dufresne et al. (2008) also conclude that for N ≤ 3,
the Dai–Singleton specification covers all ATSMs with state space D, while for N = 4, this is
not the case. Our result implies the specific findings of Collin-Dufresne et al. (2008) for N ≤ 4.

The remainder of the paper is organized as follows: In Section 2 we formally introduce
affine diffusion processes and state our main result. Although we focus on the case of ATSMs,
the results apply to other cases, such as affine stochastic volatility models. Section 3 contains
the proof of the main result. In Section 4 we provide the two counter-examples showing that
affine processes cannot in general be diagonalized. Finally, Section 5 concludes.

2 The problem and the main result

ATSMs specify the short rate r(t) as an affine function of an N -dimensional affine diffusion
process X(t) = (X1(t), . . . , XN (t)):

(2.1) r(t) = d0 + dT X(t) .

Here, d0 ∈ R, d ∈ RN , and T denotes transposition. Prices of zero-coupon bonds are given by

P (t, T ) = EQt
[
e−

∫ T
t r(u) du

]
,

where EQt denotes conditional expectation under a risk neutral probability measure Q. By
“affine diffusion process” it is meant that X(t) is a solution of a stochastic differential equation
of the form

(2.2) dX(t) = µ(X(t)) dt + σ(X(t)) dW (t) ,

where W (t) is an N -dimensional Q-Brownian motion and the drift µ and the diffusion matrix
α := σσT are affine functions of X(t):

µ(X(t)) = b + βX(t),

for b ∈ RN and β ∈ RN×N , and

α(X(t)) = α0 + X1(t)α1 + · · ·+ XN (t)αN

for symmetric N ×N -matrices α0, . . . , αN .
It is known from Duffie and Kan (1996) that zero coupon bond prices in ATSMs are of the

form
P (t, T ) = exp(−A(T − t)− 〈B(T − t), X(t)〉) ,

where 〈., .〉 denotes the standard scalar product in RN and A and B are deterministic functions
satisfying certain ordinary differential equations. For a detailed study of affine processes in a
more general context, we refer to Duffie et al. (2003).

It can easily be checked that for every regular N × N -matrix Λ and λ ∈ RN , the affine
transform

(2.3) Y (t) = ΛX(t) + λ ,
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satisfies
dY (t) = [Λb− ΛβΛ−1λ + ΛβΛ−1Y (t)] dt + Λσ(Λ−1[Y (t)− λ]) dW (t).

Hence, Y (t) is again an affine diffusion process with affine diffusion matrix

(2.4) Λα(Λ−1[Y (t)− λ])ΛT = Λα(X(t))ΛT .

The short rate process can be expressed in terms of Y (t) as

(2.5) r(t) = d0 − dT Λ−1λ + dT Λ−1Y (t) .

This shows that Y (t) and (2.5) specify an ATSM producing the same short rates and bond
prices as X(t) and (2.1). That is, a regular affine transformation of the state process changes the
particular form of the stochastic differential equation (2.2). But it leaves observable quantities,
such as short rates and bond prices invariant. In their canonical form, the models in Dai
and Singleton (2000) are based on diffusion processes with state space D := Rm

+ × RN−m and
diagonal diffusion matrix. This motivates the question whether all affine diffusion processes
can be brought into such a form via a regular affine transformation. Of course, this is only
possible for affine diffusion processes on state spaces of the form ΛD + λ, and to cover this
case, it is enough to consider D. Our main result is the following:

Theorem 2.1 Let X be an affine diffusion process with state space D and diffusion matrix
α : D → RN×N . If m ≤ 1 or m ≥ N − 1, then there exists a regular N ×N -matrix Λ such that

(2.6) ΛD = D

and

(2.7) Λα(x)ΛT is diagonal for all x ∈ D .

Thus, in view of (2.4), the diffusion matrix of the D-valued affine diffusion process Y = ΛX
is diagonal.

Note that we only require Λ to be regular and not orthogonal; see also Remark 3.1 below.
Since at least one of the conditions in Theorem 2.1 is always satisfied for N ≤ 3, we obtain the
following corollary:

Corollary 2.2 For N ≤ 3, every affine diffusion process with state space D can be turned into
an affine diffusion process with diagonal diffusion matrix through a regular N × N matrix Λ
such that ΛD = D.

3 Proof of Theorem 2.1

From Theorem 2.7 of Duffie et al. (2003) we know that a function α : D → RN×N is equal to
the diffusion matrix σσT of an affine diffusion process with state space D if and only if it is of
the form

(3.1) α(x) = α0 + x1α
1 + · · ·+ xmαm , x ∈ D ,
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where α0, . . . , αm are positive semi-definite symmetric N ×N -matrices satisfying

(3.2) αj
kk = 0, for 0 ≤ j ≤ m and 1 ≤ k ≤ m with k 6= j.

By positive semi-definiteness and symmetry, condition (3.2) immediately implies that

(3.3) αj
kl = αj

lk = 0, for 0 ≤ j ≤ m and 1 ≤ k ≤ m with k 6= j and 1 ≤ l ≤ N .

We illustrate conditions (3.1) and (3.3) for N = 3. The first case is m = 0. Then,

α(x) ≡ α0

for an arbitrary positive semi-definite symmetric N ×N -matrix α0. For m = 1, we have

α0 =




0 0 0
+ ∗

+


 , α1 =




+ ∗ ∗
+ ∗

+


 ,

for m = 2,

α0 =




0 0 0
0 0

+


 , α1 =




+ 0 ∗
0 0

+


 , α2 =




0 0 0
+ ∗

+


 ,

and for m = 3,

α0 = 0 , α1 =




+ 0 0
0 0

0


 , α2 =




0 0 0
+ 0

0


 , α3 =




0 0 0
0 0

+


 ,

where we leave the lower triangle of symmetric matrices blank, + denotes a non-negative real
number and ∗ any real number such that positive semi-definiteness holds.

It is immediate from (3.1) that a regular N ×N matrix Λ fulfills (2.7) if and only if

(3.4) Λα0ΛT , . . . , ΛαmΛT are diagonal.

Denote by e1, . . . , eN the standard basis in RN . Then ΛαjΛT is diagonal if and only if

(3.5)
〈
ΛT ek, αjΛT el

〉
=

〈
ek, ΛαjΛT el

〉
= 0 for all 1 ≤ k 6= l ≤ N .

Hence, the existence of a regular Λ satisfying (2.7) is equivalent to the existence of linearly
independent vectors f1, . . . , fN in RN such that

(3.6)
〈
fk, αjf l

〉
= 0 for all 0 ≤ j ≤ m and all 1 ≤ k 6= l ≤ N .

To show (2.6) and (3.4), we consider the four cases m = N , m = 0, m = N − 1 and m = 1
separately.

Case m = N : By (3.3), α0, . . . αN are already diagonal. So Λ can be taken to be the N ×N -
identity matrix.

Case m = 0: By (3.1), α ≡ α0 for a positive semi-definite symmetric N × N matrix α0. So
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there exists an orthogonal N × N matrix Λ such that Λα0ΛT is diagonal (see for instance,
Theorem 2 in Section 16.2 of Gelfand, 1961). Since D = RN , condition (2.6) is also satisfied.

Case 1 ≤ m = N − 1: It follows from (3.3) that the only component of α0 that can be non-
zero is α0

NN . For 1 ≤ j ≤ N − 1, only the entries αj
jj , α

j
jN , αj

Nj , α
j
NN of the matrix αj can be

non-zero. Hence, if we define fk = ek, for 1 ≤ k ≤ N − 1, and fN component-wise as

fN
i =





−αi
iN

αi
ii

, for 1 ≤ i ≤ N − 1 if αi
ii 6= 0

0 , for 1 ≤ i ≤ N − 1 if αi
ii = 0

1 , for i = N

,

then f1, . . . , fN are linearly independent vectors in RN that satisfy (3.6). By (3.5), the regular
N×N -matrix Λ having f1, . . . , fN as row vectors, satisfies (3.4), and it follows from the special
form of the vectors f1, . . . , fN that Λ(RN−1

+ × R) = RN−1
+ × R.

Case m = 1: By condition (3.3), the matrix α0 is of the form

α0 =
(

0 0
0 A

)

for a positive semi-definite symmetric (N − 1) × (N − 1)-matrix A. If α1
11 6= 0, we define the

symmetric N ×N -matrix α̃1 by

α̃1
jk := α1

jk −
α1

j1α
1
k1

α1
11

, 1 ≤ j, k ≤ N .

Notice that, for any x ∈ RN , we have

〈
x, α̃1x

〉
=

〈
x, α1x

〉−
〈
x, α1e1

〉2

〈e1, α1e1〉 ≥
〈
x, α1x

〉− 〈
x, α1x

〉
= 0

by the Cauchy–Schwarz inequality | 〈x, α1e1
〉 | ≤

√
〈x, α1x〉

√
〈e1, α1e1〉. This shows that α̃1 is

positive semi-definite. If α1
11 = 0, we set α̃1 := α1. In either case, α̃1 is of the form

α̃1 =
(

0 0
0 B

)

for a positive semi-definite symmetric (N − 1) × (N − 1)-matrix B. It follows from Theorem
8.7.1 in Golub and Van Loan (1996) that there exists a regular (N − 1) × (N − 1)-matrix Q
such that QAQT and QBQT are both diagonal. Consider the regular N ×N -matrix

(3.7) Λ :=




1 0 ......... 0
Λ21

.

.
ΛN1

Q




,

where the entries Λ21, . . . , ΛN1 are chosen such that

(3.8)
〈
ΛT ek, α1e1

〉
= 0 for all k ≥ 2
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(note that if α1
11 = 0, then α1e1 = 0 and (3.8) holds true for arbitrary Λ21, . . . ,ΛN1). Then

Λα0ΛT and Λα̃1ΛT are diagonal. If α1
11 = 0, then α1 is equal to α̃1. In the case α1

11 6= 0, it
follows from the definition of α̃1 and (3.8) that

〈
ΛT ek, α1ΛT el

〉
=

〈
ek, Λα̃1ΛT el

〉
+

〈
ΛT ek, α1e1

〉 〈
ΛT el, α1e1

〉

〈e1, α1e1〉 = 0

for all k 6= l. Hence, (3.4) is satisfied. Finally, it can readily be seen from (3.7) that Λ maps
R+ × RN−1 onto R+ × RN−1.

Remark 3.1 It is well-known that there exists an orthogonal N×N -matrix Λ satisfying (3.4),
and thus (2.7), if and only if α0, . . . , αm commute. However, in Theorem 2.1 we do not require
Λ to be orthogonal. This makes the transformation more general. For instance, the positive
semi-definite symmetric matrices, satisfying condition (3.2) for N = 3 and m = 1,

α0 =




0 0 0
1 −1

1


 and α1 =




1 0 0
1 0

4




do not commute, but can nevertheless be diagonalized with the regular, non-orthogonal matrix

Λ =




1 0 0
0 2 2
0 4 −1


 .

4 Counter-examples for 2 ≤ m ≤ N − 2

In this section, we give two examples of diffusions on R2
+ × R2 whose diffusion matrix cannot

be diagonalized through regular affine transformation. For the first example, we provide a
complete proof of non-diagonalizability. But one might object that this example is degenerate
because it consists of a diffusion on R2

+×R2 whose diffusion matrix has only rank 2. Our second
example is a diffusion on R2

+ × R2 with a diffusion matrix of full rank. Non-diagonalizability
can be proved with analogous arguments. But a full-fledged proof is so long and tedious that
we omit the details.

4.1 Degenerate counter-example

Let 0 < γ < 1. Then, the matrices

α0 =




0 0 0 0
0 0 0

1 0
γ


 , α1 =




0 0 0 0
0 0 0

1 0
1


 , α2 =




0 0 0 0
0 0 0

1 1
1


 .

satisfy condition (3.2) for N = 4 and m = 2. Hence, we know from Theorem 2.7 of Duffie et
al. (2003) that there exists an affine diffusion on R2

+ × R2 with diffusion matrix

α(x) = α0 + x1α
1 + x2α

2 =




0 0 0 0
0 0 0

1 + x1 + x2 x2

γ + x1 + x2


 .
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For instance, α(x) can be written as σ(x)σT (x) for

σ(x) =




0 0 0 0
0 0 0 0√

γ + x1 0
√

x2
√

1− γ
0

√
γ + x1

√
x2 0


 .

The corresponding diffusion process X is of the form

dX1 = (b1 + 〈β1, X〉) dt

dX2 = (b2 + 〈β2, X〉) dt

dX3 = (b3 + 〈β3, X〉) dt +
√

γ + X1 dW1 +
√

X2 dW3 +
√

1− γ dW4

dX4 = (b4 + 〈β4, X〉) dt +
√

γ + X1 dW2 +
√

X2 dW3 .

Since X lives on R2
+ × R2, 〈β1, x〉 and 〈β2, x〉 must not depend on x3 and x4. Hence, X1 and

X2 are deterministic. Still, X is of the form (9) in Dai and Singleton (2000) because σ(x) can
be written as σ(x) = Σ

√
S(x) for

Σ =




0 0 0 0
0 0 0 0
1 0 1 1
0 1 1 0


 and S(x) =




γ + x1 0 0 0
0 γ + x1 0 0
0 0 x2 0
0 0 0 1− γ


 .

Now, assume that there exists a regular 4× 4-matrix Λ such that Λα(x)ΛT is diagonal for all
x ∈ R2

+ × R2. Then, by (3.6), there exist four linearly independent vectors f1, . . . , f4 in R4

such that

fk
3 f l

3 + γfk
4 f l

4 = 0(4.1)

fk
3 f l

3 + fk
4 f l

4 = 0(4.2)

(fk
3 + fk

4 )(f l
3 + f l

4) = 0 .(4.3)

for all k 6= l. From (4.1) and (4.2) we get

(4.4) fk
3 f l

3 = fk
4 f l

4 = 0 .

By linear independence there can be at most two vectors among f1, . . . , f4 with fk
3 = fk

4 = 0.
We may assume that f3 and f4 are not of this form. We then deduce from (4.4) that either

f3
3 = 0 and f4

4 = 0 or f4
3 = 0 and f3

4 = 0 .

The first case together with (4.3) implies f3
4 f4

3 = 0, the second one f3
3 f4

4 = 0. Both con-
tradict the assumption of linear independence of f1, . . . , f4. This shows that α(x) cannot be
diagonalized by regular affine transformation.

4.2 Non-degenerate counter-example

For 0 < γ < 1, the matrices

α0 =




0 0 0 0
0 0 0

1 0
γ


 , α1 =




1 0 0 0
0 0 0

1 0
1


 , α2 =




0 0 0 0
1 0 0

1 1
1


 .
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satisfy condition (3.2). By Duffie et al. (2003), there exists an affine diffusion on R2
+×R2 with

diffusion matrix

α(x) = α0 + x1α
1 + x2α

2 =




x1 0 0 0
x2 0 0

1 + x1 + x2 x2

γ + x1 + x2


 .

α(x) has rank 4 in the interior of R2
+ × R2, and there exists no 4 × 4-matrix Λ such that

Λα(x)ΛT is diagonal for all x ∈ R2
+×R2. This can be proved along the lines of Subsection 4.1.

But the argument is much longer and not given here. Alternatively, non-diagonalizibility can
be checked with software like Mathematica that allows for symbolic calculations.

We point out that now, σ(x) cannot be of the form Σ
√

S(x) for a 4 × 4-matrix Σ and a
diagonal 4× 4-matrix S(x) because if it were, then Σ would have to be regular and

ΛαΛT = ΛΣS(x)ΣT ΛT

would be diagonal for Λ = Σ−1.

5 Conclusion

We have demonstrated that for all 0 ≤ m ≤ N with m ≤ 1 or m ≥ N − 1, any affine diffusion
process on Rm

+ × RN−m can be transformed into one on the same state space with diagonal
diffusion matrix by way of a regular affine transformation. This shows that in this case, the
Dai–Singleton specification covers all affine diffusion term structure models with state spaces
of the form Λ(Rm

+ × RN−m) + λ. However, we also showed that there exist affine diffusion
processes on R2

+ × R2 with non-diagonalizable diffusion matrix. Hence, for ATSMs with four
risk factors or more, the assumption of instantaneously uncorrelated state variables may result
in an unnecessary loss of generality with possible consequences of poor fit to data or non-optimal
model selection.

A study of the potential of affine diffusions with non-affine state spaces or the practical ben-
efits from the use of affine diffusions with more than three risk factors and non-diagonalizable
diffusion matrix are beyond the scope of this paper and left for future research.
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Duffie, D., Filipović, D., Schachermayer, W. (2003). Affine Processes and Applications in Fi-
nance. Annals of Applied Probability 13(3), 984–1053.

Duffie, D., Kan, R. (1996). A Yield-Factor Model of Interest Rates. Mathematical Finance
6(4), 379–406.

Duffie, D., Pan, J., Singleton, K. (2000). Transform Analysis and Asset Pricing for Affine
Jump-Diffusions. Econometrica 68(6), 1343–1376.

Egorov, A., Li, H., Ng, D. (2008). A Tale of Two Yield Curves: Modeling the Joint Term
Structure of Dollar and Euro Interest Rates. Forthcoming in Journal of Econometrics.

Gelfand, I. M. (1961). Lectures on Linear Algebra. Translated by A. Shenitzer. Dover Publi-
cations, Inc. New York.

Golub, G. H., Van Loan, C. F. (1996). Matrix Computations. Third Edition. John Hopkins
University Press.

Gourieroux, C., Sufana, R. (2006) A Classification of Two-Factor Affine Diffusion Term Struc-
ture Models. Journal of Financial Econometrics 4(1), 31–52.

Heston, S. (1993). A Closed-Form Solution of Options with Stochastic Volatility with Appli-
cations to Bonds and Currency Options. Review of Financial Studies 6(2), 327–343.

Hull, J., White, A. (1987). The Pricing of Options on Assets with Stochastic Volatilities. Jour-
nal of Finance 42(2), 281–300.

Joslin, S. (2006). Can Unspanned Stochastic Volatility Models Explain the Cross Section of
Bond Volatilities? Working Paper.

Kwon, K. (2007). On the Equivalence of a Class of Affine Term Structure Models. Forthcoming
in Annals of Finance.

Thompson, S. (2008). Identifying Term Structure Volatility from the LIBOR-Swap Curve.
Review of Financial Studies 21(2), 819–854.

Vasicek, O. (1977). An Equilibrium Characterization of the Term Structure. Journal of Fi-
nancial Economics 5(2), 177–188.

10




