FAÇADE TECTONICS

2021-05-06

Energy Modeling Best Practices and Why Facades Matter - Processes

Steve Kemp, M.A.Sc., P.Eng., LEED® Fellow, Principal RDH Building Science

Historical Overview

John Straube's mom, not Steve Kemp's mom

Mom's Rules of Building Science

- "Close the window / door / fridge"
 - Airtightness matters
- "Wear a hat"
 - Overhangs = Sunshade, rain shelter
- "Don't tuck your pants into your boots"
 - Drainage and shingling
- "Wear your jacket, sweater, mittens"
 - · Insulate on the outside

From Envelope is King, to it's the HVAC stupid and back again

- → My early career
 - → It's all about the envelope
 - → Heating and cooling loads are imposed primarily by the envelope, so let's start there!
- → It didn't take me long to find...
 - → HVAC design and specifications are terrible
 - → Fix the stupid things that we're doing!
- → Today... Great envelopes enables great HVAC

What climate are these buildings experiencing?

Denver

Edmonton

Honolulu

History of Energy Codes (Non-Part 9) in Canada

2014's <u>MEASURED</u> Energy Use of Canadian Buildings

- → Energy consumption is for year 2014
- → Includes all building types
- Most older building have been renovated with newer HVAC
- Most older building have a "computer on every desktop"
- → Why is this happening?
 - → data does not come with explanation

Ref: Survey of Commercial and Institutional Energy Use - Buildings 2016, NRCAN

2018's *MEASURED* Energy Use of Canadian MURBs

- → Energy consumption is for year 2018
- → Includes only MURBs
- Most older building have been renovated with newer HVAC
- Most older building have more modern energy efficient appliances
- → Why is this happening?
 - → data does not come with explanation

Ref: Survey of Energy Consumption of Multi-Unit Residential Buildings (SECMURBs) 2018, NRCan

MEASURED Energy Consumption Trends

- BC MURBs

Typical Building Renewal Cycles

New Energy Performance Metrics:

- Annual Space Heating Demand or Heating Load
- Annual Total Energy Use Intensity
- Greenhouse Gas Emission Intensity

Space Heating/Cooling

To maintain a comfortable environment:

 Σ Heat Loss = Σ Heat Gains

Energy balance heating (monthly method)

Graph: PHPP Energy Balance – UBC Okanagan PHPP by RDH

Thermal Demand Details - Thermal Bridging

→ Thermal bridging assessment is required

Nominal (1D) vs. Assembly Performance Indicators

Exterior Insulation 1D R-Value (RSI)	R _{1D} ft ² ·hr·°F / Btu (m ² K / W)	R _o ft ² ·hr·°F / Btu (m ² K / W)	U。 Btu/ft² ·hr ·°F (W/m² K)	R ft ² ·hr·°F / Btu (m ² K / W)	U Btu/ft² ⋅hr ⋅ºF (W/m² K)	Ψ Btu/ft hr °F (W/m K)
R-15 (2.64)	R-18.2 (3.20)	R-11.3 (1.99)	0.088 (0.50)	R-6.8 (1.19)	0.148 (0.84)	0.584 (1.011)

Temperature Indices

T _{i1}	0.71	Min T on sheathing away from slab, between studs at girts
		Max T on sheathing away from slab, between girts at studs
T _{i3}	0.45	Min T on slab exposed to interior air, at sheathing between studs

Language matters: R-values

- Nominal R-value (or installed) rated R-value of the insulation in its installed condition
- Assembly R-value (or centre-of-cavity) Nominal R-value + thermal resistance of other layers, assuming the assembly is
 1D
- Clear-wall R-value R_{cw} Assembly R-value + two-dimensional effect of standard repetitive thermal bridging (z-girts, steel studs, ...)
- Whole Wall R-value R_{ww} Clear-wall R-value + transitional thermal bridges (window to wall, slab edges, wall to roof, balconies, etc.

BUILDING ENVELOPE THERMAL BRIDGING GUIDE

- Parapet Length
- Slab Lengths
- 3. Wall to Window Transition Lengths

Language matters: R-values

- Nominal R-value (or installed) rated R-value of the insulation in its installed condition
- Assembly R-value (or centre-of-cavity) Nominal R-value + thermal resistance of other layers, assuming the assembly is 1D
- Clear-wall R-value R_{cw} Assembly R-value + two-dimensional effect of standard repetitive thermal bridging (brick ties, steel studs, ...)
- Whole Wall R-value R_{ww} Clear-wall R-value + transitional thermal bridges (window to wall, slab edges, wall to roof, balconies, etc.
- Overall Effective Window + Wall R-value R_{overall} Whole Wall R-value R_{ww} + Windows.

- Parapet Length
- 2. Slab Lengths
- 3. Wall to Window Transition Lengths

Overall Effective Window + Wall R-value

Not as a modeling or performance metric, but as a language between HVAC design and Architect

How does an HVAC Designer Look at a Floorplan?

Example Peak Heating Loads - Toronto

Some summary

- → Granular and Absolute Energy Targets (Budgets) are changing the conversation
- → I know longer need to spend time making the reference building worse to meet an energy goal
- → Language matters:
 - → Batter ways to define Wall R-values, improving the accuracy of our models. '
 - → Annual thermal demand (TEDI), a passive design metric
 - → Should buildings and the language they reflect back to us and respond to their local climate?
- → Architects and Engineers need to have a common language / tool set to identify synergistic performance goals
- → Many low energy heating/cooling designs have capacity limitations
- → Great envelopes enables great HVAC

New / Old Paradigm Shift

ENERGY MODELING BEST PRACTICES AND WHY FACADES MATTER - PROCESSES

skemp@rdh.com

Learn more at

rdh.com

