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1.0 INTRODUCTION 
 
The purpose of this report is to document the analysis and filtration noise in different 
signals to extract useful information. During the process, three signals were analysed and 
noise was defined in each. This definition can be found in section 2 of the report. To 
minimize noise in each signal, three different low pass filters were designed: an average 
filter, a weighted average filter, and a median filter. Although these filters were designed 
using MATLAB, they can each be modelled using difference equations and impulse 
response functions, except the median filter. In depth breakdowns of each filter can be 
found in section 2.2 of this report. To extract important information from each signal, the 
filters were supplemented with a peak riding function. A breakdown of the peak riding 
function and the methods used to extract information from each signal can be found in 
section 3 of this report. Section 5 and 6 will follow with conclusions and recommendations, 
respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

2.0 TASK ONE – APPLICATION OF LOW PASS FILTER  
 
This section outlines the design of low pass filters and their application onto each of the 
input signals. In order to determine which window size works the best for each signal an 
iterative experimental approach was used. This approach involves choosing various values 
for the parameters to pass into the filter function and documenting each step in a table. The 
table includes the feedback in terms of the audibility of the signal compared to the original 
signal for the first line and an indication of how it compares to the previous combination 
trial. This will ultimately determine which filter with which parameters works the best for 
each signal. 
 
The different filter function types created in MATLAB are modular, meaning each filter is 
structured for input parameters such as sampled data, window size, and sampling rate. This 
allows for the filters to be universal for any audio input, thus only the window size and 
sampling rate will be specific to the three audio signals (ClayColoredRobin.wav, 
tapestry.wav and drumloop1.wav) 
 
2.1 Noise Analysis 
 
In general noise is defined as unwanted and unknown modifications applied to the signal 
during capture, transmission or processing [1]. The noise in signals can be described 
mathematically, using Equation 1 for continuous time domains and Equation 2 for discrete 
time domains. 

𝑥(𝑡)%&'()* = 𝑥(𝑡),&*-./.0 + 𝑥(𝑡)(2&%.  
𝑥(𝑡)(2&%. = 𝑥(𝑡)%&'()* − 𝑥(𝑡),&*-./.0  

Equation 1 - Noise for continuous signals 

𝑥(𝑛)%&'()* = 𝑥(𝑛),&*-./.0 + 𝑥(𝑛)(2&%.  
𝑥(𝑛)(2&%. = 𝑥(𝑛)%&'()* − 𝑥(𝑛),&*-./.0  

Equation 2 - Noise for discrete signals 

Overall, any noise can be approximated as sine functions of various periods and amplitude 
[3]. However by analyzing each signal individually, the specific type of noise is identified. 
 
2.1.1 ClayColoredRobin.wav 
 
The noise present in this sound clip can be defined as pink noise. This should not be a 
surprise as pink noise is ubiquitous and occurs in many physical, biological and economic 
systems [2]. In this sample the signal of interest is the Clay Colored Robin chirping sound, 
however listening closely it is possible to hear the constant surrounding environmental 
noise of other birds, wind against the trees, animal and insects’ communication which can 
be seen on Figure 1 as the constant amplitude middle section around the time axis. 
 



 

 

 
Figure 1 - Original time domain plot of ClayColoredRobin signal outlining pink noise 

Modelling pink noise of this audio sample can be achieved through small period sine waves 
of equal energy, thus creating the environmental ambient noise that can be heard by a 
human ear with combination of the signal. The reason that the noise is of equal energy is 
because the noise stays at constant amplitude through out the sample. Due to its small 
period sine waves, the noise fluctuates rapidly over time and can therefore be attenuated 
by a low pass filter. 
 
2.1.2 tapestry.wav 
 
The noise present in this sample is not as easily identified since the overall signal capture 
is of low quality. Figure 2 it shows random noise as spikes in amplitude at ~1.5sec and 
~3.3sec. This type of noise can be described as shot noise, which occurs due to random 
electron behavior in which electrons contributing to current are largely suppressed due to 
charge build up [4]. The occurrence in Figure 2 can also be described as transient noise 
which is defined by a short pulse followed by decaying oscillations [5]. The initial spike is 
caused by impulse interference and the following oscillations are due to resonance on the 
channel of incoming signal. 
 



 

 

To model this type of noise, it should be a short impulse of a sine wave with very short 
period that occurs randomly during signal capture. 
 
2.1.3 drumloop1.wav 
 
The noise in this sample is nearly non-existent. The sample almost sounds like an 
artificial synthesis of a drum loop. However, since percussion instruments are present in 
the sample the is minimal amount of white noise occurring in the system. The snare and 
the base drums are typically recreated using white noise for audio synthesis [3], which 
can be seen in Figure 3 where the beginning of the drum loop starts with a base drum, 
and the occasional snare drums have fluctuating amplitude. 
 

Figure 2 - Original time domain plot of tapestry.wav displaying shot and transient noise 
Figure 2 - Original time domain plot of tapestry.wav signal outlining shot and transient noise 



 

 

To model this type of noise, it also should be short period of sine wave which creates 
high signal distortion for very small period of time.  
 
2.2 Low Pass Filters 
 
Noise reduction, or in other words the recovery of the original signal is the design 
objective for signal processing which can be done with the use of a filter. Each filter used 
in MATLAB is represented mathematically as impulse response functions, and further as 
difference and differential equations. 
 
2.2.1 Averaging Filter 
 
The averaging filter smoothens out dramatic changes in the amplitude by outputting an 
average of surrounding surrounding signal values. It takes an average of an odd number of 
values, centered on the current index value. The function is defined as follows: 
 
 
Parameters: 

1) signal – the signal from the sound clip 
2) sample_rate – the sample rate used to get the signal from the sound clip 

avgFilter(signal, sample_rate, window) 
 

Figure 3 - Original time domain plot of drumloop1.wav displaying white noise 



 

 

3) window – range of values to average, centered on the current value. This should be 
an odd number since we are dealing in the discrete domain. 

 
This function returns a vector representing a signal.  
The difference function for this signal can be represented in Equation 3: 
 

𝑦[𝑛] = 	
1

𝑤𝑖𝑛𝑑𝑜𝑤
> ? 𝑥[𝑛 − 𝑖]

(@&(02@AB)	/D

&E	A(@&(02@AB)	/D

F 

Equation 3 - Average difference function 

The summation sums all of the values within the inputted window. Since the summation 
begins at –(window-1)/2 and goes to (window-1)/2, the center value will be 0. Since the 
expression within the summation is x[n-i], this means it is centered on x[n]. The sum is 
then divided by the number of values in the window to obtain an average signal. 
 
The differential equation for this signal can be represented in Equation 4: 
 

𝑦(𝑡) =
1

𝑤𝑖𝑛𝑑𝑜𝑤
G 𝑥(𝑡 − 𝜏)𝑑𝜏
@&(02@/D

A@&(02@/D
 

Equation 4 - Average differential equation 

The rationale for this equation is very similar to the difference equation above with two 
minor changes. The summation of values over an interval in the continuous domain is 
performed through an integral. The window no longer has to be an integer value the limits 
of the integral change to –(window/2) and (window/2).  
 
The impulse response functions in both continuous and discrete domains are defined by 
modifying the differential and difference equations. In the difference/differential 
equations, the input, x, becomes the unit impulse function	𝛿. The output y, becomes the 
impulse response, h. 
 
Continuous: 

ℎ(𝑡) =
1

𝑤𝑖𝑛𝑑𝑜𝑤
G 𝛿(𝑡 − 𝜏)𝑑𝜏
@&(02@/D

A@&(02@/D
 

Equation 5 - Average filter impulse response function for continious domain 

Discrete: 

ℎ[𝑛] = 	
1

𝑤𝑖𝑛𝑑𝑜𝑤
> ? 𝛿[𝑛 − 𝑖]

(@&(02@AB)	/D

&E	A(@&(02@AB)	/D

F 

Equation 6 -  Average filter impulse response function for discrete domain 

  



 

 

 
2.2.2 Gaussian Filter 
 
Gaussian function known as the bell shaped curve or normal distribution function is 
represented mathematically in Equation 3, which is centered about the y axis. 

𝐺(𝑡) = 	
1

𝜎√2𝜋
𝑒𝑥𝑝S

−(𝑡 − 𝜇)D

2𝜎D U 

Equation 7 - Gaussian function 

where s is the standard deviation or window, µ is the expected value  of normal distribution 
curve, in this case 0.  
 
The Gaussian filter smoothens out dramatic changes in the amplitude by outputting a 
weighted average of surrounding signal values, where the weighting is based on the normal 
distribution curve values. The function is defined as follows: 
 
 
Parameters: 

1) N -  number of points from the normal distribution curve which defines the window 
size 

2) alpha – defines the weighting factor for the window size 
 
In other words, alpha controls the width of the normal distribution curve. The higher the 
alpha value the narrower the width of the Gaussian Function, thus alpha is changing the 
weighting priority to the center of the window in an exponential effect. In our application, 
a higher value of alpha will put a larger emphasis on the closest signal values. The function 
that is called to complete the entire filtering processed with Gaussian function is shown 
below: 
 
 
Parameters: 

1) alpha - defines the weighting factor for the window size 
2) window -  number of points from the normal distribution curve which defines the 

window size 
3) signal - the audio sample 

 
This function returns a vector representing a signal.  
The difference function for this signal can be represented in Equation 8: 
 

𝑦[𝑛] =
	∑ 𝐺[𝜏](@&(02@AB)/D

A(@&(02@AB)/D ∗ 𝑥[𝑛 − 𝜏]𝑑𝜏

∑ 𝐺[𝜏]𝑑𝜏(@&(02@AB)/D
A(@&(02@AB)/D

 

Equation 8 - Gaussian difference function 

The summation sums all of the values within the inputted window. Since the summation 
begins at –(window-1)/2 and goes to (window-1)/2, the center value will be 0 due to the 
nature of the normal distribution function that is centered at 0. The x(n-t) is convoluted 

gausswin(N, alpha) 

gaussianFilter(alpha, window, signal) 



 

 

with the Gaussian function inside the summation in order to assign weighted values for 
each index from n–(window-1)/2 to n+(window-1)/2 centered on x(n). Then the sum of the 
convolution is divided by the sum of the Gaussian function to normalize the result in order 
to achieve magnitude of range -1< y < 1. 
 
The differential equation for this signal can be represented in Equation 9: 
 

𝑦(𝑡) =
	∫ 𝐺(𝜏)@&(02@/D
A@&(02@/D ∗ 𝑥(𝑡 − 𝜏)𝑑𝜏

∫ 𝐺(𝜏)𝑑𝜏@&(02@/D
A@&(02@/D

 

Equation 9 - Gaussian differential function 

The rationale for this equation is very similar to the difference Equation 8, with a couple 
of minor changes. First, the summation of values over a continuous domain interval is 
accomplished using an integral. Second, the upper and lower limits have changed since 
they can be fractions in the continuous domain. 
 
The impulse response functions in both continuous and discrete domains are defined by 
modifying the differential and difference equations. From the difference/differential 
equations, the input, x, becomes the unit impulse function	𝛿. The output y, becomes the 
impulse response, h. 
 
Continuous: 

ℎ(𝑡) =
	∫ 𝐺(𝜏)@&(02@/D
A@&(02@/D ∗ 𝛿(𝑡 − 𝜏)𝑑𝜏

∫ 𝐺(𝜏)𝑑𝜏@&(02@/D
A@&(02@/D

 

Equation 10 - Gaussian filter impulse response function for continious domain 

Discrete: 

ℎ[𝑛] =
	∑ 𝐺[𝜏](@&(02@AB)/D
A(@&(02@AB)/D ∗ 𝛿[𝑛 − 𝜏]𝑑𝜏

∑ 𝐺[𝜏]𝑑𝜏(@&(02@AB)/D
A(@&(02@AB)/D

 

Equation 11 -  Gaussian filter impulse response function for discrete domain 

 
2.2.3 Median Filter 
 
Median filter cannot be represented mathematically because the process of the median 
filter is to take all the values in the window, then sort those value in ascending order to 
determine the median of the list and set that as your current y(t). Although the sorting 
algorithm can be done in MATLAB code, it requires logical evaluation of Boolean 
operations, such as greater than and less than, which cannot be represented in a 
mathematical formula since it requires a loop for sorting the list.  
 
The function in MATLAB uses the built in median to find the center value of the sorted 
window.  
 medianFilter(signal, window) 

 



 

 

 
Parameters: 

1) signal – the signal from the sound clip 
2) window – range of values to sort and determine a median, centered on the current 

value. This should be an odd number since we are dealing in the discrete domain. 
 
The median filter cannot be represented as difference/differential equations for the reason 
stated above. In addition, the input response function cannot be represented as well for 
both the continuous and discrete domains. 
2.3 Application of Low Pass Filters 
 
This section demonstrates the low pass filters applied onto each of the input signals. In 
order to determine which window size works the best for each signal an iterative 
experimental approach was used which involves choosing various values for the 
parameters to pass into the filter function and documenting each step in a table. The table 
involves the feed back in terms of the audibility of the signal compared to the original 
signal for the first line and better or worse to the previous combination trial. This will 
ultimately determine which filter works the best for each signal. 
 
2.3.1 ClayColoredRobin.wav 
The following parameter values are used for the average filter: 
 avgFilter ( … , window = 10) 
 

Table 1- Average filter trials for ClayColoredRobin signal 
noise 
present? 

Yes 
 

Yes 
worse 

Yes  
worse 

Yes  
worse 

Yes  
worse 

Yes 
better 

Yes  
better  

Yes  
worse 

Yes 
better 

window 38 30 16 20 68 26 10  4 6 
 
The experiment revealed that at any window size the background noise of other animals 
and insects was still present. Figure 4 demonstrates the averaged signal of the input. 
However, there is very little difference audibly between filtered and unfiltered signal with 
use of the averaging filter, however window size of 10 sounded slightly better than the 
listed trials. 



 

 

 
Figure 4 - Average filter effect on the ClayColoredRobin.wav audio file 

The following parameter values are used for the Gaussian filter: 
 gaussianFilter ( … ,  
   N = 25, 
   alpha = 7) 
 

Table 2- Gaussian filter trials for ClayColoredRobin signal 
noise 
present? 

Yes 
 

Yes 
better 

Yes 
worse 

Yes 
worse 

Yes 
worse 

Pink 
noise 
better 

Pink 
noise 
better 

Yes 
worse 

Less 
signal 

N 5 10 10  10 3 30 25 25 25 
alpha 2 4 5 7 7 7 7 9 5 
 
Through experimental approach the combination for size 25 window and 7 as the width of 
the normal distribution function, resulted in a signal without other animal or insect sounds 
however the pink noise remained in the signal with any combination of the above. The 
filter made the signal more defined but is not able to remove the short period pink noise 
waves out of the system. Figure 5 shows the original signal with the filtered signal to 
demonstrate the filtering of animal and insect noises in the background of the whistling 
Robin. 
 



 

 

 
Figure 5 - Gaussian filter effect on the ClayColoredRobin.wav audio file 

The following parameter values are used for the median filter: 
medianFilter ( … , window = 13) 

 
Table 3  - Median filter trials for ClayColoredRobin signal 

noise 
present? 

New 
noise 
 

New 
noise 
worse 

New 
noise 
worse 

Static 
worse 

Static 
worse 

Yes 
better 

Yes 
better 

Static 
better 

Yes 
worse  

window 11 5 3 15 17 9 7 13 1 
 
Through experimental approach the combination for size 13 resulted in the best signal out 
of all the trials, however, the filter created static noise and introduced greater interference 
with the signal creating an water drop sound, which can be seen on Figure 6. Not applying 
the filter to the system results in better signal than with the filter. 



 

 

 
Figure 6 - Median filter effect on the ClayColoredRobin.wav audio file 

2.3.2 tapestry.wav 
The following parameter values are used for the average filter: 
 avgFilter ( … , window = 2) 
 

Table 4  - Average filter trials for tapestry signal 
noise 
present? 

Yes 
 

No  
better 

No   
worse 

No   
better 

No   
worse 

No 
better  

No 
better 

No 
better  

No 
better 

window 38 30 16 20 68 26 10  4 2 
 
The experiment revealed that window size of 2 does the least damage to the signal, thus 
the filtered signal sounds worse than the unfiltered, as the filter is cutting out important 
signal waves that complete the woman’s speech. Figure 7 demonstrates the averaged signal 
of the input. Window size of 2 is chosen as it does minimal damage to the signal, meaning 
deletes the least amount of useful signal compared to the other trials. 



 

 

 
Figure 7- Average filter effect on the tapestry.wav audio file 

The following parameter values are used for the Gaussian filter: 
 gaussianFilter ( … ,  
   N = 25, 
   alpha = 25) 
 

Table 5  - Gaussian filter trials for tapestry signal 
noise 
present? 

No 
 

No 
quieter  

No  
better 

No  
better 

No 
filter 

No 
quieter 

No 
better 

No 
better  

No 
better  

N 5 10 10  10 3 30 25 25 25 
alpha 2 4 5 7 7 7 7 9 25 
 
Through iterative approach the combination for size 25 window and 25 as the width of the 
normal distribution function, resulted in a signal that is very similar to the unfiltered 
tapestry.wav sample with minimal loss of the significant signal waves, which is determined 
by clarity of sound. Figure 8 shows the applied Gaussian filter, which notice it very similar 
to the average filter result. 
 



 

 

 
Figure 8 - Gaussian filter effect on the tapestry.wav audio file 

The following parameter values are used for the median filter: 
 medianFilter ( … , window = 1) 
 

Table 6  - Median filter trials for tapestry signal 
noise 
present? 

static  
 

Static  
better 

Static 
better 

Static 
worse 

Static 
worse 

Static  
better 

Static  
better 

Static  
worse 

None  
better 

window 11 5 3 15 17 9 7 13 1 
 
Through experimental approach the combination for size 1 resulted in the clearest audio 
compared to the trials performed, however, the filter created static noise and introduced 
greater interference with the signal, which can be seen on Figure 9. Due to the parameter 
set for the filter input, the unfiltered signal and filtered sounds almost the exact same with 
close to no loss in the important signal waves. 



 

 

 
Figure 9 - Median filter effect on the tapestry.wav audio file 

 
2.3.3 drumloop1.wav 
The following parameter values are used for the average filter: 
 avgFilter ( … , window = 2) 
 

Table 7 - Average filter trials for drumloop1 signal 
Noise?/ 
signal 
damage? 

Less 
signal 

 

Less 
signal 
better 

Less 
signal 
better 

Less 
signal 
worse 

~ 0 
signal 
worse 

Less 
signal 
better 

Less 
signal 
better 

Less 
signal 
better  

Less 
signal 
better 

window 38 30 16 20 68 14 10  4 2 
 
The experiment revealed that window size of 2 sounds the best for this average filtered 
signal. Figure 10 demonstrates the averaged signal of the input. Window size of 2 is chosen 
as it does minimal damage to the signal, since the original signal contains almost no noise 
which in means that the filter deletes useful signal waves. However, window size of 2 
retains most of the original audio thus sounding better than the trails in Table 7. 
 
 
 
 
 



 

 

 
Figure 10 - Average filter effect on the drumloop1.wav audio file 

 
The following parameter values are used for the Gaussian filter: 
 gaussianFilter ( … ,  
   N = 10, 
   alpha = 7) 
 

Table 8  - Gaussian filter trials for drumloop1 signal 
noise 
present? 

No 
 

No 
same  

No  
better 

No  
better 

No 
filter 

Yes  
worse 

No 
better 

No 
better  

No 
better  

N 5 10 10  10 3 30 25 25 25 
alpha 2 4 5 7 7 7 7 9 25 
 
Through iterative approach the combination for size 10 window and 7 as the width of the 
normal distribution function, resulted in a signal that is very similar to the unfiltered 
drumloop1 sample with minimal loss of the important signal waves, which is determined 
by clarity of sound. Figure 11 shows the applied Gaussian filter, which notice it very similar 
to the original signal in blue. 
 
 
 
 
 



 

 

 
Figure 11- Gaussian filter effect on the drumloop1.wav audio file 

The following parameter values are used for the median filter: 
 medianFilter ( … , window = 3) 
 

Table 9  - Median filter trials for drumloop1 signal 
noise 
present? 

Yes  
 

No   
better 

No  
better 

No 
worse 

Static 
worse 

No  
better 

No 
better 

Static 
worse 

No 
better 

window 11 5 3 15 17 9 7 13 1 
 
Through experimental approach the combination for size 3 resulted in the clearest filtered 
audio (see Figure 12) compared to the trials performed. However, as mentioned in section 
2.1.3, the drumloop1 sample contains minimal amount of noise, thus the application of a 
low pass filter is damaging the signal by removing important signal waves that contribute 
to the clarity of the sound.  the filter created static noise and introduced greater interference 
with the signal, which can be seen on. Due to the parameter set for the filter input, the 
unfiltered signal and filtered sounds almost the exact same with close to no loss in the 
important signal waves. 

 
 
 
 



 

 

 
Figure 12 - Median filter effect on the drumloop1.wav audio file 

 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 



 

 

3.0 TASK TWO – USING MATLAB FOR SIGNAL ANALYSIS 
 
While looking over question 2, it became apparent that the three parts could be easily 
solved with a function that could count the number of peaks over a threshold. Thus, the 
following function is defined: 

 
Parameters: 

1) signal – the signal from the sound clip 
2) sample_rate – the sample rate used to get the signal from the sound clip 
3) window – window for the averaging filter applied within get_peaks 
4) threshold – peaks will only be counted if they pass above this threshold 
5) num_find_peaks – the number of times to run find_peaks on the signal, this will be 

expanded on further below. 
 
This function returns an integer representing the number of peaks. 
 
First, get_peaks initializes variables and runs an averaging filter on the signal using the 
inputted window. The built-in function find_peaks is then run on the signal 
num_find_peaks number of times. This function returns a list of amplitude values which 
are peaks in the input signal. Running it more than once further reduces oscillation and 
noise, creating a peak riding function. Figure 4, a visualization of the peak riding function 
for the drum loop sound after find_peaks was run 5 times, can be found in the appendix. 
 
If we run find_peaks too many times on the signal, we end up losing too much information. 
If we run find_peaks too few times, we end up with too much noise and oscillation left in 
the signal.  
 
Once we have a proper peak riding function, like the one above, we can count the number 
of times a peak occurs by counting the number of times the function goes above the 
threshold. Due to remaining noise in the signal, the function might oscillate about the 
threshold a few times at points of crossing. To prevent multiple readings, get_peaks uses a 
hysteresis with a high of threshold and a low of threshold * 0.85.  
 
The following subsections will explain how each question was solved by showing 
experimentally determined get_peaks parameter values and a description of the extra logic 
specific to that question. A visualization of the average filtered signal and the PR function 
for each can be found in the Appendix. The signal and sample_rate parameters will be 
omitted since they are always determined as follows: 
 
[signal, sample_rate] = audioread(sound_file_name, 'double'); 
  
num_peaks = get_peaks(signal, sample_rate ...); 
 

get_peaks(signal, sample_rate, window, threshold, num_find_peaks) 
 



 

 

3.1 Syllables in Tapestry Clip 
 
The following parameter values are used to obtain the number of peaks: 
 get_peaks ( … ,  
  window = 6, 
  threshold = 0.07, 
  num_find_peaks = 3 ) 
  
Each time a syllable is spoken, a peak occurs. By the definition of a syllable, the speaker 
then pronounces the next syllable after a very short pause. This pause causes a dip in the 
amplitude of the signal. Therefore, by counting the peaks above the background noise, the 
number of syllables can be accurately determined. In this case, the averaging filter helps to 
get rid of a random noise spike as well as accenting the syllables to make them easier to 
detect. The analysis resulted in calculating 10 syllables. 
 
3.2 Beats per Minute in Drum Loop 
  
The following parameter values are used to obtain the number of peaks: 
 get_peaks ( … ,  
  window = 6, 
  threshold = 0.02, 
  num_find_peaks = 5 ) 
 
The number of beats per minute are calculated as the number of times the drum is hit during 
the sound clip, extrapolated to a number of hits per minute. Mathematically, this was done 
by dividing the number of samples by the sample rate to get the duration of the sound clip 
in seconds. The number of times the drum was hit was first calculated by average filtering 
the signal then counting the peaks above the given threshold. Using the average filter helps 
to smooth out the sound of the symbols so it is easier to isolate the drum. Finally, the BPM 
can be calculated using the following equation: 

𝐵𝑃𝑀 = \
60

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛b ∗ ℎ𝑖𝑡𝑠 
The analysis resulted in value for bpm =  106.6239 
 
3.3 Number of Chirps by Clay Coloured Robin 
  
The following parameter values are used to obtain the number of peaks: 
 get_peaks ( … ,  
  window = 6, 
  threshold = 0.03, 
  num_find_peaks = 4 ) 
 
The chirps in this sound file clearly stand out when compared to the background noise. By 
smoothing the values using an averaging filter as well as the PR function, the chirps are easy to 
pick out using get_peaks. The number of peaks is equal to the number of chirps so no extra 
calculations are required. The analysis resulted in calculating 16 whistle chirps. 



 

 

4.0 CONCLUSIONS 
 
This report provides a clear mathematical definition of noise in a generic signal. 
Furthermore, a detailed explanation of noise present in each of the audio samples is 
provided in section 2.1. The next section, provides a solution to removing the noise from 
given samples using low pass filters. Three different low pass filters are designed: average, 
Gaussian and median. In addition, each filter is represented mathematically as difference 
and differential equations for discrete and continuous domains, respectively as well as 
impulse response functions. However as previously deducted, the median filter cannot be 
represented mathematically as the function requires a sorting algorithm which is a logical 
method, rather than a mathematical equation.  
 
The Section 2.3, provides a detailed analysis of application of low pass filters and 
demonstrates the results of filtered signals for each audio sample. Furthermore, the method 
for determining the window size for each filter is purely experimental and iterative to 
achieve the purest signal.  
 
After filtering ClayColoredRobin.wav audio sample through all three design filters, 
analysis shows that the most appropriate filter to remove noise from the signal is the 
Gaussian filter. The reasoning of analysis is that the median filter created interferences in 
the signal which introduced more noise into the system, hence the filtered signal contains 
random oscillations in amplitude (see Figure 6), and after average filtering the audio signal 
still contains the environmental background noise, where on Figure 4 it can be seen that 
the filtered signals is jittery, to while the Gaussian filter removes nearly all pink noise 
which is evident in Figure 5. 
 
Filtering the tapestry.wav audio sample, it is determined that the average filter works best 
for this particular sample. The reasoning of this analysis is that the median filter creates 
static noise in the signal since it filters out useful signals as evident from Figure 9. The 
Gaussian filter basically does not change the signal from the original to filtered stages 
which can be seen in Figure 8 where the filtered (green) covers mostly all of original signal 
(blue). However, the average filter smoothens the overall signal, as well as removing the 
noise at ~0.7s and ~1.3s to create a clearer sound, see Figure 7. 
 
Finally, the filtering the drumloop1.wav audio sample determined that no filters were 
optimal for the particular sample as the sample did not contain any significant noise to be 
filtered. Hence Figure 10 through 12 look nearly identical to each other. The filtered and 
original audio samples sound very similar since no small period noise is present in the 
sample to begin with.  
 
 

 

 
 



 

 

5.0 RECOMMENDATIONS 
 
Based on the conclusions drawn from filtering analysis of audio samples, it is evident that 
the ClayColoredRobin.wav is the sample that contained dominant low period noise which 
was removed by the low pass filters. However, for tapesty.wav audio sample the low pass 
filter was not as effective, for the reason that it may require a band pass filter to remove 
both the short period signal waves and very large period noise or a better signal capturing 
method. The reason why a better signal recording method may be required is because the 
microphone that was used to record the particular audio sample may be changing its gain 
based on the volume changes in the woman’s voice or due to its internal logic thereby 
making the low pass filter ineffective. In addition, the drumloop1.wav audio sample 
appears to be auto synthesized which results in no noise of the signal, thus illuminating the 
need for a low pass filter, or filter of any kind. 
 
Further recommendations for method of acquiring the window size for specific audio 
samples is to create spectrograms to determine the signal beginning and signal frequency 
end, allowing for visual representation of noise in the system. This allows for more accurate 
window size determination, as well as faster then experimentally comparing the sounds of 
different filtered signals. 
 
Task two can also be solved using the envelope function available only in MATLAB 2015b 
which was unavailable for the timeline of the current project. Which allows for faster peak 
detection method as well as more accurate than experimentally determining the amount of 
times to loop findpeaks() function in MATLAB 2015a. 
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7.0 APPENDIX 
 
4.1 Figures 

 
Figure 13: Average Filtered Signal of the Tapestry Clip 



 

 

 
Figure 14: PR Function of the Tapestry Clip 

 
Figure 15: Average Filtered Signal of the Drum Loop 



 

 

 

Figure 16: PR Function of the Drum Loop 

 

Figure 17: Average Filtered Signal of the Clay Coloured Robin 



 

 

 
Figure 18: PR Function of the Clay Coloured Robin 

4.2 Matlab Code 
 
function y = avgFilter(signal, sample_rate, window) 
%   sampling frequency  
    t=0:1/sample_rate:(length(signal)-1)/sample_rate;  
  
    y = zeros(length(signal), 1); 
    % % For loop doing averaging 
    for j = window/2 + 1 : length(signal) - window/2 
        y(j) = mean(signal(j - window/2 : j + window/2)); 
    end 
  
    y = double(y); 
end 
 
 
function [ smoothedAudio] = gaussianFilter( alpha, window, signal) 
    % creating the gaussian smoothing function 
    gaussFilter = gausswin(window,alpha); 
    % normalize the guassian function 
    gaussFilter = gaussFilter / sum(gaussFilter); 
    % convolute the audio file with the guassianFilter 
    [n,m] = size(signal); 
    smoothedAudio = zeros(n,m); 
     
%   to account for multiple channels in the signal, take the first one 
%   smoothedAudioData = []; 
%   for i = 1 : m 



 

 

        smoothedAudio = conv(signal(:,1), gaussFilter); 
%       smoothedAudioData = [smoothedAudioData; smoothedAudio]; 
%   end 
end 
 
 
function [y] = medianFilter(signal, window) 
    y = zeros(length(signal), 1); 
    % % For loop finding median 
    for j = window/2 + 1.5 : length(signal) - window/2 - 0.5  
        y(j) = median(signal(j - window/2 - 0.5 : j + window/2 + 0.5)); 
    end 
  
    y = double(y); 
  
end 
 
 
%% Question One Code 
% to replicate results of task 1 of the report simply press run 
% uncomment sound(x, Fx) to hear original 
% uncomment sound(y(:,1),Fx) to hear the filtered signal 
clear all; 
close all; 
clc; 
  
% list of sample files 
fileName = {'ClayColoredRobin.wav', 'tapestry.wav', 'drumloop1.wav'}; 
  
% fileParam is a matrix of window parameters for each filter for each 
audio 
% sample  
%     row one correspods to audio file one in the list 
(ClayColoredRobin)  
%               Avg window   gaussF N     gaussF alpha       median 
window 
% fileParam = [     10,          25,             7,             13   ; 
...] 
  
% N - the number of points for the gaussian function, aka window 
% alpha - proportional to reciprocal of standard deviation, aka width 
of normal distribution 
fileParam = [10, 25,  7, 13;  
              2, 25, 25,  1;  
              2, 10,  7,  3;]; 
           
  
% plotting noise 
for i = 1 : length(fileName) 
    [x,Fx] = audioread(fileName{i},'double'); 
    figure; 
    plot(x(:,1), 'b');   
  
    xlabel('Time [s]') 
    ylabel('Amplitude') 



 

 

    title([fileName{i}]); 
    legend('Original Signal','Location','best') 
end 
           
% plotting filtering 
  
for i = 1 : length(fileName) 
    %% Plot filtered graphs for an audio sample in the fileName array 
    % Average Filter 
    [x,Fx] = audioread(fileName{i},'double'); 
  
    y = avgFilter(x(:,1), Fx, fileParam(i,1)); 
  
    t=0:1/Fx:(length(y)-1)/Fx;   
  
    % plot original signal     
    figure; 
    plot(t,x(:,1), 'b'); 
    hold on; 
    plot(t,y(:,1), 'g');  
  
    xlabel('Time [s]') 
    ylabel('Amplitude') 
    title(['Averaged Filtered Signal ', fileName(i)]); 
    legend('Original Signal','Filtered Signal','Location','best') 
    % sound(x,Fx); 
    % sound(y(:,1),Fx); 
     
  
    %Gaussian Filter 
    % plot original signal 
    figure; 
    hold on; 
    plot(x(:,1), 'b'); 
  
    smoothedAudio= gaussianFilter(fileParam(i, 3), fileParam(i,2), x); 
    % plot filtered signal 
    plot(smoothedAudio(:,1), 'g');  
    xlabel('Time [s]'); 
    ylabel('Normalized Amplitude'); 
    title(['Gaussian Filtered Signal ', fileName(i)]); 
    legend('Original Signal','Filtered Signal','Location','best') 
    % sound(smoothedAudio, Fx); 
     
  
    %Median Filter  
    % plot original signal 
    figure; 
    plot(t,x(:,1), 'b'); 
    hold on; 
  
    h = medianFilter(x, fileParam(i,4)); 
    t=0:1/Fx:(length(h)-1)/Fx;  
  
    plot(t,h(:,1), 'g'); 
    xlabel('Time [s]') 



 

 

    ylabel('Amplitude') 
    title(['Median Filtered Signal', fileName(i)]); 
    legend('Original Signal','Filtered Signal','Location','best') 
    % sound(y,Fx); 
end 
 
 
 
% % % get_peaks function definition 
function num_peaks = get_peaks(signal, sample_rate, window, threshold, 
num_find_peaks) 
  
    % Initialises num_peaks to 0 
    num_peaks = 0; 
    % Initialises to a "low" state, this menas that the peak riding  
    % function value is not currently in a peak. 
    state = 'low'; 
     
    % Apply the averaging filter 
    signal = avgFilter(signal, sample_rate, window); 
     
    %     % Plotting the function for a visual representation of what's 
going on. 
    %     t=0:1/sample_rate:(length(signal)-1)/sample_rate; 
    %     plot(t, signal); 
    %     xlabel('Time') 
    %     ylabel('Amplitude') 
    %     title('Drum Loop - Average Filtered') 
  
    % Initialize signal_peaks. This is used to better identify the 
purpose of 
    % the variable form here on out.  
    signal_peaks = signal; 
  
    % Finds peaks of the signal three times. This effectively creates a 
list of 
    % values that rides the peaks of the sine waves. Doing it three 
times 
    % reduces most of the noise in this function and clearly isolates 
the 
    % function riding the peaks of the signal. 
    for iteration = 1 : num_find_peaks 
        signal_peaks = findpeaks(signal_peaks, sample_rate); 
    end 
  
    %     % Plotting the function for a visual representation of what's 
going on. 
    %     figure; 
    %     t=0:1/sample_rate:(length(signal_peaks)-1)/sample_rate; % 
sampling frequency 
    %     plot(t, signal_peaks); 
    %     xlabel('Time') 
    %     ylabel('Amplitude') 
    %     title('Drum Loop - Peak Riding Function') 
  
    % Iterate through the peak riding function. The if statements and 



 

 

states 
    % are used to essentially count the number of "bumps" rising pas 
the 
    % threshold cutoff in the sound clip. 
    for value = 1 : length(signal_peaks) 
        if (strcmp(state,'low') && signal_peaks(value) > threshold) 
            num_peaks = num_peaks + 1; 
            state = 'high'; 
        % By using a value of threshold*0.85 to go back to low state, a 
        % hystersis effect can be simulated with the code. This is 
helpful 
        % because a peak riding function may still have some noise and 
it is 
        % undesireable to overcount the number of threshold crossings. 
        elseif (strcmp(state,'high') && signal_peaks(value) < 
(threshold * 0.85)) 
            state = 'low'; 
        end 
    end 
end 
 
 
% % % Question 2 i) 
clc 
close all 
  
% Load the tapestry sound clip 
[signal,sample_rate] = audioread('tapestry.wav','double'); 
  
% Obtain the number of peaks (syllables) 
syllables = get_peaks(signal, sample_rate, 6, 0.07, 3); 
  
% Displaying syllables to the user 
display(syllables); 
 
 
% % % Question 2 ii) 
clc 
close all 
  
% Load the drumloop1.wav sound clip 
[signal,sample_rate] = audioread('drumloop1.wav','double'); 
  
% Get the signal duration in seconds 
duration = length(signal) / sample_rate; 
  
num_beats = get_peaks(signal, sample_rate, 6, 0.2, 5); 
  
% The BPM is equal to the (# of beats / minute) or (1 minute/ seconds  
% played) * (# of beats) for sound files less than a minute in length. 
% Since the drumloop is just under 3 seconds in length, the second 
formula 
% will be applied. 
bpm = (60 / duration) * num_beats; 
  



 

 

% Displaying syllables to the user 
display(bpm); 
 
 
% % % Question 2 iii) 
clc 
close all 
  
% Load the bird chipring sound clip 
[signal,sample_rate] = audioread('ClayColoredRobin.wav','double'); 
  
% Get the number of peaks (chirps) 
num_chirps = get_peaks(signal, sample_rate, 6, 0.03, 4); 
  
% Displaying syllables to the user 
display(num_chirps); 
 
 
 


