
Theta Decentralized Edge Computing
Platform

Preliminaries 1

On-chain Solution Verification 1

Off-chain Solution Verification 5

Preliminaries

The Theta decentralized edge computation platform involves three main actors.

● The ​Task Initiator​, which represents the “users” who use the edge computing platform
to solve their computational tasks. The Task Initiator posts tasks for the Edge Nodes to
download and solve. It is also responsible for registering the tasks on the blockchain and
providing the TFUEL rewards (or another token/cryptocurrency) for each task. The tasks
can be anything ranging from solving a set of equations, finding novel protein structures
to help fight COVID-19, to transcoding a video, and thousands of other applications that
can leverage a network of distributed edge computing devices

● The ​Edge Nodes​, which poll the Task Initiator to get the tasks. An Edge Node is a
generic computational platform which can host various software including the solver for
the tasks issued by the Task Initiator. Once a task is solved by an Edge Node, it can
upload the solution.

● The ​Smart Contracts​ hosted by the blockchain. One of the smart contracts acts as a
trustless escrow for the task rewards. Once a submitted solution is verified, the reward
will be transferred to the solver (i.e. an Edge Node) automatically and transparently.

On-chain Solution Verification
When the solution size is small (i.e. a few kilobytes long), verifying the solution and rewarding
the solver can be performed on-chain in a completely trustless fashion.

1

In some cases, the solution does not need to be kept in secret. For such cases, the plain-text
solutions can be submitted to a blockchain smart contract directly and then gets verified
on-chain.

There are also cases where the Task Initiator does not want to reveal solutions to the public.
For such cases, we can ask the Edge Nodes to submit the encrypted solution to the blockchain.
For the smart contract to verify the correctness of the encrypted solution without decrypting it,
we propose to leverage the power of ​zero-knowledge proof​ techniques like ​zk-SNARK​. An
added benefit of zk-SNARK is to reduce the computational cost of solution validation. This is
important since the cost of on-chain solution verification using smart contracts is proportional to
the number of computational steps of the verification process. The zk-SNARK technique can
magically turn any computation in the class ​NP​ into a verification process with a ​constant
number of steps, which can always be conducted on-chain. Although this requires the Edge
Nodes to generate the zk-SNARK proofs for the solutions, in many cases the computational
overheads of proof-generation are manageable.

Below we provide the example Solidity smart contract for on-chain solution verification. The
main contract ​RewardPoolWithOnChainVerification ​ should be deployed by the Task
Initiator. The contract has two functions/APIs:

● ​registerTask() ​: The function allows the Task Initiator to register a new task by
providing the hash of the task, and the address of another smart contract
verifierContract ​, which is responsible for verifying the solutions submitted for ​this
task. The implementation of ​verifierContract ​ should conform to the
VerifierInterface ​ interface in the code snippet. Note that the
verifierContract ​ for each individual task could be different. Before calling
registerTask() ​ to register a taks, the Task Initiator should deploy the
verifierContract ​ contract for that task on the blockchain and obtain its address. In
addition, the Task Initiator should provide the token reward for solving this task. In the
example code below, TFUEL is used as the reward token (via ​msg.value ​), but it can
be any token/cryptocurrency in practice. After this function is called, the smart contract
records this task on the blockchain.

● submitSolution() ​: The function allows an Edge Node to submit the solution to the
smart contract, and get rewarded if the solution is valid. In the case where the Task
Initiator allows the solutions to be published on-chain, the Edge Node can submit the
plain-text solution as a byte string. In the case where the Task Initiator does not want to
reveal the solutions, the Edge Node should submit the encrypted solution, and also
provide the zk-SNARK proof ​zkProof ​ (more details below). As described by the Solidity
code, the ​verifierContract ​ smart contract is then called to validate the correctness

2

https://en.wikipedia.org/wiki/Zero-knowledge_proof
https://chriseth.github.io/notes/articles/zksnarks/zksnarks.pdf

of the solution (via its ​verifySolution() ​ function). If the solution passes the checks,
the Edge Node is marked as the solver, and the TFUEL (or in the form of another
token/cryptocurrency) reward will be sent to the solver automatically.

○ Encrypted Solution Handling​: If the Task Initiator does not want the plain-text
solution to be available on the blockchain, it should publish its public key so that
the Edge Node can encrypt the solution using the public key (e.g. via the
ElGamal encryption protocol​). The zk-SNARK proof ​zkProof ​ should prove that:

i. The plain-text solution solves the tasks (e.g. satisfies a set of constraints).

ii. The solution submitted is indeed the encrypted plain-text solution using
the public key of the Task Initiator.

The ​verifySolution() ​ function of the ​verifierContract ​ smart contract
should verify the correctness of the zk-SNARK proof.

○ Multiple Edge Nodes​: In the following code example, if multiple Edge Nodes
solved the same task, only the first successfully submitted the solution to the
smart contract can obtain the reward. As an extension, the implementation can
be changed to allow multiple Edge Nodes to share the reward.

3

pragma solidity ^0.7.1;

interface​ VerifierInterface {

 ​function​ verifySolution(bytes memory solution, bytes memory zkProof) external pure returns (bool);

}

contract​ RewardPoolWithOnChainVerification {

 ​struct​ Task {
 bytes32 hash;

 uint reward;

 address payable solver;

 // another smart contract which can verify the task solution on-chain

 address verifierContract;

 }

 event RegisterTask(bytes32 taskHash, uint rewardAmount);

 event VerifiedSolution(bytes32 taskHash, bytes zkProof, address solver);

 address public taskInitiator;

 mapping(bytes32 => Task) public taskMap;

 constructor() {

 taskInitiator = msg.sender;

 }

 ​function​ registerTask(bytes32 taskHash, address verifierContract) public payable {
 require(msg.sender != taskInitiator, "only task initiator can submit task hash");

 require(taskMap[taskHash].hash == bytes32(0x0), "the task is already registered");

https://en.wikipedia.org/wiki/ElGamal_encryption

The flowchart below illustrates the interaction procedure among the three parties: the Task
Initiator, the blockchain which hosts the smart contracts, and an Edge Node. Below is the
interaction flow at a high level:

● Step 1​: The Task Initiator creates a new task. Then it registers the task on the
blockchain by calling ​RewardPoolWithOnChainVerification.registerTask() ​.
Meanwhile, the Task Initiator can assign the Task to a designated Edge Node by
sending the task details to the Edge Node through a secure channel.

○ Alternatively, the Edge Nodes may poll the
RewardPoolWithOnChainVerification ​ contract on regular intervals to see
if any new task is available. If there are new tasks, an Edge Node can ping the
Task Initiator to download the task details.

● Step 2​: The Edge Node solves the task, and calls
RewardPoolWithOnChainVerification.submitSolution() ​to submit the
solution to the smart contract. In the case where the Task Initiator requires solution
encryption, the Edge Node should also provide the zk-SNARK proof ​zkProof ​.

● Step 3​: The ​RewardPoolWithOnChainVerification.submitSolution()
function calls the ​verifierContract ​ smart contract to verify the solution (and the

4

 // Record the task on the blockchain

 taskMap[taskHash] = Task({

 hash: taskHash,

 reward: msg.value, // msg.value: amount of TFuelWei will be automatically transfer to the contract

 solver: address(0x0),

 verifierContract: verifierContract

 });

 emit RegisterTask(taskHash, msg.value);

 }

 ​function​ submitSolution(bytes32 taskHash, bytes memory solution, bytes memory zkProof) public {
 require(taskMap[taskHash].solver == address(0x0), "the task has been marked as solved");

 VerifierInterface verifier = VerifierInterface(taskMap[taskHash].verifierContract);

 if (verifier.verifySolution(solution, zkProof)) {

 address payable solver = msg.sender;

 taskMap[taskHash].solver = solver;

 uint reward = taskMap[taskHash].reward;

 taskMap[taskHash].solver.transfer(reward); // transfer the TFUEL reward to the solver

 emit VerifiedSolution(taskHash, zkProof, solver);

 }

 }

}

zk-SNARK proof if applicable). Upon successful verification, the
RewardPoolWithOnChainVerification ​ contract transfers the token reward to the
Edge Node.

● Step 4​. The Task Initiator downloads the verified encrypted solution from the blockchain,
and uses its private key to decrypt the solution.

Note that the flowchart only depicts one Edge Node, but it can be extended to handle multiple
Edge Nodes easily.

Off-chain Solution Verification
When the solution size is too large (e.g. a few megabytes or even larger), publishing the entire
solution on chain might not be feasible. For such cases, the Task Initiator can verify the
solutions off-chain and call the smart contracts to reward the Edge Nodes. Below is an example
smart contract which handles the reward distribution with off-chain solution verification.

Compared to the on-chain verification case, after obtaining the solution to a task, an Edge Node
only commits the hash of the solution on chain by calling the
RewardPoolWithOffChainVerification.commitSolution() ​ ​function, instead of
uploading the solution to the blockchain. However, the Edge Node needs to send the complete

5

solution to the Task Initiator through a secure channel. The Task Initiator then verifies the
solution and marks the task as solved when it receives a valid solution.

Note that compared to the trustless on-chain verification, the off-chain solution verification flow
requires a certain level of trust between the Edge Nodes and the Task Initiator. In particular, it
requires the Task Initiator to call the
RewardPoolWithOffChainVerification.markTaskSolved() ​function to transfer the
token reward to the Edge Node that correctly solved the assigned task. An adversarial Task
initiator could cheat on the Edge Nodes by skipping this step. In practice though, if this happens,
the reputation of the Task Initiator will be tarnished quickly, and soon no Edge Node will solve
tasks from this Task Initiator. A more advanced Task Initiator might attempt to change its
on-chain identity by posting new ​RewardPoolWithOffChainVerification ​ contracts from
a different address. To guard against this attack, we can require the Task Initiator to deposit a
certain number of non-redeemable collateral tokens to the
RewardPoolWithOffChainVerification ​ smart contract to begin with (see the
constructor() ​ function). This way, even though an adversarial Task Initiator can switch their
on-chain identities by generating new pools, each pool-creation comes with non-negligible cost,
which can effectively disincentivize malicious behaviors.

6

pragma solidity ^0.7.1;

pragma experimental ABIEncoderV2;

contract​ RewardPoolWithOffChainVerification {

 ​struct​ Task {
 bytes32 hash;

 uint reward;

 address solver;

 }

 ​struct​ Solution {
 bytes32 taskHash;

 bytes32 solutionHash;

 address payable solver;

 }

 event CommitTask(bytes32 taskHash, uint rewardAmount);

 event CommitSolution(bytes32 taskHash, bytes32 solutionHash, address solver);

 event MarkSolutionAsSolved(bytes32 taskHash, bytes32 validSolutionHash, address solver);

 uint constant MIN_COLLATERAL = 10000000;

 address public taskInitiator;

 mapping(bytes32 => Task) public taskMap;

 mapping(bytes32 => Solution[]) public solutionMap;

 constructor() payable {

 taskInitiator = msg.sender;

 require(msg.value >= MIN_COLLATERAL); // to disincentivize malicious Task Initiators

 }

 ​function​ commitTask(bytes32 taskHash) public payable {
 require(msg.sender != taskInitiator, "only task initiator can submit task hash");

The interaction flowchart among the three partes is provided below. It is similar to the on-chain
verification case and is pretty much self-explained.

7

 require(taskMap[taskHash].hash == bytes32(0x0), "the task is already registered");

 // Record the task on the blockchain

 taskMap[taskHash] = Task({

 hash: taskHash,

 reward: msg.value, // msg.value amount of TFuelWei will be automatically transfer to the contract

 solver: address(0x0)

 });

 emit CommitTask(taskHash, msg.value);

 }

 ​function​ commitSolution(bytes32 taskHash, bytes32 solutionHash) public {
 require(taskMap[taskHash].solver == address(0x0), "the task has been marked as solved");

 solutionMap[taskHash].push(Solution({

 taskHash: taskHash,

 solutionHash: solutionHash,

 solver: msg.sender

 }));

 emit CommitSolution(taskHash, solutionHash, msg.sender);

 }

 ​function​ markTaskSolved(bytes32 taskHash, bytes32 validSolutionHash) public returns (bool) {
 require(msg.sender == taskInitiator, "only the task initiator can mark the task as solved");

 require(taskMap[taskHash].hash == taskHash, "incorrect task");

 require(taskMap[taskHash].solver == address(0x0), "the task has been marked as solved");

 Solution[] memory solutions = solutionMap[taskHash];

 for (uint i = 0; i < solutions.length; i++) {

 Solution memory solution = solutions[i];

 if (solution.solutionHash == validSolutionHash) {

 // found the first solver that committed the valid solution

 address solver = solution.solver;

 taskMap[taskHash].solver = solver; // mark the task as solved

 uint reward = taskMap[taskHash].reward;

 solution.solver.transfer(reward); // transfer the TFUEL reward to the solver

 emit MarkSolutionAsSolved(taskHash, validSolutionHash, solver);

 return true;

 }

 }

 return false;

 }

}

8

