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ABSTRACT 
Estimating the price of European options is typically tackled based on the assumption that one 

needs to model the asset price evolution from t = 0 to T by means of a suitable stochastic 

process.  Here we challenge that notion and demonstrate that one can derive expressions to 

estimate the prices of calls and puts bypassing completely the price-evolution process; in fact, 

one only needs to model the asset price distribution at T.  The expressions we present here have 

been derived before by other authors using a different approach, namely, assuming that the asset 

price follows an arithmetic Brownian motion.  Such derivation is of course correct, but it is much 

more mathematically involved.  Our derivation only requires basic statistics.  Anyhow, the key 

message is really an invitation to think about pricing European options in a different manner.  

That is, focusing on the price distribution at T, rather than the price evolution from 0 to T.  In 

short, when dealing with European options what really matters is the destination, not the journey.   
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RESUMEN EJECUTIVO 

 
La estimación del precio en las opciones europeas se trata normalmente partiendo del supuesto 

que es necesario modelar la evolución del precio del activo subyacente entre t = 0 y T por medio 

de un proceso estocástico adecuado.  En este estudio desafiamos esa noción y demostramos que 

es posible derivar expresiones para estimar los precios de calls y puts ignorando por completo la 

evolución del precio; de hecho, solo es necesario modelar la distribución del precio del activo en 

T.  Las expresiones que presentamos en este estudio han sido derivadas por otros investigadores 

anteriormente usando un método diferente, esto es, suponiendo que el precio del activo sigue un 

movimiento Bronwiano aritmético.  Esa derivación es por supuesto correcta, pero es mucho más 

compleja desde un punto de vista matemático.  Nuestra derivación solo se apoya en conceptos de 

estadística básica.  De cualquier forma, en lo sustancial, nuestro estudio es una invitación a 

pensar en la estimación de los precios de las opciones europeas de una forma diferente.  Esto es, 

focalizándose en la distribución del precio en T, más que en la evolución del precio de 0 a T.  En 

síntesis, en lo que se refiere a opciones europeas, lo que importa es el destino final, y no la 

trayectoria.  

 

 

 

 

 

 

 

 

 

 

 

 



THE PROBLEM 

A European option is an option that can only be exercised at some future time t = T (but not 
before).  Typically, one knows: (1) the price of the asset today (t = 0), that is, X0; (2) the risk-free 
rate (R); and (3) the strike (K).  The problem consists of estimating the value of the 
corresponding options (call/put). 

BACKGROUND 

Currently, the Black-Scholes (B-S) equation, from which two valuation formulas are derived, is 
the standard reference to estimate the value of these options [1].  Derivation of the B-S equation 
is based on the assumption that the asset price evolves from 0 to T according to a stochastic 
process known as geometric Brownian motion (GBM); in short 

dX = λ X dt + ω X dz          (1) 

where X is the asset price; λ is its expected return; and dz represents a Wiener process, that is, dz 
= ε √dt (ε ~ N(0, 1)).  The term ω, known as volatility, is simply the standard deviation of the 
asset returns; a key assumption is that ω is constant.  From Eq. (1) it follows that the asset returns 
are normally distributed.  More interesting, invoking Ito’s lemma and after some algebra it can 
be shown that the asset price is log-normally distributed, that is  

Log (XT) ~ N(Log[X0] + λ - ω2 /2, ω)       (2) 

Notwithstanding their merits, the B-S formulas are problematic to say the least, as they produce 
estimates that in many cases deviate significantly from market values.  This situation is well 
known and it has been documented extensively [2-7].  The reason is the combination of two 
questionable assumptions: that the volatility is constant over the time interval (0, T), and that 
prices are log-normally distributed.  Reality has not been kind to these two assumptions.  In fact, 
a dirty secret of the financial markets is that the B-S formulas are not used to calculate the price 
of options.  True, the formulas can be used to “estimate” the price, but that is it—the price is 
whatever the market dictates.  And the market often disagrees with the B-S formulas.  In fact, the 
most common use of the formulas is not to estimate prices, but to estimate implied volatilities.  
In this case the price of the option (given by the market) is taken as an input, and the formulas 
are solved for ω.  Weatherall provides an interesting discussion of this point [8]. 

For our discussion, the key point to keep in mind is that the derivation on the B-S equation 
requires to model the evolution of the asset price from 0 to T, according to some stochastic 
process—a GBM in this case. 

A DIFFERENT APPROACH  

Since we are dealing with European options, that is, we only care about the price of the asset at T 
(i.e., XT), we will make a radical assumption.  We will only focus on estimating XT, and 
completely ignore how X evolves from 0 to T.  Furthermore, we assume that XT ∼ N(μT, σT).  In 



other words, we are assuming that we have an estimate (µT) of the asset value at T, and we can 
think of σT as a parameter that describes the degree of accuracy of such estimate.   

Call Option 
Suppose that at T we have the right to buy this asset (call) for a price K.  What should be 

a fair price, C, for this option, under a risk-neutral assumption?  It would be the present value of 
the expected future cashflows discounted with the risk-free rate, R. 

We note that the upside for this position, at T, is  
 
𝐶∗ = ∫ (𝑥 − 𝐾)𝜙(𝑥)𝑑𝑥                 ∞

𝐾       (3) 

where ϕ(x) is the probability density function of a normal distribution with mean μT and standard 
deviation σT.  Invoking (A.12), and defining K* = (K – μT) / σT, the above expression becomes 

 

𝐶∗ = ∫ (𝑥 − 𝐾)𝜙(𝑥)𝑑𝑥  ∞
𝐾 =  (𝜇𝑇  − 𝐾) (1 − 𝑁(𝐾∗)) +    ∆(𝐾∗)                (4) 

with Δ(∙) defined as in (A.7); N(·) represents the cumulative distribution function of the standard 
normal distribution. 

Thus, a fair price for the call, C, at t = 0 is 
 
𝐶 = exp(−𝑅) 𝐶∗            (5) 

Put Option 
Suppose that at T we have the right to sell this asset (put) for a price K.  In this case the 

downside for this position, at T, is 
 
𝑃∗ =  ∫ (−𝐾 + 𝑥)𝜙(𝑥)𝑑𝑥            𝐾

−∞           (6) 

which invoking (A.8) becomes 
 
𝑃∗ =  ∫ (−𝐾 + 𝑥)𝜙(𝑥)𝑑𝑥𝐾

−∞   =  (𝜇𝑇 − 𝐾) 𝑁(𝐾∗) −   ∆(𝐾∗)     (7) 

Thus, a fair price for the put, P, at t = 0 is 
 
𝑃 =    − exp(−𝑅) 𝑃∗                      (8) 

We know need to estimate μT and σT. 

For μT (our estimate of XT), we assume 

μT = X0 exp(R)        (9) 

which is consistent with a risk-neutral environment. 

Regarding σT, we can think of it as the “uncertainty” of our estimate (μT). 



Hence, let δ be the return of the asset between 0 and T.  That is, δ = XT/X0 – 1; it follows then 
that  

st. dev. (δ) = (1 / X0 ) {st. dev. (XT)}       (10) 

which yields 

σT = st. dev. (XT) = X0 {st. dev. (δ)} = X0 ω     (11) 

The value of ω, (the volatility in the B-S equation), can be estimated using past data.  Therefore, 
we have that  

XT ~ N(X0 exp(R), X0 ω)        (12) 

In summary, we have arrived at two expressions to estimate the value of the call and put, Eqs. (5) 
and (8), ignoring completely how the asset price evolves from 0 to T and without invoking any 
arbitrage-based argument. 

AN IMPORTANT OBSERVATION 

It should be noted that some authors have investigated the possibility of using an arithmetic 
Brownian motion (ABM) instead of a GBM within the framework of the B-S equation [9-12].  
That is,  

dX = α dt + β dz          (13) 

where α and β are real numbers that represent the drift and volatility, respectively.  Adopting an 
ABM implies (after some mathematical manipulation and invoking Girsanov’s theorem), that XT 

is normally distributed.  That is  

XT ~ N(X0 exp(R), Λ)          (14) 

and in this case, the standard deviation (Λ), is given by 

Λ = 𝛽√exp(2𝑅)−1
2 𝑅

        (15) 

Clearly, the distributions expressed by Eqs. (12) and (14) are the same if  Λ = X0 ω, which means 
choosing β such that  

𝛽 = 𝑋0𝜔

√exp(2𝑅)−1
2 𝑅

         (16) 

In other words, the pricing formulas given by Eqs. (5) and (8) could have been derived assuming 
that the asset priced follows an ABM in which β is given by Eq. (16).  Such derivation, needless 
to say, is more mathematically involved [9-11]. 

In any event, it seems that the motivation behind the authors who derived pricing expressions 
analogous to Eqs. (5) and (8), but assuming an ABM instead of a GBM, was not really an 
attempt to challenge the B-S equation.  It was really an attempt at capturing better the price 



evolution of real assets (as opposed to financial assets such as stocks).  Alexander et al. provide 
an interesting discussion of this topic, and make the case that real assets can have negative 
prices, something that an ABM can accommodate but not a GBM [11].  It is perhaps due to this 
situation that no comparison has been made between option price estimates derived from a GBM 
assumption and an ABM assumption.  The perception is that each distribution addresses a 
different issue, namely, the peculiar characteristics of different types of assets. 

A PRACTICAL EXAMPLE 

We contend that the expressions presented above to estimate the prices of calls and puts, in terms 
of accuracy, are neither better nor worse that the B-S estimates.  Moreover, we claim that the 
difference between the estimates provided by the B-S formulas and Eqs. (5) and (8) are so 
insignificant, as to be immaterial when dealing with most realistic situations. 

The following example illustrates these points.  Consider a number of options on the S&P 500, 
with different strikes, as quoted on April 16, 2020 (data obtained from 
https://www.barchart.com/options).  The expiration date is August 31, 2020.  The risk-free rate 
for that period (based on the one-year US Treasury) was 0.00056; and the volatility (ω) estimated 
from data from the previous one-year period is 0.10080.  The S&P 500 value (X0) was 2,783.36.  
Table 1 is revealing. 

First, it shows that the B-S estimates deviate significantly from market quotes for out-the-money 
options.  This has been observed before, no surprise here.  But second—and more important—it 
shows that the B-S values and those provided by Eqs. (5) and (8) are extremely similar, except 
for the deep out-of-the-money cases.  However, in these cases, even though the discrepancies are 
huge (in relative terms), they are irrelevant as both estimates are off by a large margin.  In short, 
from a practical standpoint, the estimates provided by the B-S formulas offer no advantage 
compared to those provided by Eqs. (5) and (8).  It might be argued that the accuracy of the B-S 
predictions could have been improved had we relied on the market-implied volatility instead of 
historical volatility to estimate ω.  However, had that been the case, the predictions resulting 
from Eqs. (5) and (8) would have benefited equally as well.  Finally, the degree of agreement 
between the B-S estimates and those delivered by Eqs.(5) and (8) is not an artifact of the specific 
example we show; it persists when examining other cases (different stocks, different time-to-
expiration windows, and different market periods). 

Anyhow, this example is not an attempt at debunking the B-S formulas—the market has already 
done that to a large extent.  The example simply intends to show that in most practical cases the 
B-S formulas do not perform better than the simpler formulas presented here. 

CONCLUDING REMARKS 

The B-S equation is still considered a major intellectual achievement within the financial 
engineering landscape.  Its derivation is not trivial—it requires advanced stochastic calculus 
knowledge—and provides useful insights into the dynamics of options markets.  However, it 

https://www.barchart.com/options


fails when it matters the most: it cannot provide reliable estimates of market prices.  The humble 
formulas presented here—whose derivation only requires college-level statistics background—
are worthy competitors in most real cases for they provide a comparable level of accuracy, but 
with much less fuss.  That said, these formulas are unlikely to be useful in the context of high-
frequency trading as they have been thought out with longer (at least a few days) periods in 
mind. 

Additionally, the widely held notion that the log-normal distribution is better suited to capture 
stock prices behavior than the normal distribution should probably be reconsidered.  If anything, 
both assumptions seem equally flawed (both result in poor approximations to market reality).  
But the argument that the log-normal distribution is better because it always gives non-negative 
prices—after considering the recent events in the oil futures market—has gone from being an 
advantage to being an inconvenience.  Never mind that there is no evidence that prices fluctuate 
non-symmetrically around their expected values, as the log-normal distribution forces us to 
believe.  Anyhow, a recent study by Brooks and Brooks regarding the advantages and 
disadvantages of using models based on the GBM and the ABM should give pause to anyone 
who believes in the GBM superiority [9]. 

However, there is a more profound and far more intriguing lesson that can be drawn from this 
exercise: the formulas presented herein were derived completely ignoring (or bypassing) the way 
the asset price moves from t = 0 to T.  No attempt to model the underlying stochastic process was 
made.  We only concentrated on estimating the value of the asset at T.  This finding can, perhaps, 
point to a new approach to price European options: just aiming at modeling the price distribution 
at T and forget how “we get there.”  One obvious possibility is to explore the merits of different 
distribution functions (i.e., beyond the normal and log-normal) to describe the asset price 
behavior at T.  Or to investigate different approaches to estimate ω (the volatility). 

It is ironic, but maybe we have been barking at the wrong tree all along.  That is, when modeling 
European options (as is the case when executing them) what really matters is the destination, not 
the journey.  Let us focus on the destination in the future, and forget the journey. 

 

 



 

TABLE 1: Options on the S&P 500 with an expiration date of August 31, 2020.  The table 
shows: (i) the market quotes as of April 16, 2020; (ii) the estimates provided by the B-S 
formulas; and (iii) the estimates provided by Eqs.(5) and (8).  The value of the S&P 500 index 
(X0) at t = 0 (April 16) is 2783. 
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APPENDIX 

Let ϕ(x) be the probability density function of a normal distribution with 

parameters μ (mean) and σ (standard deviation). 

We seek to find an expression to calculate 

∫ (−𝐾 + 𝑥)𝜙(𝑥)𝑑𝑥𝐾
−∞          (A.1) 

If we define K* = (K – μ) / σ, then, the first term in the integral becomes    

∫ (−𝐾  )𝜙(𝑥)𝑑𝑥𝐾
−∞ =  −𝐾 𝑁( 𝐾∗)       (A.2) 

in which N(·) represents the cumulative distribution function of the standard 
normal distribution. 

Performing the following change of variable, Y = (X – μ) / σ, the second 

term in the integral (A.1) can be rewritten as 

∫ 𝑥 𝜙(𝑥)𝑑𝑥𝐾
−∞   =   ∫ ( 𝜎𝑦 +  𝜇 )  𝜂(𝑦)𝑑𝑦𝐾∗

−∞       (A.3) 

where η(y) is the density function of the standard normal distribution, that is 

𝜂(𝑦) =   1
√2 𝜋

  𝑒𝑥𝑝(− (1
2
) 𝑦2 )       (A.4) 

And by noting that  

∫ 𝑦𝜂(𝑦)𝑑𝑦 =  −𝜂(𝑦)         (A.5) 

we have that 

∫ 𝑥 𝜙(𝑥)𝑑𝑥
𝐾

−∞

 =  

 



𝜇 𝑁(𝐾∗) − 𝜎
√2 𝜋

 𝑒𝑥𝑝(− (1
2
) (𝐾∗)2) =  𝜇 𝑁(𝐾∗) − ∆(𝐾∗)                                (A.6) 

 where  

 ∆(𝑢)   = 𝜎
√2 𝜋

 𝑒𝑥𝑝(− (1
2
) 𝑢2 )  =    𝜎 𝜂(𝑢)        (A.7) 

Finally, invoking (A.2) and (A.6), the integral in (A.1) can be conveniently 

evaluated by means of the following expression 

∫ (−𝐾 + 𝑥)𝜙(𝑥)𝑑𝑥𝐾
−∞   =  (𝜇 − 𝐾) 𝑁(𝐾∗) −   ∆(𝐾∗)         (A.8) 

We now need an expression to evaluate 

∫ (𝑥 − 𝐾)∞
𝐾 𝜙 (𝑥)𝑑𝑥         (A.9) 

The first term in the integral, performing the same change of variable as 

before and with a similar manipulation, can be expressed as 

∫ 𝑥 𝜙(𝑥)𝑑𝑥∞
𝐾   =  𝜇 (1 − 𝑁(𝐾∗))  +  ∆(𝐾∗)                   (A.10) 

And noting that  

∫ (−𝐾  )𝜙(𝑥)𝑑𝑥∞
𝐾 =  −𝐾 (1 − 𝑁( 𝐾∗) )              (A.11) 

using the results from (A.10) and (A.11), we get 

∫ (𝑥 − 𝐾)∞
𝐾 𝜙 (𝑥)𝑑𝑥 =  (𝜇 − 𝐾) (1 − 𝑁(𝐾∗)) +   ∆(𝐾∗)            (A.12) 




