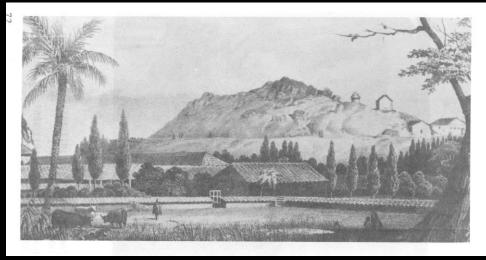
THE SKIES OF NORTHERN CHILE: WINDOW TO THE UNIVERSE

R. Chris Smith AURA Observatory in Chile CTIO/Gemini/SOAR/LSST

"PRE-HISTORY" OF CHILEAN ASTRONOMY



- The dream of having a National Astronomical Observatory started in 1842
- Bernardo O'Higgins wrote a letter requesting funding from his legacy
- The request didn't prosper, but the idea was planted...

THE BEGINNINGS OF INTERNATIONAL COLLABORATION

 Astronomical research was begun in 1849, with the arrival of a U.S. Naval expedition

Cerro Santa Lucia

 In 1852, when the expedition finished its work, the Chilean govt. purchased the instruments and established the Observatorio Astronómico Nacional de Chile

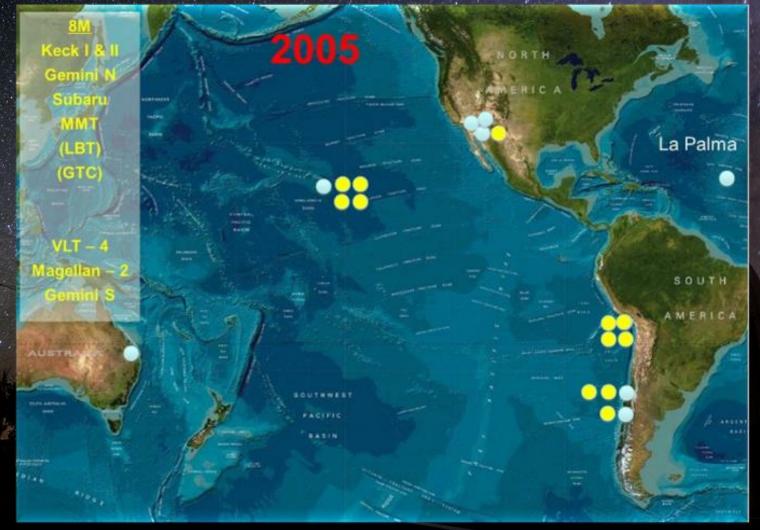

VISIONARY ADVOCATE OF CHILEAN SKIES: FREDERICO RUTLLANT

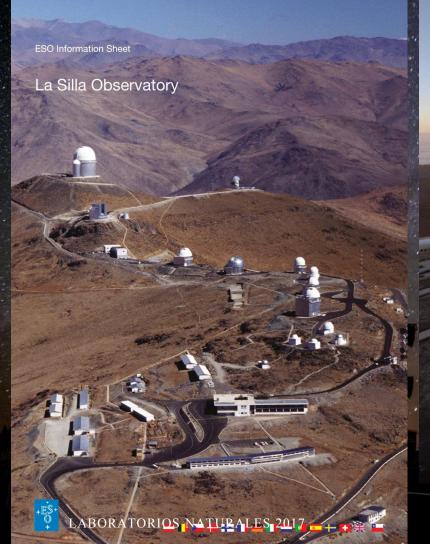
Plate 11:Federico Rutllant Alcina (1904-1971), circa 1960.Lámina 11:Federico Rutllant Alcina (1904-1971), alrededor de 1960.

81

BY 2005, CHILE LEADING IN WORLDWIDE ASTRONOMICAL FACILITIES

LABORATORIOS NATURALES 2017

MAJOR FACILITIES: AURA OBSERVATORY IN CHILE


Cerro Tololo

Gemini South

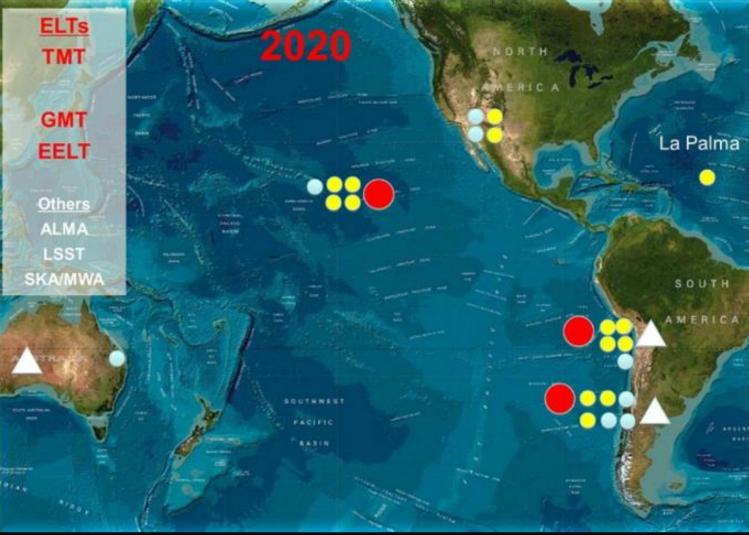
LABORATORIOS NATURALES 2017

MAJOR FACILITIES TODAY: ESO La Silla Paranal

MAJOR FACILITIES TODAY: CARNEGIE

Ma

Las Campanas Observatory


THE NEXT WAVE ..

 Every ~20 years we have embarked on a new generation of telescopes...

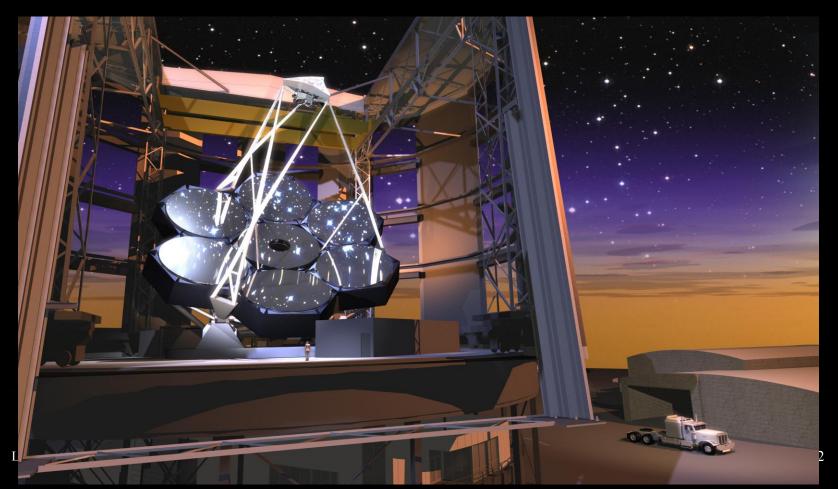
- 1970s 1980s = 3-4 meters
- 1990s 2010s = 6-10 meters
- 2010s 2030s =
 - New windows (wavelength & time)
 - Larger collecting areas

2010-2030: A new era of discovery space

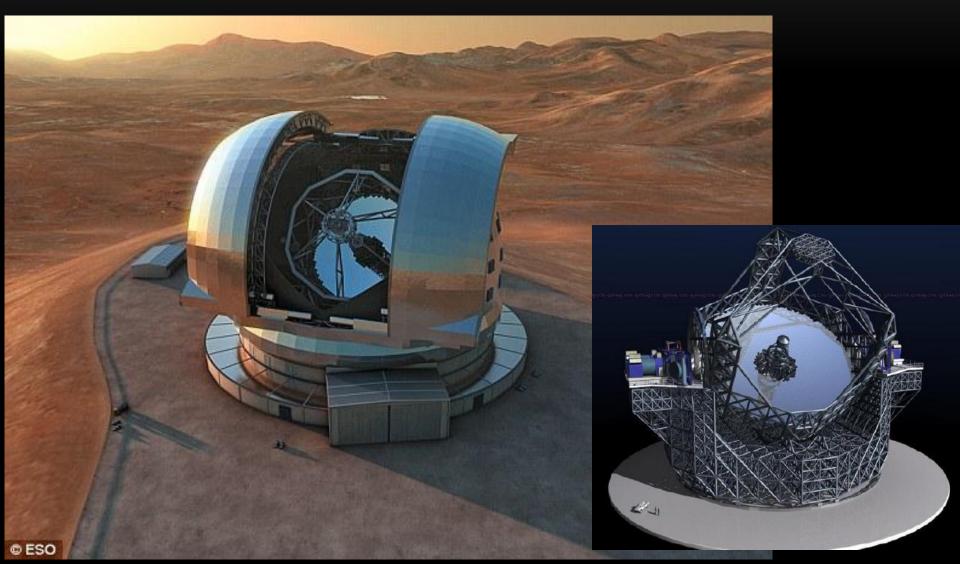
BY MID-2020S, CHILE WILL HOST ~70% OF ASTRONOMICAL COLLECTING AREA

LABORATORIOS NATURALES 2017

ALMA: ATACAMA LARGE MILLIMETER ARRAY



 >60 antennas in the high plains of Northern Chile; largest astronomical facility ever undertaken



GMTO (CARNEGIE++)

- Giant Magellan Telescope
 - 7 x 8.4m mirrors = 25m collecting area

E-ELT (ESO) European Extremely Large Telescope (39m)

WHY CHILE?

- High sites: Andes
- Stable air: smooth flow from Pacific, producing sharp images
 - Clear skies: dry desert, few cloudy nights
- Dark skies (need to keep them that way!)
 - Dark in Optical, "Dark" in Radio as well.
 - **Collaboration, Infrastructure & Commitment**

SUCCESSFUL NATURAL LABORATORY: MORE THAN JUST CLEAR SKIES!

Leadership

- Identifying opportunities (RUTLLANT)
- Collaboration
 - Supporting site surveys
 - Creating critical mass of peers (developing the field)

Infrastructure

Complex projects need significant infrastructure support

SUCCESSFUL NATURAL LABORATORY: COMMITMENT

Universities

Training both technical and research staff

Critical mass of researchers to participate in endeavor

Government

- Creating favorable conditions for development
- Protecting natural conditions

PROTECTING DARK SKIES

REPÚBLICA DE CHILE MINISTERIO DEL MEDIO AMBIENTE

ESTABLECE NORMA DE EMISIÓN PARA LA REGULACIÓN DE LA CONTAMINACIÓN LUMÍNICA, ELABORADA A PARTIR DE LA REVISIÓN DEL DECRETO SUPREMO Nº686, CONTRALORIA DE 1998, DEL MINISTERIO DE ECONOMÍA, GENERAL FOMENTO Y RECONSTRUCCIÓN. OMA DE RAZON SEBASTIAN PINERA ECHENIQUE 28 2013 043Presidente de la República DECRETO N° EPCION SANTIAGO, 17 DIC. 2012 T.T.R V1: 1998 V2: published 2013 Mayo 5, PABLO LONGUEIRA MONTES Ministro de Economía, Fomento y Turismo With restrictions on spectrum, total light, and active LED signs RIA IGNACIA del Medio Ambiente

TESE, TÓMESE RAZÓN Y PUBLÍQUESE

SUCCESSFUL NATURAL LABORATORY: BROADENING IMPACTS

Astro-tourism

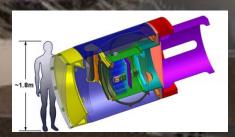
- Direct economic impacts
- Potential societal impact: scientifically literate society
- Astro-engineering
 - Development of advanced human capital
 - Potential spin-off technologies & initiatives
 - Astro-informatics

LINKING FRONTIERS IN BIG DATA: BIG DATA IN ASTRONOMY & LSST

THE NEXT STEP -MASSIVELY PARALLEL ASTROPHYSICS

Survey the entire sky every 3-4 nights, to <u>simultaneously</u> detect and study:

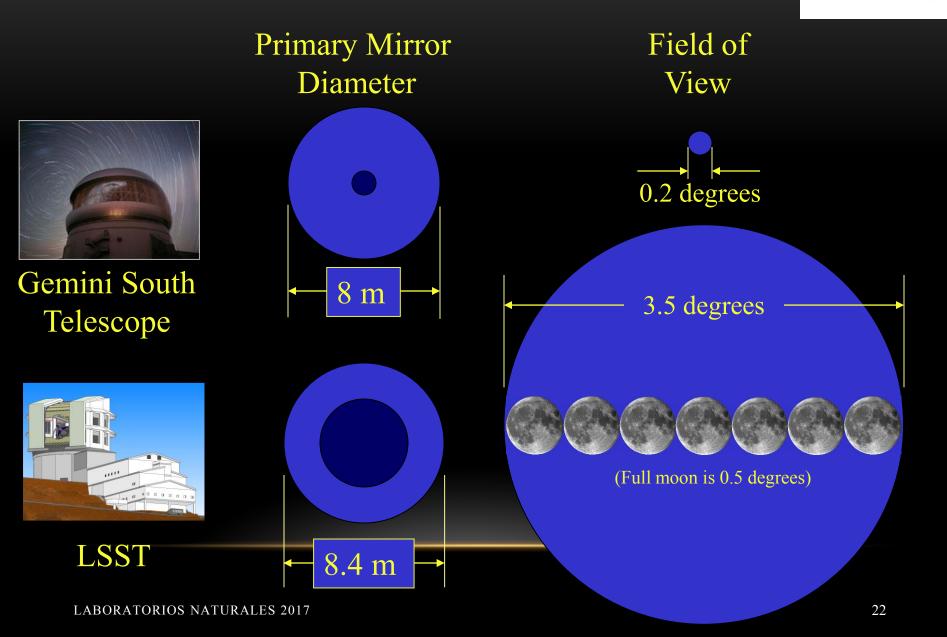
- Dark Matter via Weak gravitational lensing
- Dark Energy via thousands of SNe per year
- Potentially hazardous near earth asteroids
- Tracers of the formation of the solar system
- Fireworks in the heavens GRBs, quasars...
- Periodic and transient phenomena
- ... the UNKNOWN



Next Step: LSST Creating a "Digital Universe"

LSST is designed to image the whole sky every few nights for 10 years, giving us a movie-like window into our dynamic

Universe.


LABORATORIOS NATURALES 2017

8.4 M Telescope

- 3.5 Degree Field Of View
 Telescope Located in Chile on Cerro Pachón
- 3.2 Billion Pixel Camera
- ~40 Second Cadence
 - Two 15 second exposures
 - Full sky coverage every few nights
 - Advanced Data Management Systems
- Public Data
 - Alerts of new events
 - Catalogs of object
 - Archives of images

WHY IS THE LSST SO UNIQUE?

TELESCOPE AND SITE

30 m diameter dome

1.2 m diameter atmospheric telescope

Control room and heat producing equipment (lower level)

1,380 m² service and maintenance facility

Project includes the facilities, and hardware to collect the light, control the survey, calibrate conditions, and support all LSST summit and base operations.

LABORATORIOS NATURALES 2017

CAMERA

- 3.2 Gigapixel science array 63 cm diameter
- Wavefront and guide sensors
- 2 second readout
- 5 filters in camera
- Electronics

Focal plane

Cryostat—contains focal plane & its electronics

L3 Lens

Filter

L2 Lens

L1 Lens

1.65 m

(5'-5")

LSST: A CASE STUDY FOR PETASCALE DATA MANAGEMENT

- Each image roughly 12GB
- Cadence: 1 image every ~18s
- 15 to 18 TB per night, 30TB "reduced"!
 - ALL must be transferred to US @NCSA archive center
 - within image timescale (<5s), >>10 Gbps
- REAL TIME reduction, analysis, & alerts
 - Send out alerts of transient sources within 60s
 - ~10 million events per night every night for 10 years
 - Provide automatic data quality evaluation, alert to problems
 - Change survey observing strategy on the fly based on conditions, last field visited, etc.

Data Management Sites and Centers

"BIG DATA" NOT JUST IN SIZE, BUT ALSO COMPLEXITY

- Astronomy moving from
 - GB datasets (1990 2010) to
 - TB datasets (2010 2020) to
 - PB datasets (2020 ...)
- Moving from measurements of just "brightness" to measurements of "photo-z", "shapes", and automated classifications of objects
- Requires:
 - Network Connectivity
 - Data Processing & Storage
 - Advanced Analysis Techniques (Data Mining)

LSST From the User's Perspective

- A stream of ~10 million time-domain events per night, detected and transmitted to event distribution networks within 60 seconds of observation.
- A catalog of orbits for ~6 million bodies in the Solar System.
- A catalog of ~37 billion objects (20B galaxies, 17B stars)[,] ~7 trillion observations ("sources"), and ~30 trillion measurements ("forced sources"), produced annually, accessible through online databases.
 Deep co-added images.
- Services and computing resources at the Data Access Centers to enable user-specified custom processing and analysis.
- Software and APIs enabling development of analysis codes.

Level

000

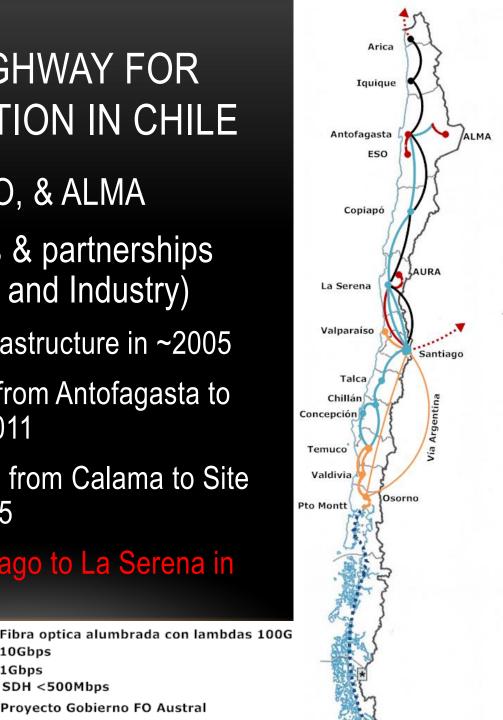
CONSTRUCTION NOW FIRST LIGHT IN 2020 OPERATIONS IN 2022

DOE/NSF Joint Interface and Management Review • Tucson, Arizona • May 30-June 1, 2012

KEY STRATEGIC OPERATIONAL PARTNERSHIPS

- Connectivity @100Gbps+
 - High-speed Chilean bandwidth (REUNA)
 - International bandwidth (AmLIGHT, RedCLARA)
- Distributed Computing Systems
 - Supercomputer center(s) to provide bulk storage, large scale processing (e.g., NCSA, NLHPC, PUC, Others)
 - Effective access to data products through Data Access Centers (DACs)
 - Grid processing, storage, advanced DBs

Goal: Provide <u>effective</u> access to data products and analysis resources for scientists as well as public users


REUNA: A DIGITAL HIGHWAY FOR **RESEARCH & EDUCATION IN CHILE**

- Working with AURA, ESO, & ALMA
- Building on opportunities & partnerships (both with Observatories and Industry)
 - AURA Key network infrastructure in ~2005
 - ESO 10Gbps Lambda from Antofagasta to Santiago (EVALSO) in 2011
 - ALMA Fiber installation from Calama to Site (and to Argentina) in 2015
 - AURA Fiber from Santiago to La Serena in 2017 (100Gbps x 2+)

10Gbps 1Gbps

SDH <500Mbps

Proyecto Gobierno FO Austral

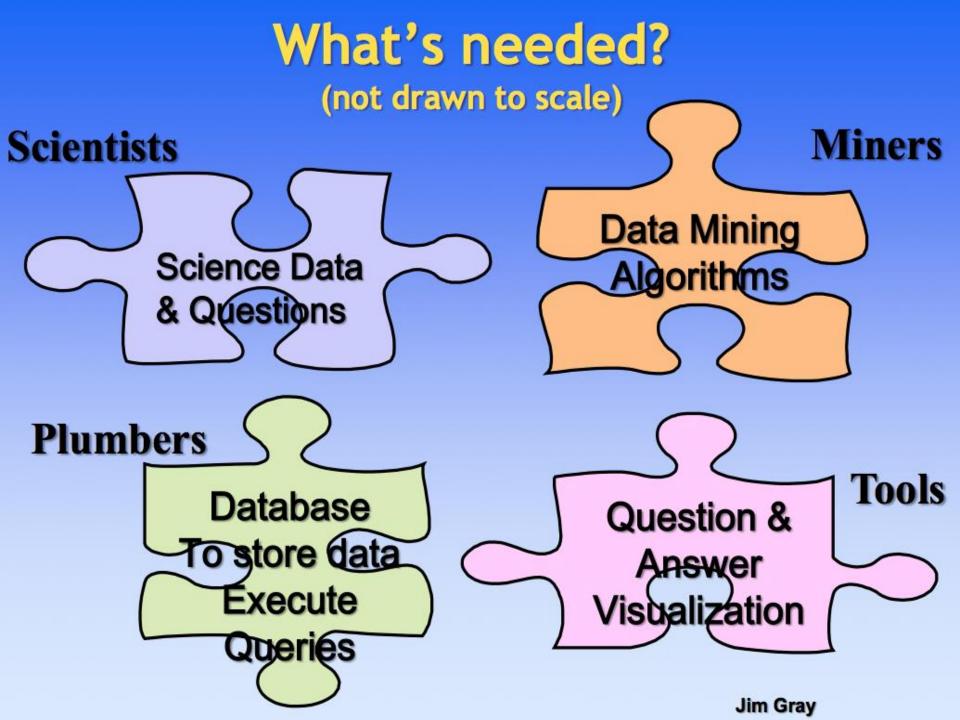
LABORATORIOS NATURALES 2017

KEY STRATEGIC SCIENTIFIC PARTNERSHIPS

- Scientific Analysis Challenges:
 - Automatically finding unique objects: one in billions
 - Separating small signals from systematic effects
 - Limiting, if not eliminating, false positives in multiple dimensions (time, space, color, etc.)
 - Combining peta-scale datasets in complex ways
- Requires techniques that deal with both quantity and quality of data
 - Partnerships with CMM, MAS, & others

THE SCIENCE OF BIG DATA

- Data growing exponentially, in all sciences
- Changes the nature of science


from hypothesis-driven to data-driven discovery

- Cuts across all sciences
- Industry and government face the same challenges
- Convergence of physical and life sciences through Big Data (statistics and computing)
- A new scientific revolution

Data-to-Knowledge

KEY ISSUE: WHO WILL USE THE DATA? ARE WE READY?

PREPARING FUTURE GENERATIONS FOR BIG DATA IN ASTRONOMY AND ...

LSST OUTREACH DATA WILL BE USED IN CLASSROOMS, SCIENCE MUSEUMS, AND ONLINE

LABORATORIOS NATURALES 2017

Classroom Emphasis on:

- Data-enabled research experiences
- Citizen Science
- College classes

NIVERSE

 Collaboration through Social Networking

REAL SCIENCE ONLINE

LA SERENA SCHOOL FOR DATA SCIENCE 2017 Applied Tools for Data-driven Sciences

- Training the next generation of scientists (in fields of astronomy, bioinformatics, mathematics, computer science, and others) in the tools and techniques of massive data
- Target students: senior undergraduate and beginning graduate students
- Leaders: Matthew Graham, Amelia Bayo, Mauricio Cerda, Chris Smith, Eduardo Vera <u>http://www.aura-o.aura-astronomy.org/winter_school/</u>

5th CMM Pucón Symposium Data Science for Frontier Astronomy, Biology and Medicine

August 30 - September 2, 2017

Organizers

CMM Center for

Hotel Bellavista Puerto Varas - Chile http://eventos.cmm.uchile.cl/pucon2017

Sponsors

CMM Pucón

Symposium

CORFO

New deadline for Oral Presentations and Focus Demos: July 7th

SCL>22-26 OCT / 2017

Astronomical Data Analysis Software & Systems

www.adass.cl

LABORATORIOS NATURALES 2017

LABORATORIOS NATURALES 2017

AURA Observatory in Chile: A platform for current and future U.S. and international astronomical investigation in Chile

