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Abstract

In this paper, we propose an approach for transferring the
knowledge of a neural model for sequence labeling, learned
from the source domain, to a new model trained on a tar-
get domain, where new label categories appear. Our transfer
learning (TL) techniques enable to adapt the source model
using the target data and new categories, without accessing
to the source data. Our solution consists in adding new neu-
rons in the output layer of the target model and transferring
parameters from the source model, which are then fine-tuned
with the target data. Additionally, we propose a neural adapter
to learn the difference between the source and the target la-
bel distribution, which provides additional important infor-
mation to the final model. Our experiments on Named En-
tity Recognition show that (i) the learned knowledge in the
source model can be effectively transferred when the target
data contains new categories and (ii) our neural adapter fur-
ther improves such transfer.

Introduction
One important challenge of sequence labeling tasks con-
cerns dealing with the change of the application domain
during time. For example, in standard concept segmentation
and labeling (Wang, Deng, and Acero 2005), semantic cat-
egories, e.g., departure or arrival cities, vary according to
new scenarios, e.g., low-cost flight or budget terminal were
not available when the Automatic Terminal Information Ser-
vice (ATIS) corpus was compiled (Hemphill, Godfrey, and
Doddington 1990). Similar rationale applies to another very
important sequence labeling task, Named Entity Recogni-
tion (NER), where entities in a domain are continuously
evolving, e.g., see the smart phone domain.

Standard models for sequence labeling are supposed to
be trained and applied to the data with the same set of
categories, which may limit the reuse of previous models.
As an example for NER, users interested in finance would
probably target entities such as Companies or Banks while
other users interested in politics want to recognize Senators,
Bills, Ministries, etc. Besides these domain-specific NEs,
there may be common categories, such as Location or Date.
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Hence, if there are models pretrained on data with these
common NEs, it would be useful to have some methods that
modify them to serve customized NER purposes. Even in
the same application domains, NE categories can vary over
time due to, for example, the introduction of new products.

In these cases, a typical sequence labeling approach
would be to (i) build a new dataset including the annotation
of the new categories; and (ii) retrain a model from scratch.
However, in addition to the disadvantage of retraining mod-
els and re-annotating all the documents, some industrial sce-
narios prevent the release of training data (e.g., for copyright
or privacy concerns) to rebuild the models.

Motivated by the problems described above, in this work,
we define a new paradigm for a progressive learning of se-
quence labeling tasks. To simplify our study, without loss of
generality, we define a setting consisting of two aspects: (i)
a source model,MS, already trained to recognize a certain
number of categories on the source data, DS; and (ii) a TL
task consisting in training a new model, MT, on the target
data, DT, where new categories appear, in addition to those
of the DS (note that DS is no longer available to perform
TL). DT is typically much smaller in size compared to DS.
These kinds of problems regard leveraging knowledge about
a model learned on a source domain, to improve learning a
model for another task on a target domain (Pan and Yang
2010). One variation of TL is a setting where the target do-
main does not change while the output space of the target
task changes. This corresponds to our described progressive
sequence labeling setting.

To tackle the problem, we propose two neural methods of
TL for progressive labelling. Firstly, given an initial neural
model MS trained on source data DS, we modify its out-
put layer to include new neurons for learning the new cat-
egories and then we continue to train on DT. More specifi-
cally, we implement a Bidirectional LSTM (BLSTM) with
Conditional Random Fields (CRF) as MS. In the transfer
learning step, we modify such architecture to build MT,
reuse previous weights and fine-tuning them on DT, where
again the assumption is that DT contains both seen and un-
seen categories.

Secondly, as a refinement of the first approach, we pro-
pose to use a neural adapter: it connects MS to MT, also
enabling the latter to use the features from the former. The
connection is realized by a BLSTM, which takes the hidden



activations in MS as an additional input to MT. Besides
better utilizing the learned knowledge, the aim of the neural
adapter is to mitigate the effect of label disagreement, e.g.,
in some cases, the surface form of a new category type has
already appeared in the DS, but they are not annotated as
a label. Because it is not yet considered as a concept to be
recognized. Note that the parameters ofMS is not updated
during trainingMT.

Our models and procedures apply to any sequence label-
ing task, however, to effectively demonstrate the impact of
our approach, also considering the space available in this pa-
per, we focus on NER. We analyze the performance of both
our methods by testing the transfer of different categories.
Our main contribution is therefore twofold: firstly, we show
that our pre-training and fine-tuning method can utilize well
the learned knowledge for the target labeling task while be-
ing able to learn new knowledge.

Secondly, we show that our proposed neural adapter has
the ability to mitigate the forgetting of previously learned
knowledge, to combat the annotation disagreement, and to
further improve the transferred model performance.

Finally, to claim that our approach works for general se-
quence labeling would require testing it on different tasks
and domains. However, we observe that our approach only
exploits the concept of category sequence, where the words
compounding such sequences (boundaries) are annotated
with a standard BIO (Begin, In, Other) tagging. Thus, there
is no apparent reason to prevent the use of our approach
with different tasks and domains. We made our source code
and the exact partition of our dataset available for further
research. 1

Related Work
Named Entity Recognition In the earlier years of NER,
most work approached the task by engineering linguistic
features (Chieu and Ng 2003; Carreras, Màrquez, and Padró
2003). Machine learning algorithms such as Maximum En-
tropy, Perceptron and CRFs were typically applied (Florian
et al. 2003; Chieu and Ng 2003; Diesner and Carley 2008;
He and Kayaalp 2008).

Recent work mainly includes neural models, where the
current state of the art is given by Recurrent Neural Network
models, which incorporate word and character level embed-
dings and/or additional morphological features. Huang, Xu,
and Yu, (2015) uses BLSTM combined with CRF to estab-
lished the state-of-the-art performance on NER (90.10 in
terms of test F1 on CONLL 2003 NER dataset). Later, Lam-
ple et al., (2016) implemented the same CRF over BLSTM
model without using any handcraft features. They reported
90.94 of test F1 on the same dataset. Chiu and Nichols,
(2016) also implemented a similar BLSTM model with Con-
volutional filters as character feature extractor, achieving
91.62 in the F1 score (BLSTM+CNN+lexical features).

In this work, we opt to use the BLSTM and BLSTM
+ CRF for NER with Transfer Learning, in order to test
whether our proposed methods can be applied on the state-
of-the-art models.

1https://github.com/liah-chan/transferNER

Transfer Learning Neural networks based TL has proven
to be very effective for image recognition (Donahue et al.
2014; Razavian et al. 2014). As for NLP, Mou et al., (2016)
showed that TL can also be successfully applied on semanti-
cally equivalent NLP tasks. Researches were carried out on
NER related TL too. Qu et al., (2016) explored TL for NER
with different NE categories (different output spaces). They
pre-train a linear-chain CRF on large amount annotated data
in the source domain. A two linear layer neural network
to learn the discrepancy between the source and target la-
bel distributions. Finally, they initialize another CRF with
learned weight parameters in linear layers for the target do-
main. Kim et al., (2015) experimented with transferring fea-
tures and model parameters between similar domains, where
the label types are different but may have semantic similar-
ity. Their main approach is to construct label embeddings to
automatically map the source and target label types to help
improve the transfer.

In our work, we aim to transfer knowledge in an incre-
mental, progressive way within the same domain, rather than
to other domains. We assume that the target output space in-
cludes the source output space. In terms of mitigating the
discrepancies between the source and target label distribu-
tion, we propose a neural adapter to learn them.

In Rusu et al.,(2016) also used an adapter to help transfer.
They proposed progressive networks that solve sequence of
reinforcement learning tasks while being immune to param-
eter forgetting. The networks leverage knowledge learned
with an adapter, which is an additional connection between
new model and learned models. This connection is realized
by a feed-forward neural layer with non-linear activation.
Due to the characteristics of sequence labeling tasks, we pro-
posed to use BLSTM in a sequence-to-sequence way that
learns to map the output sequence in the source space to the
output sequence in the target space.

State-of-the-art in Neural Sequence Labeling
A standard sequence labeing problem can be defined as fol-
low: given an input sequence X = x1, x2, ..., xn (xi ∈ X ),
predict the output sequence Y = y1, y2, ..., yn (yi ∈ Y). X
andY represent the input and output space respectively. Typ-
ically, the model learns to maximize the conditional proba-
bility P (Y |X).

In this section, we introduce two state-of-the-art neu-
ral models for learning P (Y |X), i.e., BLSTM and
BLSTM+CRF, which are also the base models we use
to progressively learn Named Entities. Note that such ap-
proaches are the state of the art in case of NER, thus we
study the effectiveness of our proposed transfer learning
method in a state-of-the-art setting. The general architecture
is described on the left side of Figure 1. This is composed of:
a BLSTM at character level, followed by a BLSTM at word
level, a fully connected layer and a CRF/output layer. The
individual components are described in the next sections.

Word & Character Embeddings
A word in the input sequence is represented by both its
word-level and character-level embeddings. We use pre-
trained word embeddings to initialize a lookup table to map



the input word x (represented by an integer index) to a vec-
tor w. A character-level representation is typically used be-
cause the NER task is sensitive to the morphological traits of
a word such as capitalization. They were shown to provide
useful information for NER (Lample et al. 2016). We use a
randomly initialized character embedding lookup table and
then pass the embeddings to a BLSTM to obtain character
level embedding e for x (the details are described in the fol-
lowing section). The final representation of the tth word xt
in the input sequence is the concatenation of its word-level
embedding wt and character-level embedding et.

Bidirectional LSTM
BLSTM is composed of a forward LSTM (

−−−−→
LSTM) and a

backward LSTM (
←−−−−
LSTM), which read the input sequence

(represented as word vectors described in the previous sub-
section) in both left-to-right and reverse order. The output
of the BLSTM ht is obtained by the concatenation of for-
ward and backward output: ht = [

−→
ht;
←−
ht], where

−→
ht =

−−−−→
LSTM(xt,

−→
h t−1) and

←−
ht =

←−−−−
LSTM(xt,

←−
h t+1). ht captures

the left and right context for xt and is then passed to a fully-
connected layer, pt. The final prediction yt is obtained ap-
plying a softmax over the output layer, i.e.,

P(yt = c|pt) =
eWO,c·pt∑

c′∈C e
WO,c′ ·pt

,

where WO are parameters to be learned on the output layer
and C represents the set of all the possible output labels.

In the case of the character-level BSLTM, the forward
and backward LSTMs take the sequence of character vectors
[z1, z2, ...,zk] as input, where k is the number of characters
in a word. The final character level embedding et for word
xt is obtained by concatenating −→et and←−et .

CRF Tagging
We implement a Linear Chain CRF (Lafferty, McCallum,
and Pereira 2001) model over BLSTM to improve the pre-
diction ability of the model, by taking the neighboring pre-
diction into account while making the current prediction.
Here, P(Y |X) is computed by P(Y |X) = es(X,Y )∑

Y ′∈Y es(X,Y ′) ,

where Y is all possible label sequences and s(·, ·) is calcu-
lated by adding up the transition and emission scores for a
label sequence. To be more specific, the emission score is
the probability of predicting the label yt for tth word in the
sequence. The transition score is the probability of transiting
from previously predicted label yt−1 to current label yt. The
outputs of fully-connected layer pt at time step t provides
the emission scores for all possible value of y. A square ma-
trix P of size C +2 is used to store transitional probabilities
among C output labels, as well as a start label and an end
label. Hence,

s(X,Y ) =
∑
t

pt[yt] + Pyt,yt−1

Our Progressive Adaptation Models
In this section, we formalize our progressive learning prob-
lem and describe our proposed TL method in detail.

Figure 1: Source and target model architecture

Problem Formalization
In the initial phase, a sequence labeling model, MS, is
trained on a source dataset, DS, which has E classes. Then,
in the next phase, a new model,MT, needs to be learned on
target dataset, DT, which contains new input examples and
E +M classes, where M is the number of new classes. DS
cannot be used for trainingMT.

Our Transfer Learning Approach
Given pre-trainedMS model, our first proposed method to
progressively recognize new categories consists in transfer-
ring parameters toMT and then fine-tuning it.

Algorithm 1 Source Model Training

Require: {(X(n), Y (n))}NS
n=1: source training data.

{(X(n), Y (n))}NV
n=NS+1: validation data.

L: loss function.
tp = 0: temporary variable (best valid. F1).
F : evaluation function.

Ensure: {y(n)}NS
n=1: predictions for training data

{y(n)}NV
n=NS+1: predictions for validation data

θ̂S: Optimal parameters for source model
1: Randomly initialize θS

2: for e = 1→ n epochs do
3: for n = 1→ NS do . training step
4: y(n) =M(X(n))

5: θS := θS − α∆θSL[y(n), θS;X(n), Y (n)]

6: for n = NS + 1→ NV do . predictions over the valid. set
7: y(n) =M(X(n))

8: if F({y(n)}NV
n=NS+1) > tp then . F1 over the valid. set

9: θ̂S := θS ; tp = F({y(n)}NV
n=NS+1

)

10: Save θ̂S

Training of a source model We supposed that a sequence
labeling model is trained on source data until the optimal pa-
rameters θ̂S are obtained. These will be saved and reused for
transfer learning. The details of such training are illustrated
by Algorithm 1. This takes (i) NS training examples in the
source data and (ii) uses Multi-class Cross-Entropy and the
F1 score as the loss L and evaluation function F , respec-
tively. The predictions y(n) on the input X(n) are obtained



by forward propagation through the modelM. The param-
eters are updated by a learning rate α. The final model cor-
responds to the highest evaluation metric F({y(n)}NV

n=NS+1
)

computed on the validation set in n epochs.

Parameter Transfer To enable the recognition of a new
category, we modify the fully-connected layer after BLSTM
and the output layer of the network. The right side of Fig-
ure 1 shows the difference between the source model (on the
left side) and our transferred model in blue color. In more de-
tail, the fully-connected layer after the word BLSTM maps
the output h to a vector p of size nE. n is a factor depend-
ing on the tagging format of the dataset (e.g., n = 2 if the
dataset is in BIO format, since for each NE category, there
would be two output labels B-NE and I-NE). Therefore, we
extend the output layer by size nM , where M is the number
of new categories.

Algorithm 2 Parameter Transfer

Require: θ̂S: optimal parameters for the source model
Ensure: θT: initial parameters of the target model
1: for θO in WO do . parameters in the output layer
2: θO := ReInit() . draw from normal distribution
3: for θŌ in WŌ do . parameters in other layers
4: θŌ := θ̂S

Ō . copy from trained parameter
5: θT = (θO, θŌ)
6: return θT

The extended part above, i.e., parameters in the output
layer, θO, is initialized with weights drawn from the nor-
mal distribution, X ∼ N (µ, σ2), where µ and σ are the
mean and standard deviation of the pre-trained weights in
the same layer. This is denoted by ReInit() in Algorithm 2
of the Parameter Transfer step.

In contrast, all the other parameters, θŌ, i.e, those not in
the output layer, are initialized with the corresponding pa-
rameters from the source model, i.e., θ̂S

Ō
. This way, the asso-

ciated weight matrix of the fully-connected layer Ws
O also

updates from the original shape nC×p to a new matrix W
′s
O

of shape (nC + nM)× p. Note that the parameters θ̂S
O and

all the other parameters, θ̂S
Ō

, are essentially the weights in
the matrix Ws

O and the weights in the other layers.

Algorithm 3 Target Model Training

Require: {(X(n), Y (n))}NT
n=1: target training data.

L: loss function.
F : evaluation function
θT: transferred parameters

Ensure: {y(n)}NT
n=1: predictions

1: for e = 1→ n epochs do
2: for n = 1→ NT do
3: y(n) =M(X(n))

4: θT := θT − α∆θTL[y(n), θT;X(n), Y (n)]

Training the target model In Algorithm 3, the new pa-
rameters are updated as a standard training cycle (we use

Figure 2: Our Proposed Neural Adapter

a validation set and early stopping as in the source model
training, for brevity we did not put this step in the Algo-
rithm 3). To update the BLSTM+CRF model, we also mod-
ify the transitional matrix to include the transition probabil-
ity among new labels and other previously seen labels.

Transfer Learning using neural adapters

It should be noted that many word sequences corresponding
to new NE categories can already appear in the source data,
but they are annotated as null since their label is not part
of the source data annotation yet. This is a critical aspect to
solve as otherwise the target model with transferred param-
eters would treat the word sequence corresponding to a new
NE category as a null category.

We design a neural adapter, shown in Fig. 2, to solve the
problem of disagreement in annotations between the source
and target data. This is essentially a component that helps to
map the predictions from the output space of the source do-
main into that of the target domain. The figure shows that the
target modelMT gets the hidden activation of the last layer
in MS as an additional input. Basically, the neural adapter
connects each output of the fully-connected layer inMS to
the corresponding output ofMT.

More precisely, we use
−→
A and

←−
A to denote the forward

and backward adapter (i.e., a BLSTM). It takes the output of
the fully-connected layer pS

t as input at each time step t. The
output of

−→
A and

←−
A are computed as −→a t =

−→
A (pS

t ,
−→a t−1)

and ←−a t =
←−
A (pS

t ,
←−a t+1), respectively. The output of the

target model consists in a softmax over the output of the
fully-connected layer pT′

t obtained by pT′
t = at⊕pT

t , where
at = [−→a t⊕←−a t] and⊕ is the element-wise summation. The
parameters of the adapter are jointly learned in the subse-
quent step with the rest of the target model parameters. The
parameters of the source model is, however, not updated.

The choice of BLSTM as the adapter is motivated by the
fact that we want to incorporate the context information of a
feature in the sequence to detect the new category that was
annotated and possibly incorrectly predicted as not a label.



CONLL 03 LOC PER ORG MISC

Train DS 0 8948 8100 3686
DT 1637 2180 1925 907

Valid (DS / DT) 0/2094 3146 2092 1268
Test (DS / DT) 0/1925 2773 2496 918

I-CAB GPE LOC PER ORG

Train DS 0 247 2540 2471
DT 310 78 676 621

Valid (DS / DT) 0/626 174 1282 1302
Test (DS / DT) 0/1234 216 2503 1919

Table 1: Number of entities in CONLL dataset (in English) and
I-CAB dataset (in Italian).

Experiments
Although our approach is generally valid for any sequence
labeling task, in these experiments, we focus on NER. We
test our basic transfer approach, then we show the impact of
our proposed neural adapter, testing several transfer learning
options on just one category, i.e., LOC. Finally, we provide
more general results of the best model, applying it to differ-
ent settings/data obtained by selecting one category as the
new target category (among to the available ones).

Datasets
We primarily used CONLL 2003 NER 2 dataset for our ex-
periments. We modified it to simulate our progressive learn-
ing task. The original dataset includes news articles with
four types of named entities – organization, person, loca-
tion and miscellaneous (represented by ORG, PER, LOC, and
MISC, respectively). For the purpose of our experiment, we
divide the CONLL train set in 80%/20% as DS and DT, for
the initial and subsequent steps of the experiments. Please
note that in the subsequent step, DS is no longer available.
We make LOC the new label to be detected in the subse-
quent step. Hence we replace all the LOC label annotations
with null, when they appear in DS (the validation and test
subsets). Instead, we keep LOC as it is in DT. We repeat this
process for all four categories to obtain four datasets for our
TL setting.

To demonstrate that our method can be applied indepen-
dently of the language, we also carry out experiments on I-
CAB (Italian Content Annotation Bank).3 It does not come
with a test set, hence we held out 30% of training set as the
official test set and then carry out the same pre-processing
as that for CONLL dataset. Hence, we obtain another four
datasets for our setting. A summary of label statistics of
these two datasets is shown in Table 1.

Model selection and hyperparameters
Apart from dividing the dataset into two sets as described
in the previous section, we do not perform any specific pre-
processing except for replacing all digits with 0 to reduce the

2https://www.clips.uantwerpen.be/conll2003/ner/
3http://ontotext.fbk.eu/icab.html, used for EVALITA 2007 NER

shared task

size of the vocabulary. We use 100 dimension GLOVE pre-
trained embedding for English 4 and Italian 5 to initialize the
weights of the embedding layer. Since we do not lowercase
the tokens in the input sequence, we map the words hav-
ing no direct mapping to the pretrained word embeddings to
their lowercased counterpart, if one is found in the pretrained
word embeddings.

We map the infrequent words (words that appear in the
dataset for less than two) to <UNK> as well as the un-
known words appearing in the test set. The word embed-
ding for <UNK> is drawn from a uniform distribution be-
tween [−0.25, 0.25]. The character embedding lookup table
is randomly initialized with embedding size of 25. The hid-
den size of the character-level BLSTM is 25 while the word
level one is 128.

We apply a dropout regularization on the word embed-
dings with a rate of 0.5. All models are implemented in
TensorFlow (Abadi et al. 2015), as an extension of Neu-
roNER (Dernoncourt, Lee, and Szolovits 2017). We use
Adam (Kingma and Ba 2014) optimizer with a learning rate
of 0.001, gradient clipping of 50.0 to minimize the categor-
ical cross entropy, and a maximum epoch number of 100 at
each step. The models are evaluated with the F1 score as
in the official CONLL 2003 shared task (Sang and Meulder
2003).

Results on CoNLL and I-CAB datasets
As a first step, we verified that our implementations are at the
state of the art by testing them on traditional NER settings
(i.e., the original CoNLL setting). Our BLSTM+CRF model
achieved 91.26 and 80.59 (on I-CAB) in F1 without hand-
craft features. These results are comparable to the state-of-
the-art performance on both dataset (Chiu and Nichols 2016;
Magnini et al. 2008).

Secondly, we explored several settings of updating the
model weights in the subsequent step. The performance are
shown in Table 2: E, B, O represent the weight parameters
in the Embedding, the Bidirectional LSTM, and the Output
layers, respectively. The parameters associated with CRF are
included in the notation of “O”. Our settings include: (1) the
weights of layers before the output layer are fixed, and the
weights of the output layer are updated (µEµBbO); (2) the
weights of layers before the output layer are fixed, the trans-
ferred part of the output layer is fixed too, while the rest is
updated (µEµBèO); (3) none of the weights in the model
is fixed (bEbBbO); (4) as a baseline, all the weights are
not transferred but randomly initialized (�E�B�O). Note
that in the setting (1), (2) and (3), the model weights are ini-
tialized with those from the source model.

Performance of Transferring weights Compared to ran-
domly initializing the model weights (setting�E�B�O),
in the transfer learning step (TLS), we find out that regard-
less of whether the weights are fixed or not, transferring
weights from the initial model always boosts the perfor-
mance. On CONLL dataset, transferring model weights im-
proves the performance ranging from 0.60 to 3.50 points,

4http://nlp.stanford.edu/data/glove.6B.zip
5http://hlt.isti.cnr.it/wordembeddings/



CONLL 2003 I-CAB 2006

Model Settings SM TLM SM TLM
Ori Ori. New All Ori Ori. New All

BLSTM

µE µB èO

91.06

90.41 86.08 89.39

74.78

73.95 10.31 60.58
µE µBbO 90.04 84.94 88.83 73.84 13.83 61.23
bEbBbO 90.42 89.39 90.18 74.15 61.41 71.47

bEbBbO TA 90.94 89.33 90.56 74.12 67.95 72.82
�E�B�O 86.52 87.19 86.68 63.17 67.82 64.15

BLSTM+CRF

µE µB èO

91.35

90.76 45.89 80.11

76.86

69.62 52.52 69.62
µE µBbO 90.20 68.66 85.09 74.43 41.80 67.57
bEbBbO 90.83 88.96 90.39 74.91 71.90 72.28

bEbBbO TA 91.08 90.73 90.99 75.38 75.61 75.43
�E�B�O 89.66 90.20 89.79 67.45 72.66 68.55

Table 2: Performance of the source model (SM) and the transfer learning model (TLM), according to different settings. The reported
performance is the F1 score on the test set. Ori. indicates the original 3 NE categories in the source data, while New indicates the new NE
categories in the target data. All is the overall test F1 in the subsequent step (for all 4 NE categories).

while on I-CAB dataset, it gives 7.32 points of increment in
F1. In order to verify that the model with transferred param-
eters is indeed better on the target task (not just because has
faster convergence rate), we further carried out additional
training using a larger number of epochs for the baseline
models with randomly initialized parameters. Even in this
condition, the baseline models still did not produce a better
performance than what is reported in the table. This suggests
that the better results come from the transferred parameters.

Update of Model Parameters Though transferring
learned weights is helpful in reaching a better performance,
keeping the learned weights fixed produces worse results,
especially for the new NE category. On both datasets, the
µEµBbO and µEµBèO settings perform poorly in recog-
nizing the new NEs. The results are also worse than setting
bEbBbO for both BLSTM and BLSTM+CRF model.

In the standard pre-training and fine-tuning TL paradigm,
usually only the output layer is fine-tuned on the target
data.We argue this is not the best setting for our experiment
because of two reasons: firstly, in our target data, there are
still NEs that appeared in the source data, hence there is in-
formation to be used to further train parameters in the model
with regard to these NE entities. Secondly, the knowledge
learned about the null label is adverse to the recognition of
new NE labels. The progressive NER is a TL scenario with-
out crossing domain. The source and target domains share a
high similarity. The source and target tasks differ only in the
output space. Hence updating all the model parameters pro-
vides more benefits rather than causing catastrophic forget-
ting. It also helps the model to recover from the labeling dis-
agreement of new NE in the source and target data. In fact,
bEbBbO, which can fine-tune all the weights, achieved
the best performance, for both models on both datasets, com-
pared to other parameter update settings.

Improvement by Using the Adapter We further analyze
the results with regard to using the adapter. The overall F1
score of both BLSTM and BLSTM+CRF models (with set-
tingbEbBbO) suffers from a certain amount of degrada-
tion on the target domain. This happens for both the original
three NE categories and the new NE category.

The comparison between the results of the transferred
models with adapter (bEbBbOTA) and those without
adapter (bEbBbO) shows a consistent improvement on
F1 score over the original NE categories. In some cases, for
example, while using the adapter on the I-CAB dataset, the
transfer model performance of the original NE categories
even surpasses the F1 of the source model. It suggests that
the adapter manages to mitigate the knowledge forgetting,
and enabling the model to fine-tune on these original NEs.

As for the new NE category, in almost all cases, transfer-
ring with adapter helps to better recognize them. We show in
detail the improvement obtained by using the adapter in Fig-
ure 4. It is worth noting that on I-CAB, the adapter produces
an improvement of F1 on the new NE for both BLSTM and
BLSTM+CRF models (6.54 and 3.71 points respectively).
The improvement is also observed in the results of CONLL
dataset. This indicates that the adapter is able to help in
resolving the annotation disagreement between the source
and the target data. The improvement is less obvious on the
CONLL dataset because the NEs are fairly easy to learn
for both BLSTM and BLSTM+CRF model. Indeed, with a
small amount of training data (e.g., the baseline setting), the
F1 is already rather good. Instead, on I-CAB, there is more
headroom, thus the adapter can have a larger impact.

In Figure 3, we show the F1s of models evaluated on
the test set, varying the size of the available training data
in the target domain. This is useful to analyze whether the
adapter is helpful in the situation of smaller amount of la-
beled data for new NE. In each sub-level figures, the lines
represent F1 scores of the BLSTM+CRF baseline model
(�E�B�O), the fine-tuned model (bEbBbO), and the
model with adapter (bEbBbOTA) according to the in-
creasing number of epochs. The plot shows that using the
adapter consistently helps to recognize the new NE, espe-
cially when small training data is available in the target do-
main (only 10% or 25%) and the baseline and transferred
models both show difficulties in learning the new NE cat-
egory. The plots also show that the adapter makes learning
smoother.

We finally observe that the transferred models with neu-
ral adapter converge faster during the subsequent training



(a) 10 % (b) 25 % (c) 50 % (d) 100%

Figure 3: Model F1s evaluated on the test set varying the size of the available training target domain data

(a) New category (LOC),
CONLL’03

(b) Overall, CONLL’03

(c) New category (GPE), I-
CAB

(d) Overall, I-CAB

Figure 4: Overall and single category Test F1 of baseline model
(�E�B�O), fine-tuned model (bEbBbO), and model with
adapter (bEbBbOTA) on CONLL and I-CAB

(around 20 epochs) in comparison to other models. This fur-
ther suggests that the transferred models are able to learn to
predict new categories rapidly in a shorter time.

Results of all NE categories
It is important to ensure that the improvement in the per-
formance is not specific to a target NE category. Thus, we
performed additional experiments on CONLL and I-CAB
dataset, using other NEs as the target in the subsequent step.

In Table 3, we present the overall F1 scores obtained by
BLSTM+CRF model while recognizing different new NE
categories. The first column in the table identifies different
target NE categories. The other three columns present the re-
sults of the models without any TL method (Baseline), with
the transferred parameters (W/o Adapter), and with the neu-
ral adapter (W/ Adapter), respectively. The results indicate
a consistent improvement in the F1 score using transferred
parameters and especially using the neural adapter. On aver-
age, our best TL model with neural adapter gains 1.83 points
of improvement in F1 score on CONLL dataset, and 10.30
points on I-CAB, compared to that obtained by the baseline
model. It is evident that our proposed methods are able to
improve the performance of recognizing NEs in the target

CONLL 2003
Baseline

(�E�B�O)
W/o Adapter
(bEbBbO)

W/ Adapter
(bEbBbOTA)

LOC 89.79 90.39 90.99
PER 88.33 90.23 90.36
ORG 88.77 89.28 90.16
MISC 87.64 90.30 90.34

I-CAB 2006
LOC 64.39 75.49 76.87
PER 59.98 70.74 72.82
ORG 64.65 72.64 73.63
GPE 68.55 72.28 75.43

Table 3: Overall F1 score in recognizing different target NE cate-
gories of the test set of the subsequent step

data, regardless of dataset or target NE types.

Conclusion

In this paper, we have studies TL for sequence labeling tasks.
In particular, we experiment with a progressive NER set-
ting, simulating real-world applications of NER. We verified
that our methods can be applied to current state-of-the-art
neural models for NER. We proposed a neural adapter for
connecting the target and the source models to mitigate the
forgetting of learned knowledge. We carried out extensive
experiments to analyze (i) the effect on the performance of
the transfer approach, (ii) how the parameters in the trans-
ferred model should be initialized and (iii) how the param-
eters should be updated. The empirical results show the ef-
fectiveness of the proposed methods and techniques. We will
make data and models available to support this new line of
research. In future work, we would like to test our approach
to several different sequence labeling tasks to fully demon-
strate the generality of our approach.
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