
Neural Text Normalization with Subword Units

Courtney Mansfield†, Ming Sun‡, Yuzong Liu?, Ankur Gandhe?, Björn Hoffmeister?
†University of Washington, Seattle, WA, USA

coman8@uw.edu
‡Amazon Alexa AI, Seattle, WA, USA

suming@amazon.com
?Amazon Alexa Speech, Seattle, WA, USA

{liuyuzon,aggandhe,bjornh}@amazon.com

Abstract

Text normalization (TN) is an important step
in conversational systems. It converts writ-
ten text to its spoken form to facilitate speech
recognition, natural language understanding
and text-to-speech synthesis. Finite state
transducers (FSTs) are commonly used to
build grammars that handle text normalization
(Sproat, 1996; Roark et al., 2012). However,
translating linguistic knowledge into gram-
mars requires extensive effort. In this paper,
we frame TN as a machine translation task and
tackle it with sequence-to-sequence (seq2seq)
models. Previous research focuses on normal-
izing a word (or phrase) with the help of lim-
ited word-level context, while our approach
directly normalizes full sentences. We find
subword models with additional linguistic fea-
tures yield the best performance (with a word
error rate of 0.17%).

1 Introduction

Non-standard words (NSWs) include expressions
such as time or date (e.g., 4:58AM, 08-02,
8/2/2018), abbreviations (e.g., ft.) and letter se-
quences (e.g., IBM, DL) (Sproat et al., 2001).
They commonly appear in written texts such
as websites, books and movie scripts. Writ-
ten form of non-standard words can be normal-
ized/verbalized to a spoken form, e.g., “August
second”.

Although there is no incentive for human users
to transcribe NSWs into spoken form, it plays an
integral role in spoken dialog systems. As shown
in Figure 1, automatic speech recognition (ASR),
natural language understanding (NLU) and text-
to-speech synthesis (TTS) components all involve
written-to-spoken form normalization or its in-
verse process, spoken-to-written text normaliza-
tion (ITN). ASR normalizes the training corpus
before building its language model. Among many

benefits, such a model can reduce the size of the
required vocabulary and address data sparsity is-
sues. NLU might adopt ITN to recover the written
text from ASR in run-time (e.g., “five p m ” →
“5:00PM”). In text-to-speech synthesis, for exam-
ple, in order to pronounce “221B Baker St”, TTS
needs to first convert the text to “two twenty one b
baker street” and then generate the audio signal.

ASR NLU

DM

NLGTTS

“book a table at five p m”

Intent: Reservation
Slots: {time: 5:00PM}

Confirm
{NextOpening: 6:30PM}

“Is 6:30PM okay?”“is six thirty p m okay?”

Backend

Figure 1: Text normalization in spoken dialog systems.
Grey boxes involve text normalization or inverse text
normalization.

Normalizing the written form text to its spoken
form is difficult due to the following bottlenecks:

1. Lack of supervision — there is no incen-
tive for people to produce spoken form text.
Thus, it is hard to obtain a supervised dataset
for training machine learning models;

2. Ambiguity — for written text, a change in
context may require a different normaliza-
tion. For example, “2/3” can be verbalized as
a date or fraction depending on the meaning
of the sentence.

Traditionally, the task of NSW normaliza-
tion has been approached by manually author-
ing grammars in the form of finite-state trans-
ducers (Sproat, 1996; Roark et al., 2012) such

as integer grammars (e.g., “26” → “twenty six”)
or time grammars (e.g., “5:26” → “five twenty
six”). Constructing such grammars is time con-
suming and error-prone and requires extensive lin-
guistic knowledge and programming proficiency.
Recently, with the rise of machine learning and es-
pecially deep learning techniques, researchers are
starting to bring more data-driven approaches to
this field (Sproat and Jaitly, 2016).

In this paper, we present our approach to non-
standard text normalization via machine transla-
tion techniques, where the source and target are
written and spoken form text, respectively.

2 Related work

2.1 Finite state transducer

Normalizing written-form text to its spoken form
has been approached by authoring weighted finite
state transducer (WFST) grammars to handle in-
dividual categories of NSW (e.g., time, date) and
subsequently join them together (Sproat, 1996;
Roark et al., 2012). One bottleneck to this ap-
proach is the heavy demand of translating linguis-
tic knowledge into WFSTs. A second problem is
a lack of context awareness. For example, “dr.”
may refer to “doctor” or “drive” in different con-
texts. We have observed accuracy improvements
by using an n-gram LM to re-rank hypotheses gen-
erated by WFSTs. However, an n-gram LM’s con-
text awareness is limited.

2.2 Data-driven approaches

Recently, methods based on neural networks have
been applied to TN and ITN (Sproat and Jaitly,
2016; Pusateri et al., 2017; Yolchuyeva et al.,
2018). To overcome one of the biggest problems
— a lack of supervision, WFSTs have been used
to transform large amounts of written-form text to
its spoken form. Researchers hope a vast amount
of such data can counteract the errors inherited in
WFST-based models.

Recent data-driven approaches examine
window-based sequence-to-sequence (seq2seq)
models and convolutional neural networks (CNN)
to normalize a central piece of text with the help
of context (Sproat and Jaitly, 2016; Yolchuyeva
et al., 2018). Window-based methods have the
advantage of limiting the output vocabulary size,
as most tokens that do not need to be transformed
are labeled with a special <self> token.

Hybrid neural/WFST models have also been

proposed and applied to the text normalization
problem (Pusateri et al., 2017; Yolchuyeva et al.,
2018). Tokens in the input are first tagged with
labels using machine learned models whereupon
a handcrafted grammar corresponding to each la-
bel conducts conversion. In both methods, a tag-
ger is needed to first segment/label the input to-
kens and conversion must be applied to each seg-
ment to normalize a full sentence. Our seq2seq
model does not require the aforementioned tagger
(although could benefit from the tagger as we will
show later) and directly translates a written-form
sentence to its spoken form without grammars.

3 Model

3.1 Baseline models

Following Sproat and Jaitly (2016), we imple-
ment a seq2seq model trained on window-based
data. Table 1 illustrates the window-based model’s
training examples corresponding to one sentence
“wake me up at 8 AM .” which is broken down
into 6 pairs. <n> and </n> indicate the center
of the window. A window center might contain
1 or more words (e.g., “8 AM”) and the group-
ing is provided by the dataset where each input
sentence is segmented into chunks corresponding
to labels such as TIME, DATE, ORDINAL (Sproat
and Jaitly, 2016). The model outputs tokens which
correspond to the center of the window.

Table 1: In the window-based configuration, <n> and
</n> denote the center of the window. <self> indi-
cates transforming the central piece to itself. This ex-
ample illustrates a window size of 1.

Input Output
<n> wake </n> me <self>
wake <n> me </n> up <self>
me <n> up </n> at <self>
up <n> at </n> 8AM <self>
at <n> 8 AM </n> . eight a m
AM <n> . </n> <sil>

The model architecture is similar to Chan et al.
(2016) and uses attention to align the output to-
kens with input characters as in Bahdanau et al.
(2014). The encoder takes character sequences as
input. Otherwise, sequences of numbers or dates
(e.g., 2018-08-04) are hard to interpret. On the
output side, we believe various granularities such
as character, word or word fragments can be suit-
able. Following the literature, we used a word

level decoder.
A window-based seq2seq model, although able

to attend well to a central piece of text, is not prac-
tical for applying over a whole sentence. To ex-
tend the model to full sentences, we break source
sentences into segments. We then apply the model
to one segment after another and concatenate their
output tokens to produce full sentences.

As our second baseline, a seq2seq model is
trained with full sentence data. As a result, it
does not require any pre-processing step to gen-
erate windows of text. It directly translates a sen-
tence to its spoken form. Again, the encoder works
at the character level while the decoder output se-
quences of words while attention is used to align
the input and output sequences.

3.2 Proposed model

There are several issues with the baseline seq2seq
models. First of all, although there is no out-of-
vocabulary (OOV) problem on the input side since
it is modeled as a sequence of characters, the de-
coder has an OOV issue–we cannot model every
possible token. The window-based seq2seq adopts
a special output token <self> that significantly re-
duces the output vocabulary size. This is not prac-
tical in the full sentence baseline as it requires the
additional step of mapping each <self> in the out-
put to a word in the input.

Subwords have been shown to work well in
open-vocabulary speech recognition and machine
translation tasks (Sennrich et al., 2015; Qin et al.,
2011). Subwords (i.e., a grouping of one or
more characters) capture frequently co-occurring
character combinations. For example, the word
“subword” might be decomposed into two parts:
“ sub” and “word”, where “ ” indicates the start of
a word. An extreme case of the subword model is a
character model. Compared with only characters,
we believe segmenting input/output into subwords
eases a seq2seq model’s burden of modeling long-
distance dependencies.

3.2.1 Linguistic features
Sennrich and Haddow (2016) have shown that
the addition of linguistic features can improve the
quality of neural machine translation models. We
observe that features such as casing and part-of-
speech tags can also provide helpful insights into
how a NSW should be normalized. For example,
“US” should be normalized to “u s” instead of
“us”. Similarly, part-of-speech tags can help the

model decide how to verbalize ambiguous forms
such as “resume”, which is kept as-is as a verb or
read out as “résumé” as a noun. In regards to sub-
words, it is important to know where the fragment
comes from — beginning, middle, end of a word
or the full word. For example, “id” should be nor-
malized as “id” if it comes from the beginning of
a word like “idea”. However, it could also be ver-
balized as “i d” when taken as a standalone word.

In this paper, we explore linguistic features that
are inexpensive to compute such as casing, POS,
and positional features. We also use the edit la-
bels from Google’s dataset (e.g., TIME, DATE) al-
though we acknowledge these labels are expensive
and often times not accessible.

4 Experiments and results

4.1 Dataset

The data for the window-based seq2seq model
and full sentence seq2seq were generated from
the publicly available release of parallel writ-
ten/speech formatted text from Sproat and Jaitly
(2016). The set consists of Wikipedia text which
was processed through Google TTS’s Kestrel text
normalization system relying primarily on hand-
crafted rules to produce speech-formatted text.

Although a large parallel dataset is available for
English, we consider the feasibility of developing
neural models for other languages which may not
have text normalization systems in place. There-
fore, we choose to scale the training data size to
a limited set of text which could be generated by
annotators in a reasonable time frame. As summa-
rized in Table 2, both window-based and sentence-
based models are trained with 500K training in-
stances.

Our datasets were randomly sampled from a set
of 4.9M sentences in the training data portion of
the Sproat and Jaitly (2016) data release and split
into training, validation, and test data. However,
the training data for window-based and sentence-
based models are not identical due to differences
in input configurations. While the window-based
model uses 500K randomly sampled windows, the
sentence-based models use 500K sentences. For
testing, 62.5K identical test sentences are used
across all models. In order to decode sentences
with the window-based model, sentences are first
segmented into windows before inference.

Among 16 edit labels available in the dataset
release, we found the normalization target for

Table 2: Size of training, validation, and test datasets.
For the window-baseline, the data are pairs of win-
dows and the normalization of the central piece of the
window. For the sent-baseline and subword models,
the data are pairs of sentences but in different formats
— sent-baseline: (character sequence, word sequence);
subword: (subword sequence, subword sequence). All
models are evaluated on the same set of 62.5K sen-
tences.

Model Train Valid Test
Window-baseline 500K 62.4K 62.5K
Sent-baseline 500K 62.5K 62.5K
Subword 500K 62.5K 62.5K

ELECTRONIC text is not suitable for our system
as it primarily reads out URLs letter by letter,
e.g., “Forbes.com” → “f o r b e s dot c o m”
(as opposed to “forbes dot com”). Therefore, we
exclude ELECTRONIC data in our experiments.
There are large numbers of <self> tokens present
in the dataset. We follow Sproat and Jaitly (2016)
in down-sampling window-based training data to
constrain the proportion of “<self>” tokens to
10% of the data.

For training sentence-based models, the source
sentence is segmented into characters while the
target sentence is broken into tokens. For the sub-
word model, both the source and target sentences
are segmented into subword sequences. Subword
units are concatenated to words for evaluation.

4.2 Baseline model setup

Our first approach replicates the window-based
seq2seq model of Sproat and Jaitly (2016). The
model encodes the central piece of text (1 or more
tokens) including its context of N previous and
following tokens at the character level. The out-
put is a target token or a sequence of tokens. The
input vocabulary consists of 250 common charac-
ters including letters, digits and symbols (e.g., $).
The decoder vocabulary consists of 1K tokens in-
cluding <self> and <sil>, the latter of which is
used to normalize punctuation.

Following Chan et al. (2016), we use a stacked
(2-layer) bi-directional long short term memory
network (bi-LSTM) as encoder and a stacked (2-
layer) LSTM as decoder. We use 512 hidden states
for the (bi-)LSTM. A softmax output distribution
is computed over output vocabulary at each decod-
ing step. Decoding uses the attention mechanism
from Bahdanau et al. (2014) and a beam size of 5.

Word and character embeddings are trained from
scratch.

We use the OpenNMT toolkit (Klein et al.,
2017) to train our models on a single P2.8xlarge
Amazon EC2 instance. Models were trained
with Stochastic Gradient Descent (SGD) on 200K
timesteps (approximately 13 epochs). Approach-
ing 200K timesteps, a significant decay in accu-
racy and plateau in perplexity of the validation set
occurred for all models. Validation occurred every
10K timesteps and the number of timesteps was
chosen based on maximum accuracy on the valida-
tion data. The learning rate was tuned to 1.0 for the
window-based model and 0.5 for sentence-based
models to achieve optimal performance. Learning
rate decayed at a rate of 0.5 if perplexity on the
validation set did not decrease or after 50K steps.
A dropout of 0.3 was used across all models.

Figure 2: Evaluation of the window-based model. Cat-
egories are sorted by frequency. * TELEPHONE is not
reported in Sproat and Jaitly (2016) but included in the
dataset; ** we removed ELECTRONIC category.

As shown in Figure 2, our replicated window-
based model achieves reasonable performance
compared with Sproat and Jaitly (2016), consid-
ering our training set is much smaller. There
are 16 different edit labels shown. Data with
TELEPHONE labels were not included in the ini-
tial analysis of Sproat and Jaitly (2016), but were
made available in the dataset release.

For our second baseline model which operates
on whole sentences, on the input side, we still use
250 common characters. However, due to the re-
moval of the <self> token, the output space is
drastically extended from 1K tokens to 45K to-
kens. Thus, it becomes increasingly difficult for

the model to learn and predict.

4.3 Subword inventory

A subword inventory can be populated by data-
driven approaches such as Byte Pair Encoding
(BPE) (Sennrich et al., 2015). Text is first split
into character sequences and the most frequently
co-occurring units are greedily merged into one
subword unit. This procedure continues until the
desired subword inventory size is reached. Here,
we enforce that two units cannot be merged if they
cross a word boundary.

Table 3: Performance of different subword inventory
sizes on validation set.

Inventory size SER (%) WER (%)
16K 3.56 0.92
8K 3.49 0.92
4K 3.34 0.90
2K 3.20 0.87
1K 3.17 0.90
500 3.53 1.01

To avoid OOV words, we also populate the sub-
word inventory with the 250 most common char-
acters used in the baseline model and digits 0-9.
In data preparation, we force the subword model
to split digits into a single subword piece (e.g.,
“1234” → “ 1 2 3 4”), regardless of whether
a certain combination of numbers co-occur fre-
quently (e.g., “19”). Tokenizing digits is benefi-
cial when interpreting large sequences of numbers
where every digit must be read out (e.g., 1,342 →
“one thousand three hundred and forty two”). In
this work, we use the SentencePiece toolkit1 and
vary the inventory size. One can imagine that a
larger subword inventory may contain longer sub-
word entries. For example, the word “anthology”
is split into “ an th ology” by a subword model
of 2K size and “ anth ology” by a model of 8K
size. Our experiments find that an inventory size
between 1K and 2K yields the best WER and SER
(see Table 3). For the rest of the paper, we use 2K.

4.4 Overall performance

Table 4 summarizes the performance of each
model. We report sentence-error-rate (SER),
word-error-rate (WER), BLEU score (Papineni
et al., 2002) and latency (millisecond per input

1https://github.com/google/
sentencepiece

Figure 3: Attention visualization: x-axis is the input;
y-axis is the output.

sentence), measured on the test set. We also re-
port number of parameters and training time.

For the identity model, we replaced all non-
alphanumerical characters in the source data with
“<sil>”, except for spaces. As expected, this
model generates a large number of errors. When
evaluated on full sentences, the window-based
model yields a reasonable accuracy, although it
leverages a limited context. On the other hand, al-
though the sentence baseline is directly trained on
full sentences, its WER and SER are both worse
than the window-based approach. The expan-
sion of the output space significantly increases the
trainable parameters from 10M to 55M, leading to
more difficulties in training and inference.

As shown in Table 4, the subword model sig-
nificantly outperforms baseline models in both ac-
curacy and inference speed. Due to the source
of the dataset (i.e., Wikipedia), test set and train-
ing set have an overlap of about 27%. For in-
stance, several source citations were commonly
found in Wikipedia articles and appeared in train-
ing and test (e.g., “IUCN Red List of Threatened
Species.”). We found that, for sentences that were
not seen by the subword model in training, our
model still produces reliable outputs with a SER
of 4.59% and WER of 1.09%.

Figure 3 demonstrates that the attention mech-
anism can effectively learn the non-monotonous
nature of the text normalization problem as
“eleventh”, “November” and “eleven” correspond
to the third, second and first “11” in the input.

4.5 Linguistic features

We use the following linguistic features: 1)
capitalization: upper, lower, mixed, non-
alphanumerical, foreign characters; 2) position:

https://github.com/google/sentencepiece
https://github.com/google/sentencepiece

Table 4: Comparison of models on test set.

Model
SER WER BLEU Params Train Time Latency
(%) (%) (M) (hours) (ms/sent)

Identity 99.39 32.70 51.74 N/A 0 N/A
Window-based 12.74 3.75 94.55 10 3.9 238
Sentence-based 48.67 9.26 82.28 55 8.0 159
Subword 3.31 0.91 98.79 12 10.0 88
Subword + Feat. w/o label 2.77 0.78 98.98 12 13.5 89
Subword + Feat. w/o casing 0.96 0.23 99.66 12 12.8 88
Subword + Feat. w/o POS 0.79 0.18 99.71 12 10.4 88
Subword + Feat. w/o position 0.80 0.17 99.73 12 13.0 88
Subword + All Feat. 0.78 0.17 99.73 12 15.4 89

beginning, middle, end, singleton; 3) POS tags:
44 Penn Treebank tags; 4) labels: 15 edit labels.
Among these four types of features, capitalization
and position are the least computationally expen-
sive. POS tags are automatically predicted using
an Averaged Perceptron Tagger from the Natural
Language Toolkit (Bird et al., 2009). Edit labels
are the most expensive to obtain in real life. Our
labels are generated directly from the Google FST
(Sproat and Jaitly, 2016). Each type of feature is
represented by a one-hot encoding.

To combine linguistic features with subword
units, one can add or concatenate each subword’s
embedding with its corresponding linguistic fea-
ture embedding and feed a combined embedding
to the bi-LSTM encoder. Or, a multi-layer percep-
tron (MLP) can be applied to combine informa-
tion in a non-linear way. Our experiments find that
concatenation outperforms the other two methods.

In Table 4 we can see that the subword model
with linguistic features produces the lowest SER
(0.78%) and WER (0.17%). In addition, results
from the ablation study show that each feature
makes a positive contribution to the model. How-
ever, edit labels seem to make the strongest contri-
bution. We acknowledge that edit labels may not
always be readily available. The model which uti-
lizes all linguistic features except for edit labels
still shows a 16% relative SER reduction and 14%
WER reduction over the subword model without
linguistic features.

5 Discussion

Errors from the subword model are presented in
Table 5. Severe errors are shown in the first two
rows. While these types of errors are infrequent,
they change or obscure the meaning of the utter-

ance for a user. For example, the currency “nok”
(e.g., “norwegian kroner”) was verbalized as “eu-
ros”, reflecting a bias in the training data. While
“euros” appeared 88 times, “norwegian kroner”
appeared just 10 times.

Another type of error does not change the sen-
tence meaning but can be unnatural. For example,
“alexander iii” was predicted as “alexander three”
rather than “alexander the third”. In this case,
the referent of the sentence would likely be un-
derstandable given context. Examples such as “5’
11”” reflect the variety of natural readings which a
human might produce. “Five foot eleven inches”,
“five foot eleven”, and “five eleven” may all refer
to a person’s height. Here the reference and model
have produced different but acceptable variations.

Table 5: Errors from the subword model with linguistic
features.

Input Reference Prediction
un u n un
nok 3 billion three billion three billion

norwegian kroner euros
alexander iii alexander the third alexander three
2000 gb two thousand two thousand

gigabytes g b
5’ 11” five foot eleven five eleven

A fundamental problem is the lack of super-
vised data for training and evaluation, particularly
data which reflects the variety of acceptable read-
ings of non-standard text. The pairs in this study
(and in other text normalization research) are gen-
erated by a system which does not have the full ca-
pability to verbalize sentences in different but nat-
ural ways. Our system’s normalization WER and
SER may not translate proportionally to ASR’s
WER and SER, simply because real users will read
non-standard text in a variety of ways. It remains

a challenge for the academic community to come
up with better data solutions.

6 Conclusion

In this paper, we investigate neural approaches
to text normalization which directly translate a
written-form sentence to its spoken counterpart
without the need of a tagger or grammar. We show
that the use of subwords can effectively reduce
the OOV problem of a baseline seq2seq model
with character inputs and token outputs. The addi-
tion of linguistic features including casing, word
position, POS tags, and edit labels leads to fur-
ther gains. We empirically test the addition of
each linguistic feature revealing that all features
make a contribution to the model, and combin-
ing features results in the best performance. Our
model is an improvement over both window-based
and sentence-based seq2seq baselines, yielding a
WER of 0.17%.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. ” O’Reilly
Media, Inc.”.

William Chan, Navdeep Jaitly, Quoc Le, and Oriol
Vinyals. 2016. Listen, attend and spell: A neural
network for large vocabulary conversational speech
recognition. In Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2016 IEEE International Confer-
ence on, pages 4960–4964. IEEE.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M Rush. 2017. OpenNMT:
Open-source toolkit for neural machine translation.
arXiv preprint arXiv:1701.02810.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Ernest Pusateri, Bharat Ram Ambati, Elizabeth
Brooks, Ondrej Platek, Donald McAllaster, and
Venki Nagesha. 2017. A mostly data-driven ap-
proach to inverse text normalization. Proc. Inter-
speech 2017, pages 2784–2788.

Long Qin, Ming Sun, and Alexander Rudnicky. 2011.
OOV detection and recovery using hybrid models
with different fragments. In Twelfth Annual Con-
ference of the International Speech Communication
Association.

Brian Roark, Richard Sproat, Cyril Allauzen, Michael
Riley, Jeffrey Sorensen, and Terry Tai. 2012. The
openGrm open-source finite-state grammar software
libraries. In Proceedings of the ACL 2012 System
Demonstrations, pages 61–66. Association for Com-
putational Linguistics.

Rico Sennrich and Barry Haddow. 2016. Linguistic
input features improve neural machine translation.
arXiv preprint arXiv:1606.02892.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Richard Sproat. 1996. Multilingual text analysis for
text-to-speech synthesis. Natural Language Engi-
neering, 2(4):369–380.

Richard Sproat, Alan W. Black, Stanley Chen, Shankar
Kumar, Mari Ostendorf, and Christopher Richards.
2001. Normalization of non-standard words. Com-
puter Speech & Language, 15:287–333.

Richard Sproat and Navdeep Jaitly. 2016. RNN ap-
proaches to text normalization: A challenge. arXiv
preprint arXiv:1611.00068.

Sevinj Yolchuyeva, Géza Németh, and Bálint Gyires-
Tóth. 2018. Text normalization with convolutional
neural networks. International Journal of Speech
Technology, pages 1–12.

