

VMSDK User Guide

Version 1.3 for iOS

 VMSDK User Guide Version 1.3 for iOS

Contents
Welcome 4

Audience 5

Supported platforms 5

Get started 5

Install and run the reference app 5

Implement 6

Load the VMD file and display your map 6

Legacy Support 7

Customizing your map's look and feel 8

Global map styling 8

Styling individual map elements 8

Responding to VMMapView events and callbacks 9

Map loading complete 9

Changes in map position 9

Room selection/highlighting 9

Adding your own annotations to the mapview 10

Responding to errors that occur in the SDK 11

VMD parsing errors 11

Map display errors 11

Enable Wayfinding 12

Handle Wayfinding Events 12

Override auto-generated wayfinding directions and landmark names 13

Responding to wayfinding events and callbacks 14

Changing floors for wayfinding 14

Responding to errors that occur in wayfinding 15

Wayfinding errors 15

Copyright © 2019 Aegir | 88 Union Ave, 9th floor, Memphis TN 38103 | 901-591-1631 | support.aegirmaps.com p. 2

 VMSDK User Guide Version 1.3 for iOS

Customizing wayfinding look and feel 15

Landmark customization 16

More Information 16

Appendix: Vector Map Tile Style Spec 17

Supported spec versions: 1.0, 1.1 17

Style spec properties 17

Possible Style Layer ID Patterns 21

Copyright © 2019 Aegir | 88 Union Ave, 9th floor, Memphis TN 38103 | 901-591-1631 | support.aegirmaps.com p. 3

 VMSDK User Guide Version 1.3 for iOS

Welcome
Aegir uses groundbreaking technology to map venue spaces and give your users more choice,
convenience, and control. Aegir’s Venue Map Data (VMD) specification is the foundation, acting
as a high-fidelity map and data repository.

VMD is a specification based upon industry standard digital mapping technology that provides a
comprehensive geolocated data set for venue maps in which all geometries and points that
make up the map shapes and points of interest are accessible, as well as metadata for use with
the SDK to support extended applications. Potential use cases might include:

● Wayfinding

● Interior positioning, geofencing applications

● Room/space/unit selection

● Facilities management: environmental controls, housekeeping status and assignments,
digital key hardware management, etc

Aegir’s Venue Map Software Development Kit (VMSDK) for iOS provides functionality for
mobile app development based on the VMD specification, including:

● Auto-generated wayfinding paths

● Auto-generated wayfinding directions with support for override from a separate data file

Copyright © 2019 Aegir | 88 Union Ave, 9th floor, Memphis TN 38103 | 901-591-1631 | support.aegirmaps.com p. 4

 VMSDK User Guide Version 1.3 for iOS

● Support for Vector and Raster map tiling on top of Google and Apple Maps

Audience
VMSDK documentation is designed for people familiar with basic mobile development for iOS.

Supported platforms
VMSDK supports iOS 8.x+. Consult your map provider’s documentation for their own supported
platforms.

Get started
With the Venue Maps SDK Reference App, you’ll see how to:

● Show a map using a specific map provider, and display your custom map tiles

● Load the VMD file with wayfinding data

● Optionally load additional custom map data for directions and naming

● Allow custom styling for your map tiles

● Allow custom styling for your wayfinding

● Handle errors that occur

Install and run the reference app
1. Make sure you have version 10.2 or later of Xcode.

2. If you don't already have the CocoaPods tool, install it on macOS by running this
command from the terminal:
sudo gem install cocoapods

3. Extract the iOS VMSDK zip file.

4. In the extracted directory, navigate to vmsdk-sampleapp.

5. Install the dependencies using CocoaPods:
pod install

6. In the extracted directory, navigate to vmsdk-sampleapp/VMMS-Demo.xcworkspace
and launch it in Xcode.

Copyright © 2019 Aegir | 88 Union Ave, 9th floor, Memphis TN 38103 | 901-591-1631 | support.aegirmaps.com p. 5

https://developer.apple.com/xcode/
https://guides.cocoapods.org/using/getting-started.html

 VMSDK User Guide Version 1.3 for iOS

7. The reference app uses the Google Maps SDK for iOS, so you will need to generate a
Google API Key.

8. Once you’ve generated an API key, open Supporting Files/VMMSDemoConstants.h
and update the GMS_API_KEY variable.

9. Build and run the app on the simulator.

Implement

Load the VMD file and display your map
Now you’re ready to write code to load your waypoint data and map data into the VMD file.
Consult the example in the SDK demo: Controller/MapViewController.m.

Implement the VMMSMapDelegate protocol to be notified when the map is finished loading.

You can also load custom map info from a file to override any auto-generated labeling
information or to provide additional information where the SDK cannot determine useful points
of interest for specific sections of your map.

//load the VMD from the zip file

NSString *zipFilePath = [[NSBundle mainBundle]

pathForResource:@"venue_map_sample" ofType:@"zip"];

id<VMDFile> localFile = [[VMDLocalZipFile alloc]

initWithAbsoluteFilePath:zipFilePath];

//create a file collection

VMDFileCollection *fileCollection = [[VMDFileCollection alloc]

initWithBaseZipFile:localFile];

[VMMSMap load:fileCollection delegate:self];

...

...

...

//implement VMMSMapDelegate to get notified when the map is done loading

/**

 * Called when the VMD file is done loading SUCCESSFULLY

 @param map a VMMSMap object with waypoint data

 */

Copyright © 2019 Aegir | 88 Union Ave, 9th floor, Memphis TN 38103 | 901-591-1631 | support.aegirmaps.com p. 6

https://developers.google.com/maps/documentation/ios-sdk/get-api-key
https://developers.google.com/maps/documentation/ios-sdk/get-api-key

 VMSDK User Guide Version 1.3 for iOS

- (void)didFinishLoadingMap:(VMMSMap *)map

customMapInfo:(VMMSCustomMapInfo *)customMapInfo

{

 //create your VMMapView and get it all setup.

 //This will show floor 1, by default

 self.vmMapView = [[VMVectorMapView alloc]
initWithFrame:self.baseMap.frame vmd:self.vmd];

 //configure where your map tiles reside. This can be within your
application bundle, or a remote URL.

 self.vmMapView.tileBaseURL = [NSBundle.mainBundle.bundleURL
URLByAppendingPathComponent:@"vector_tiles"].absoluteString;

 //configure map label & icon data url, again either within your
application bundle, or a remote URL

 self.vmMapView.vectorCommonBaseURL = [NSBundle.mainBundle.bundleURL

URLByAppendingPathComponent:@"vector_common"].absoluteString;

 //other config options (see class documentation for the full list)
 self.vmMapView.minZoom = 17.0;

 self.vmMapView.maxZoom = 23.0;

 self.vmMapView.delegate = self; //receive map view callbacks
 self.vmMapView.map = self.map;

 //finally, add your mapview to the screen
 [self.vmMapView attachInView:self.view aboveView:self.baseMap];

 //set your map’s initial position
 [self.vmMapView setMapPositionWithTarget: self.map.centerPoint

bearing:self.map.initialRotation zoom:self.map.initialZoom];

}

At this point, you should have a map display of the world with your map tiles superimposed.

Legacy Support

If you need to add support for parsing legacy venue map data files to your application, include
the ‘VMSDK-Legacy.framework’ in your project. The SDK will automatically detect if it’s loading
a zip file that contains legacy venue map data or new venue map data and process
appropriately.

NOTE: Vector map tiles are not supported for legacy venue maps.

Copyright © 2019 Aegir | 88 Union Ave, 9th floor, Memphis TN 38103 | 901-591-1631 | support.aegirmaps.com p. 7

 VMSDK User Guide Version 1.3 for iOS

Customizing your map's look and feel
If you use vector map tiles, as opposed to raster map tiles, you have great flexibility in styling
your map. This customization also applies to raster map tiles, although it's much more limited.
For more information, see Appendix: Vector map tile style spec below.

Global map styling

The easiest way to style your map is to create a Map Style JSON configuration file that follows
the style spec in the appendix. For a full example, see style_default.json in the demo project.

//load your custom style from style_default.json configuration file

VMVenueStyle* style = [[VMVenueStyle alloc] initWithConfig:[NSBundle.mainBundle

URLForResource:@"style_default" withExtension:@"json"]

venueId:@"venue_map_sample"];

//apply the style to your map

VMMapView* mapView = ...

mapView.style = venueStyle;

Styling individual map elements

You can now add custom styles to individual map elements. This allows you to override the
overall map style defined in your map's VMVenueStyle configuration for a single element.

//get the map element

VMMSMapUnit* element = ...

VMMapView* mapView = ...

//create your custom style

VMVenueLayerStyle* elementStyle = [VMVenueLayerStyle new];

elementStyle.fillColor = UIColor.redColor;

elementStyle.fontColor = UIColor.blueColor;

//... see class documentation for a full list of styleable attributes

//apply the style to the unit. If the map unit is not visible, it will be

applied the next time it is shown.

[mapView setStyle: elementStyle forUnit: element];

Copyright © 2019 Aegir | 88 Union Ave, 9th floor, Memphis TN 38103 | 901-591-1631 | support.aegirmaps.com p. 8

 VMSDK User Guide Version 1.3 for iOS

Responding to VMMapView events and callbacks
There are numerous ways to customize the behavior of your mapview by responding to the
following events:

Map loading complete

In some scenarios, you may want to wait until the mapview has completed loading before
proceeding to a next step. You can wait for the didFinishLoadingMap callback.

/// Called when map view has finished loading so you can do any additional

setup

///

/// - Parameter map: the map

@objc optional func didFinishLoadingMap(map: VMMapView);

Changes in map position

Anytime the map’s position changes, you can act accordingly.

NOTE: If your VMMapView is overlaid on another provider's map (such as Google Maps or
Apple Maps), this is a good place to ensure the map positions stay in sync with each other.

/// Called when the map position changes

///

/// - Parameters:

/// - newLocation: the new map location

/// - newZoom: the new map zoom

/// - newBearing: the new map bearing

/// - newTilt: the new map tilt

@objc optional func didChangeCameraPosition(

 toLocation newLocation: CLLocationCoordinate2D,

 toZoom newZoom: Float,

 toBearing newBearing: Double,

 toTilt newTilt: Double);

Room selection/highlighting

When the user taps the map on a specific point or room, you can respond to those events
appropriately. If you return true to canSelectUnit, the map will also highlight the selected shape
using the color defined in your Map Style json for the layer-id of "floor_selected_unit_[FLOOR]".
See “Customizing your map's look and feel” above for more information.

Copyright © 2019 Aegir | 88 Union Ave, 9th floor, Memphis TN 38103 | 901-591-1631 | support.aegirmaps.com p. 9

 VMSDK User Guide Version 1.3 for iOS

/// Called to see if it’s possible to select a unit

///

/// - Parameter unit: the unit to select

/// - Returns: true to allow selection, false otherwise

@objc optional func canSelectUnit(_ unit: VMMSMapUnit) -> Bool;

/// Called after a new unit has been selected

///

/// - Parameter unit: the unit that is selected

@objc optional func didSelectUnit(_ unit: VMMSMapUnit?);

Adding your own annotations to the mapview

You can programmatically add annotations to the map to suit your needs by creating a new
VMPointAnnotation object and adding it to the map:

let marker = VMPointAnnotation();

marker.coordinate = ...//set the location you want the annotation to appear on
the map

marker.title = //give it a title, which you can use to reference in additional
callbacks

marker.floorNumber = //give the icon a floor number that it should be
displayed on (it's going to be removed when you're not looking at that floor

of the map)

marker.floorId = //set the floor id to the VMMSBaseFloor object's uid that
this marker belongs on

let mapView : VMMapView? = ...

mapView?.addAnnotation(marker);

You can configure the appearance of your custom annotation using these callbacks:

Copyright © 2019 Aegir | 88 Union Ave, 9th floor, Memphis TN 38103 | 901-591-1631 | support.aegirmaps.com p. 10

 VMSDK User Guide Version 1.3 for iOS

/// Called to provide a custom image for a point annotation

///

/// - Parameter annotation: the annotation

/// - Returns: the custom image

@objc optional func imageForPointAnnotation (_ annotation: VMPointAnnotation

) -> UIImage?;

/// Called to provide a custom view for a point annotation

///

/// - Parameter annotation: the annotation

/// - Returns: the custom view

@objc optional func viewForPointAnnotation(_ annotation: VMPointAnnotation)

-> UIView?;

 Responding to errors that occur in the SDK
There are numerous instances where an error could occur within the VMSDK at any of the
many steps above. You can be notified of the error by implementing any of the following
callbacks:

VMD parsing errors

If any errors are encountered while parsing your venue map data files, this method will be called
within the SDK with more detailed information about the error:

/**

 * Called when the VMD file FAILS to load

 * @param error the exception that was raised during load

 */

- (void)didFailToLoadMapWithError:(NSError*)error;

Map display errors

If any errors are encountered when your map is loaded and rendered on screen through the
VMMapView object, this method will be called within the SDK with more detailed information
about the error:

/// Called when the mapview fails to load

///

/// - Parameter error: the error that caused the failure

/// - Since: 1.2

Copyright © 2019 Aegir | 88 Union Ave, 9th floor, Memphis TN 38103 | 901-591-1631 | support.aegirmaps.com p. 11

 VMSDK User Guide Version 1.3 for iOS

@objc optional func didFailToLoadMap(error: Error);

Enable Wayfinding
You can add wayfinding capabilities to your mapview to enable your application to provide
turn-by-turn paths and directions:

//Create a VMVectorWalkingPathOverlay object, which will handle interacting

with the map to select start/endpoint locations for wayfinding

self.walkingPathOverlay = [[VMVectorWalkingPathOverlay alloc]

initWithMap:self.vmMapView];

self.walkingPathOverlay.map = self.map;

self.walkingPathOverlay.delegate = self;

self.walkingPathOverlay.currentOutdoorFloor = initialOutdoorFloor;

 .. and so on

Handle Wayfinding Events
Implement the VMMSWayfindingDelegate protocol to get notified of any callbacks from the SDK
for wayfinding:

VMMSMap* map = ...

...

...

...

/**

* Called when wayfinding path is found

* @param waypath the Waypath that leads from the starting point to the ending

point

*/

- (void)didFinishFindingWaypath:(VMMSWaypath *)waypath {

{

 //if you want to add turn by turn directions
 [self.map createTurnByTurnDirectionsForWaypath:waypath

 withCustomMapInfo:nil

 andOptions:nil

 delegate:self];

}

/**

* Called when turn by turn directions are completed

* @param turnByTurnDirections list of directions

*/

Copyright © 2019 Aegir | 88 Union Ave, 9th floor, Memphis TN 38103 | 901-591-1631 | support.aegirmaps.com p. 12

 VMSDK User Guide Version 1.3 for iOS

- (void)didFinishCreatingTurnByTurnDirections:(NSArray<VMMSMapDirectionStep *>

*)directions

{

 //display path on the map now

 //tell your VMWalkingPathOverlay about the waypath & directions

 [self.walkingPathOverlay setWaypath:waypath andDirections:directions];

 //Figure out the first floor in the waypath

 VMMSWaypathSegment* firstSegment = directions.firstObject.segment;

 VMMSMapBuildingFloor* vmdFloor = [self.map

 findFloorWithId:firstSegment.floorId];

 //update the map and the path overlay to show the new floor

 self.walkingPathOverlay.currentFloor = vmdFloor;

 self.vmMapView.activeIndoorFloors = @[vmdFloor];

 //trigger the walking path to draw all of the waypath

 //data for the active floors

 [self.walkingPathOverlay togglePathForIndoorFloors:

 self.vmMapView.activeIndoorFloors

 andOutdoorFloors:

 self.vmMapView.activeOutdoorFloors];

 //if you want to automatically focus on the first segment of the waypath

 [self.walkingPathOverlay onSegmentSelected:firstSegment];

}

Override auto-generated wayfinding directions and landmark
names
You can use map information from a .json file to override the VMD’s auto-generated wayfinding
directions and landmark names. See this full example: Controller/MapViewController.m.

The data contained in your map info override file must be in JSON format, according to the
following specs:

{

 "points": [

 {

 "id": "node_waypoint_b1_f1_517",

 "public-description": "the edge of the Basketball Court"

 },

 {

 "id": "<the ID of the waypoint>",

 "public-description": "<the description you want for this

Copyright © 2019 Aegir | 88 Union Ave, 9th floor, Memphis TN 38103 | 901-591-1631 | support.aegirmaps.com p. 13

 VMSDK User Guide Version 1.3 for iOS

landmark/waypoint">

 }

],

 "paths": [

 {

 "pathID": "node_path_b1_f1_722",

 "p1": "node_waypoint_b1_f1_473",

 "p2": "node_waypoint_b1_f1_567",

 "description-d1": "along the sidewalk",

 "description-d2": "along the sidewalk the other direction"

 },

 {

 "pathID": "<the ID of the path>",

 "p1": "<the ID of one of the waypoints>",

 "p2": "<the ID of the other waypoint>",

 "description-d1": "<description for traversing from P1 to P2>, leave

blank to auto-generate",

 "description-d2": "<description for traversing from P2 to P1>, leave

blank to auto-generate"

 }

]

}

Responding to wayfinding events and callbacks
Changing floors for wayfinding

When you have a waypath that spans multiple floors, the default behavior for the VMMapView is
to draw a button on the map that looks like this:

You can provide your own image that matches your own branding. Additionally, when the user
selects that button, you must implement that behavior as well by specifying what floor to change
to, etc. See BaseMapViewController.m (iOS) for an example of how to appropriately respond
to a floor change event.

Copyright © 2019 Aegir | 88 Union Ave, 9th floor, Memphis TN 38103 | 901-591-1631 | support.aegirmaps.com p. 14

 VMSDK User Guide Version 1.3 for iOS

/// Called to provide a custom image for the floor change annotation button

///

/// - Parameter annotation: the annotation

/// - Returns: the custom image

@objc optional func imageForFloorChangeAnnotation(_ annotation:

VMFloorChangePointAnnotation) -> UIImage?;

/// Called when floor change annotation is selected

///

/// - Parameter annotation: the annotation

@objc optional func didSelectFloorChangeAnnotation(_ annotation:

VMFloorChangePointAnnotation);

Responding to errors that occur in wayfinding
Wayfinding errors

Errors may occur during wayfinding, usually if no paths exist between your selected start & end
destination. This method will be called within the SDK with more detailed information about the
error:

/**

 Called when an error occurred while attempting to find a waypath.

 @param error The exception that was raised during waypath finding.

 */

- (void)didFailToFindWaypathWithError:(NSError *)error;

/**

 * Called when the system is unable to generate turn by turn directions

 * @param error the exception that was raised

 */

- (void)didFailToCreateTurnByTurnDirectionsWithError:(NSError*)error;

Customizing wayfinding look and feel
All styling for wayfinding is now done through new styling properties added in v1.2 to the
“wayfinding” section of the Vector map tile spec. For more information, see Appendix: Vector
map tile style spec below.

Copyright © 2019 Aegir | 88 Union Ave, 9th floor, Memphis TN 38103 | 901-591-1631 | support.aegirmaps.com p. 15

 VMSDK User Guide Version 1.3 for iOS

Landmark customization

In the turn-by-turn directions provided by the SDK for wayfinding, there are usually points of
interest, or landmarks, that are part of each step and refer to actual places on the map. You can
add special icons to the map to further highlight your landmarks:

/// Called to provide a custom image for a landmark annotation

///

/// - Parameter annotation: the annotation

/// - Returns: the custom image

@objc optional func imageForLandmarkAnnotation(_ annotation:

VMLandmarkAnnotation) -> UIImage?;

More Information
For assistance with the Aegir VMSDK, related questions, or information about other Aegir
products and services, visit https://support.aegirmaps.com/, contact Aegir Support at
support@aegirmaps.com or call us at (901) 591-1631 between 9:00 am and 5:00 pm CST,
Monday through Friday.

Copyright © 2019 Aegir | 88 Union Ave, 9th floor, Memphis TN 38103 | 901-591-1631 | support.aegirmaps.com p. 16

https://support.aegirmaps.com/
mailto:support@aegirmaps.com

 VMSDK User Guide Version 1.3 for iOS

Appendix: Vector Map Tile Style Spec

Supported spec versions: 1.0, 1.1

As new styleable features are added, we will attempt to maintain backwards compatibility with
older versions of this specification, however newer styling features may not be available in older
versions.

Style spec properties

Property-name Required Supported
layer-type

Spec
version

Description

id yes 1.0 Identifier for this style definition.
For venues with multiple styles,
this identifier should be unique

name no 1.0 Common name used to describe
this style

version no 1.1 Spec format version. Certain
versions of the SDK may only
support certain versions of this
spec format. Default: 1.0

styles yes 1.0 Container for list of style layer
customizations

styles[].layer-id yes All 1.0 The ID of the style layer. See
Possible style layers section
below for acceptable values.

styles[].hidden no All 1.0 Specify as true to hide this layer.
Default: false.

styles[].fill-color no Polygon 1.0 A HEX color to fill the polygon
with. Default: NULL.

styles[].fill-pattern no Polygon 1.0 This is the name of an image from
the style's sprite sheet to pattern
fill the polygon with. Default:
NULL.

styles[].outline-color no Polygon 1.1 This is a HEX color to draw an
outline around the polygon with.
Default: NULL

Copyright © 2019 Aegir | 88 Union Ave, 9th floor, Memphis TN 38103 | 901-591-1631 | support.aegirmaps.com p. 17

 VMSDK User Guide Version 1.3 for iOS

styles[].line-color no Line 1.0 A HEX color to draw the line with.
Default: NULL.

styles[].icon-name no Icon 1.0 This is the name of an image from
the style's sprite sheet. Default:
NULL.

styles[].font-name no Label 1.0 This is the name of a font to use
for the labels. Default: NULL.

styles[].font-size no Label 1.0 The point size of the font. Default:
NULL.

styles[].font-color no Label 1.0 A HEX color of the font: Default:
NULL.

Property-name Required Supported
layer-type

Spec
version

Description

styles[].font-stroke-c
olor

no Label 1.0 A HEX color for the font outline.
Default: NULL.

styles[].font-stroke-
width

no Label 1.0 This is the width of an outline for
the font. Default: NULL.

styles[].max-text-wi
dth

no Label 1.0 Controls automatic text wrapping
within a label. Default: NULL.

wayfinding no 1.0 Container for list of wayfinding
style customizations.

wayfinding.path-stro
ke-width

no Deprecat
ed 1.1

A decimal value indicating how
thick the stroke is for the default
wayfinding path. Default: NULL.

wayfinding.path-stro
ke-min-width

no 1.1 This is a decimal value indicating
how thick the stroke is for the
default wayfinding path at the
map's minimum zoom level.
Default: 2

wayfinding.path-stro
ke-max-width

no 1.1 This is a decimal value indicating
how thick the stroke is for the
default wayfinding path at the
map's maximum zoom level.
Default: 40

wayfinding.path-stro
ke-color

no 1.0 A HEX color to draw the
wayfinding path. Default: NULL.

wayfinding.path-stro
ke-alpha

no 1.0 A decimal value from 0 to 1 to
indicate how transparent the

Copyright © 2019 Aegir | 88 Union Ave, 9th floor, Memphis TN 38103 | 901-591-1631 | support.aegirmaps.com p. 18

 VMSDK User Guide Version 1.3 for iOS

default wayfinding path is.
Default: NULL.

wayfinding.path-arr
ow-fill-color

no 1.1 This is a HEX color to draw the
arrows on the wayfinding path.
Default: #4688F1

wayfinding.path-arr
ow-stroke-color

no 1.1 This is a HEX color of the outline
around the arrows drawn on the
wayfinding path.Default:
#FFFFFF

wayfinding.path-arr
ow-size

no 1.1 This is a decimal value indicating
how large the arrows on the
wayfinding path show up. The
value should be in METERS.
Default: 1.5

wayfinding.highlight
ed-path-stroke-widt
h

no Deprecat
ed 1.1

A decimal value indicating how
thick the stroke is for the
highlighted section of the
wayfinding path. Default: NULL.

wayfinding.highlight
ed-path-stroke-min-
width

no 1.1 This is a decimal value indicating
how thick the stroke is for the
highlighted section of the
wayfinding path at the map's
minimum zoom level. Default: 2

wayfinding.highlight
ed-path-stroke-max-
width

no 1.1 This is a decimal value indicating
how thick the stroke is for the
highlighted section of the
wayfinding path at the map's
maximum zoom level. Default: 40

wayfinding.highlight
ed-path-stroke-color

no 1.0 A HEX color to draw a highlighted
section of the wayfinding path.
Default: NULL.

wayfinding.highlight
ed-path-stroke-alph
a

no 1.0 A decimal value from 0 to 1 to
indicate how transparent the
highlighted section of the
wayfinding path is. Default: NULL.

wayfinding.highlight
ed-path-arrow-fill-co
lor

no 1.1 This is a HEX color of the arrows
drawn in a highlighted section of
the wayfinding path. Default:
#4688F1

wayfinding.highlight
ed-path-arrow-strok
e-color

no 1.1 This is a HEX color of the outline
around the arrows drawn in a
highlighted section of the

Copyright © 2019 Aegir | 88 Union Ave, 9th floor, Memphis TN 38103 | 901-591-1631 | support.aegirmaps.com p. 19

 VMSDK User Guide Version 1.3 for iOS

wayfinding path. Default:
#FFFFFF

wayfinding.highlight
ed-path-arrow-size

no 1.1 This is a decimal value indicating
how large the arrows in a
highlighted section of the
wayfinding path should be. The
value should be in METERS.
Default: 1.5

Copyright © 2019 Aegir | 88 Union Ave, 9th floor, Memphis TN 38103 | 901-591-1631 | support.aegirmaps.com p. 20

 VMSDK User Guide Version 1.3 for iOS

Possible Style Layer ID Patterns
This is a list of possible layer-IDs that can be styled per the style spec above. Some layers apply
only to raster or vector, while others apply to both. This is indicated in the 'tile-type' column
below. This list is ordered by the zIndex in which each layer would appear within the map.
Layers with a higher Order value will appear on top of those with lower values.

Supported wildcards:

1. FLOOR - the ID of the floor layer from the VMD (e.g. floor_b1_1)

2. BUILDING - the ID of the building layer from the VMD (e.g. building_1)

When wildcards are used, the specific style will be applied to all layers that match. For example,
floor_elevators_[FLOOR] will be used for the floor_elevators_* layer on ALL floors in ALL
buildings.

If you want to confine a unique style to a layer on a single floor, then don't use the wildcard. For
example floor_elevators_floor_b1_2 would apply to the floor_elevators layer ONLY on floor 2 in
building 1.

Order Layer-ID Tile-
type

Layer-
type

Description

1 background All Polygon Background color of the entire map that is
visible when the base map (Google Maps or
Apple Maps) is hidden.

2 venue vector Polygon “Venue_outdoors” polygon.

3 outdoors All n/a Raster map tiles that are part of the venue
outdoor floor.

4 building_outlines
_[BUILDING]

vector Polygon Building-outlines polygon for the given
[BUILDING].

5 floor_outlines_[F
LOOR]

vector Polygon Floor-outlines polygon for the given [FLOOR].

6 floor_elevators_[
FLOOR]

vector Polygon Elevator polygons for the given [FLOOR].

7 floor_stairwells_[
FLOOR]

vector Polygon Stairwell polygons for the given [FLOOR].

8 floor_restrooms_
[FLOOR]

vector Polygon “Restroommen” and “restroomwomen”
polygons for the given [FLOOR].

Copyright © 2019 Aegir | 88 Union Ave, 9th floor, Memphis TN 38103 | 901-591-1631 | support.aegirmaps.com p. 21

 VMSDK User Guide Version 1.3 for iOS

Order Layer-ID Tile-
type

Layer-
type

Description

9 floor_walkways_[
FLOOR]

vector Polygon Walkway polygons for the given [FLOOR].

10 floor_fixtures_[FL
OOR]

vector Polygon Floor fixture polygons for the given [FLOOR].

11 floor_non_public
units[FLOOR]

vector Polygon Non-public unit polygons for the given
[FLOOR].

12 floor_open_to_b
elow_units_[FLO
OR]

vector Polygon “Open to below” unit polygons (such as open
atrium spaces) for the given [FLOOR].

13 floor_other_room
s_[FLOOR]

vector Polygon “Other room” polygons for the given [FLOOR].

14 floor_rooms_[FL
OOR]

vector Polygon Room polygons for the given [FLOOR].

15 floor_water_[FLO
OR]

vector Polygon Fixtures where category=Water for the given
[FLOOR].

16 floor_openings_[
FLOOR]

vector Line Floor openings for the given [FLOOR].

17 floor_amenities_[
FLOOR]

vector ** Floor amenities for the given [FLOOR].

18 floor_selected_u
nit_[FLOOR]

vector Polygon This is for the style of the actively selected
polygon used during wayfinding & room
selection for the given [FLOOR].

19 floor_shadows_[
FLOOR]

vector n/a Raster map tiles that are overlaid on top of
existing vector data for the given [FLOOR]

20 [FLOOR] Raster n/a Raster map tiles for the given floor [FLOOR].

21 building_outlines
_[BUILDING]

Raster n/a Raster map tiles for the given building
[BUILDING].

22 floor_labels_[FL
OOR]

All Label Labels for the given [FLOOR].

23 floor_icons_[FLO
OR]

All Icon Icons for the given [FLOOR].

24 building_labels_[
BUILDING]

All Label These are the labels for a given [BUILDING]
that are displayed when no active floors in that
building are shown.

Copyright © 2019 Aegir | 88 Union Ave, 9th floor, Memphis TN 38103 | 901-591-1631 | support.aegirmaps.com p. 22

 VMSDK User Guide Version 1.3 for iOS

Copyright © 2019 Aegir | 88 Union Ave, 9th floor, Memphis TN 38103 | 901-591-1631 | support.aegirmaps.com p. 23

